The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective

We investigate on the origin of the high reactivity of triazolinediones compared to maleimides in Diels-Alder reactions by using a combination of Molecular Orbital Theory and the Activation Strain Model of reactivity. Calculations at M06-2X/6–311++G(d,p)//M06-2X/6-31+G(d) level show that the energy...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6034
Acceso en línea:
http://hdl.handle.net/11407/6034
Palabra clave:
Activation strain model
Charge transfer
Diels Alder
Maleimides
Strain energies
Triazolinediones
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_869e1f3cd6a1d4efd019d0f181733f2e
oai_identifier_str oai:repository.udem.edu.co:11407/6034
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective
title The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective
spellingShingle The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective
Activation strain model
Charge transfer
Diels Alder
Maleimides
Strain energies
Triazolinediones
title_short The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective
title_full The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective
title_fullStr The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective
title_full_unstemmed The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective
title_sort The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective
dc.subject.spa.fl_str_mv Activation strain model
Charge transfer
Diels Alder
Maleimides
Strain energies
Triazolinediones
topic Activation strain model
Charge transfer
Diels Alder
Maleimides
Strain energies
Triazolinediones
description We investigate on the origin of the high reactivity of triazolinediones compared to maleimides in Diels-Alder reactions by using a combination of Molecular Orbital Theory and the Activation Strain Model of reactivity. Calculations at M06-2X/6–311++G(d,p)//M06-2X/6-31+G(d) level show that the energy barrier of the cycloaddition between anthracene and triazolinedione is much lower than that for maleimides. The analysis of frontier molecular orbitals (FMO) reveals that for the TAD system there is a much efficient charge transfer as consequence of a more delocalized HOMO over the dienophile fragment at the transition state structure. The Activation Strain Model revealed that the higher reactivity of TAD in the cycloaddition is related to the lower distortion of both fragments to attain the geometry of the transition state. © 2020 Elsevier Ltd
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:55Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:55Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 404020
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6034
dc.identifier.doi.none.fl_str_mv 10.1016/j.tet.2020.131459
identifier_str_mv 404020
10.1016/j.tet.2020.131459
url http://hdl.handle.net/11407/6034
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089252149&doi=10.1016%2fj.tet.2020.131459&partnerID=40&md5=64af72f89eb3f1d9aa5034b7155d0d59
dc.relation.references.none.fl_str_mv Diels, O., Alder, K., (1928) Justus Liebigs Ann. Chem., 460, p. 98
Gregoritza, M., Brandl, F.P., (2015) Eur. J. Pharm. Biopharm., 97, p. 438
Fringuelli, F., Taticchi, A., The Diels–Alder Reaction: Selected Practical Methods (2002), John Wiley & Sons, Ltd Chichester
De Bruycker, K., Billiet, S., Houck, H.A., Chattopadhyay, S., Winne, J.M., Du Prez, F.E., (2016) Chem. Rev., 116, p. 3919
Burrage, M.E., Cookson, R.C., Gupte, S.S., Stevens, I.D.R., (1975) J. Chem. Soc., Perkin Trans., 2, p. 1325
Chen, J.S., Houk, K.N., Foote, C.S., (1998) J. Am. Chem. Soc., 120, p. 12303
Fernandez-Herrera, M.A., Zavala-Oseguera, C., Cabellos, J.L., Sandoval-Ramirez, J., Domingo, L.R., Merino, G., (2014) J. Mol. Model., 20, p. 2207
Domingo, L.R., Emamian, S.R., (2014) Indian J. Chem., 53A, p. 940
Levandowski, B.J., Houk, K.N., (2015) J. Org. Chem., 80, p. 3530
Adams, H., Elsunaki, T.M., Ojea-Jiménez, I., Jones, S., Meijer, A.J.H.M., (2010) J. Org. Chem., 75, p. 6252
Sanyal, A., Snyder, J.K., (2000) Org. Lett., 2, p. 2527
Bawa, R.A., Gautier, F.M., Adams, H., Meijer, A.J., Jones, S., (2015) Org. Biomol. Chem., 13, p. 10569
Chen, H., Yao, E., Xu, C., Meng, X., Ma, Y., (2014) Org. Biomol. Chem., 12, p. 5102
Agopcan, S., Celebi-Olcum, N., Ucisik, M.N., Sanyal, A., Aviyente, V., (2011) Org. Biomol. Chem., 9, p. 8079
Hernández, J.P., Núñez-Zarur, F., Vivas, R., (2020) Chemistry Open, 9, p. 748
Hernández Mancera, J.P., Núñez-Zarur, F., Gutiérrez-Oliva, S., Toro-Labbé, A., Vivas-Reyes, R., (2020) J. Comput. Chem., 41, p. 2022
Roy, N., Lehn, J.M., (2011) Chem. Asian J., 6, p. 2419
Domingo, L.R., Ríos-Gutiérrez, M., Chamorro, E., Pérez, P., (2019) Org. Biomol. Chem., 17, p. 8185
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., Gaussian 09, Revision D.01 (2016), Gaussian, Inc. Wallingford CT
Zhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, p. 215
Hehre, W.J., Ditchfield, R., Pople, J.A., (1972) J. Chem. Phys., 56, p. 2257
Clark, T., Chandrasekhar, J., Spitznagel, G.W., Schleyer, P.V., (1983) J. Comput. Chem., 4, p. 294
Frisch, M.J., Pople, J.A., Binkley, J.S., (1984) J. Chem. Phys., 80, p. 3265
Hamlin, T.A., Levandowski, B.J., Narsaria, A.K., Houk, K.N., Bickelhaupt, F.M., (2019) Chem. Eur J., 25, p. 6342
Yepes, D., Valenzuela, J., Martinez-Araya, J.I., Perez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, p. 7412
Levandowski, B.J., Hamlin, T.A., Bickelhaupt, F.M., Houk, K.N., (2017) J. Org. Chem., 82, p. 8668
Levandowski, B.J., Hamlin, T.A., Helgeson, R.C., Bickelhaupt, F.M., Houk, K.N., (2018) J. Org. Chem., 83, p. 3164
Liu, F., Liang, Y., Houk, K.N., (2014) J. Am. Chem. Soc., 136, p. 11483
Fukui, K., (1981) Acc. Chem. Res., 14, p. 363
Schäfer, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, p. 2571
Schäfer, A., Huber, C., Ahlrichs, R., (1994) J. Chem. Phys., 100, p. 5829
Lu, T., Chen, F., (2012) J. Comput. Chem., 33, p. 580
van Zeist, W.J., Bickelhaupt, F.M., (2010) Org. Biomol. Chem., 8, p. 3118
Fernandez, I., Bickelhaupt, F.M., (2014) Chem. Soc. Rev., 43, p. 4953
Fernandez, I., (2014) Phys. Chem. Chem. Phys., 16, p. 7662
Wolters, L.P., Bickelhaupt, F.M., (2015) WIREs Comput. Mol. Sci., 5, p. 324
Fernandez, I., Bickelhaupt, F.M., (2016) Chem. Asian J., 11, p. 3297
Bickelhaupt, F.M., Houk, K.N., (2017) Angew. Chem. Int. Ed., 56, p. 10070
Vermeeren, P., van der Lubbe, S.C.C., Fonseca Guerra, C., Bickelhaupt, F.M., Hamlin, T.A., (2020) Nat. Protoc., 15, p. 649
Casals-Sainz, J.L., Francisco, E., Martín Pendás, Á., (2020) Z. Anorg. Allg. Chem., , Early View
Bader, R.F.W., (1985) Acc. Chem. Res., 18, p. 9
Zhao, L., von Hopffgarten, M., Andrada, D.M., Frenking, G., (2018) WIREs Comput. Mol. Sci., 8, p. e1345
Yepes, D., Donoso-Tauda, O., Pérez, P., Murray, J.S., Politzer, P., Jaque, P., (2013) Phys. Chem. Chem. Phys., 15, p. 7311
Geerlings, P., De Proft, F., Langenaeker, W., (2003) Chem. Rev., 103, p. 1793
Domingo, L.R., Rios-Gutierrez, M., Perez, P., (2016) Molecules, p. 21
Geerlings, P., Chamorro, E., Chattaraj, P.K., De Proft, F., Gázquez, J.L., Liu, S., Morell, C., Ayers, P., (2020) Theor. Chem. Acc., 139, p. 36
Parr, R.G., Szentpály, L.V., Liu, S., (1999) J. Am. Chem. Soc., 121, p. 1922
Chattaraj, P.K., Sarkar, U., Roy, D.R., (2006) Chem. Rev., 106, p. 2065
Pérez, P., Domingo, L.R., Aizman, A., Contreras, R., Chapter 9 the electrophilicity index in organic chemistry (2007) Theoretical and Computational Chemistry, 19, p. 139. , A. Toro-Labbé Elsevier
Chattaraj, P.K., Giri, S., (2009) Annu. Rep. Sect. C Phys. Chem., 105, p. 13
Domingo, L.R., Pérez, P., (2011) Org. Biomol. Chem., 9, p. 7168
Domingo, L.R., Rios-Gutierrez, M., Perez, P., (2020) Org. Biomol. Chem., 18, p. 292
Ess, D.H., Jones, G.O., Houk, K.N., (2006) Adv. Synth. Catal., 348, p. 2337
Domingo, L.R., Ríos-Gutiérrez, M., Pérez, P., (2020) RSC Adv., 10, p. 15394
Domingo, L.R., Ríos-Gutiérrez, M., Pérez, P., (2017) Tetrahedron, 73, p. 1718
Andrews, L.J., Keefer, R.M., (1955) J. Am. Chem. Soc., 77, p. 6284
Wise, K.E., Wheeler, R.A., (1999) J. Phys. Chem., 103, p. 8279
Kiselev, V.D., Miller, J.G., (1975) J. Am. Chem. Soc., 97, p. 4036
Sustmann, R., Dern, M., Kasten, R., Sicking, W., (1987) Chem. Ber., 120, p. 1315
Sustmann, R., Korth, H.-G., Nüchter, U., Siangouri-Feulner, J., Sicking, W., (1991) Chem. Ber., 124, p. 2811
Suárez, D., Sordo, J.A., (1998) Chem. Commun., 385
Berionni, G., Bertelle, P.-A., Marrot, J., Goumont, R., (2009) J. Am. Chem. Soc., 131, p. 18224
Salavati-fard, T., Caratzoulas, S., Doren, D.J., (2015) J. Phys. Chem., 119, p. 9834
Domingo, L.R., Saez, J.A., (2009) Org. Biomol. Chem., 7, p. 3576
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv Tetrahedron
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159169572306944
spelling 20202021-02-05T14:58:55Z2021-02-05T14:58:55Z404020http://hdl.handle.net/11407/603410.1016/j.tet.2020.131459We investigate on the origin of the high reactivity of triazolinediones compared to maleimides in Diels-Alder reactions by using a combination of Molecular Orbital Theory and the Activation Strain Model of reactivity. Calculations at M06-2X/6–311++G(d,p)//M06-2X/6-31+G(d) level show that the energy barrier of the cycloaddition between anthracene and triazolinedione is much lower than that for maleimides. The analysis of frontier molecular orbitals (FMO) reveals that for the TAD system there is a much efficient charge transfer as consequence of a more delocalized HOMO over the dienophile fragment at the transition state structure. The Activation Strain Model revealed that the higher reactivity of TAD in the cycloaddition is related to the lower distortion of both fragments to attain the geometry of the transition state. © 2020 Elsevier LtdengElsevier LtdFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089252149&doi=10.1016%2fj.tet.2020.131459&partnerID=40&md5=64af72f89eb3f1d9aa5034b7155d0d59Diels, O., Alder, K., (1928) Justus Liebigs Ann. Chem., 460, p. 98Gregoritza, M., Brandl, F.P., (2015) Eur. J. Pharm. Biopharm., 97, p. 438Fringuelli, F., Taticchi, A., The Diels–Alder Reaction: Selected Practical Methods (2002), John Wiley & Sons, Ltd ChichesterDe Bruycker, K., Billiet, S., Houck, H.A., Chattopadhyay, S., Winne, J.M., Du Prez, F.E., (2016) Chem. Rev., 116, p. 3919Burrage, M.E., Cookson, R.C., Gupte, S.S., Stevens, I.D.R., (1975) J. Chem. Soc., Perkin Trans., 2, p. 1325Chen, J.S., Houk, K.N., Foote, C.S., (1998) J. Am. Chem. Soc., 120, p. 12303Fernandez-Herrera, M.A., Zavala-Oseguera, C., Cabellos, J.L., Sandoval-Ramirez, J., Domingo, L.R., Merino, G., (2014) J. Mol. Model., 20, p. 2207Domingo, L.R., Emamian, S.R., (2014) Indian J. Chem., 53A, p. 940Levandowski, B.J., Houk, K.N., (2015) J. Org. Chem., 80, p. 3530Adams, H., Elsunaki, T.M., Ojea-Jiménez, I., Jones, S., Meijer, A.J.H.M., (2010) J. Org. Chem., 75, p. 6252Sanyal, A., Snyder, J.K., (2000) Org. Lett., 2, p. 2527Bawa, R.A., Gautier, F.M., Adams, H., Meijer, A.J., Jones, S., (2015) Org. Biomol. Chem., 13, p. 10569Chen, H., Yao, E., Xu, C., Meng, X., Ma, Y., (2014) Org. Biomol. Chem., 12, p. 5102Agopcan, S., Celebi-Olcum, N., Ucisik, M.N., Sanyal, A., Aviyente, V., (2011) Org. Biomol. Chem., 9, p. 8079Hernández, J.P., Núñez-Zarur, F., Vivas, R., (2020) Chemistry Open, 9, p. 748Hernández Mancera, J.P., Núñez-Zarur, F., Gutiérrez-Oliva, S., Toro-Labbé, A., Vivas-Reyes, R., (2020) J. Comput. Chem., 41, p. 2022Roy, N., Lehn, J.M., (2011) Chem. Asian J., 6, p. 2419Domingo, L.R., Ríos-Gutiérrez, M., Chamorro, E., Pérez, P., (2019) Org. Biomol. Chem., 17, p. 8185Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., Gaussian 09, Revision D.01 (2016), Gaussian, Inc. Wallingford CTZhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, p. 215Hehre, W.J., Ditchfield, R., Pople, J.A., (1972) J. Chem. Phys., 56, p. 2257Clark, T., Chandrasekhar, J., Spitznagel, G.W., Schleyer, P.V., (1983) J. Comput. Chem., 4, p. 294Frisch, M.J., Pople, J.A., Binkley, J.S., (1984) J. Chem. Phys., 80, p. 3265Hamlin, T.A., Levandowski, B.J., Narsaria, A.K., Houk, K.N., Bickelhaupt, F.M., (2019) Chem. Eur J., 25, p. 6342Yepes, D., Valenzuela, J., Martinez-Araya, J.I., Perez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, p. 7412Levandowski, B.J., Hamlin, T.A., Bickelhaupt, F.M., Houk, K.N., (2017) J. Org. Chem., 82, p. 8668Levandowski, B.J., Hamlin, T.A., Helgeson, R.C., Bickelhaupt, F.M., Houk, K.N., (2018) J. Org. Chem., 83, p. 3164Liu, F., Liang, Y., Houk, K.N., (2014) J. Am. Chem. Soc., 136, p. 11483Fukui, K., (1981) Acc. Chem. Res., 14, p. 363Schäfer, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, p. 2571Schäfer, A., Huber, C., Ahlrichs, R., (1994) J. Chem. Phys., 100, p. 5829Lu, T., Chen, F., (2012) J. Comput. Chem., 33, p. 580van Zeist, W.J., Bickelhaupt, F.M., (2010) Org. Biomol. Chem., 8, p. 3118Fernandez, I., Bickelhaupt, F.M., (2014) Chem. Soc. Rev., 43, p. 4953Fernandez, I., (2014) Phys. Chem. Chem. Phys., 16, p. 7662Wolters, L.P., Bickelhaupt, F.M., (2015) WIREs Comput. Mol. Sci., 5, p. 324Fernandez, I., Bickelhaupt, F.M., (2016) Chem. Asian J., 11, p. 3297Bickelhaupt, F.M., Houk, K.N., (2017) Angew. Chem. Int. Ed., 56, p. 10070Vermeeren, P., van der Lubbe, S.C.C., Fonseca Guerra, C., Bickelhaupt, F.M., Hamlin, T.A., (2020) Nat. Protoc., 15, p. 649Casals-Sainz, J.L., Francisco, E., Martín Pendás, Á., (2020) Z. Anorg. Allg. Chem., , Early ViewBader, R.F.W., (1985) Acc. Chem. Res., 18, p. 9Zhao, L., von Hopffgarten, M., Andrada, D.M., Frenking, G., (2018) WIREs Comput. Mol. Sci., 8, p. e1345Yepes, D., Donoso-Tauda, O., Pérez, P., Murray, J.S., Politzer, P., Jaque, P., (2013) Phys. Chem. Chem. Phys., 15, p. 7311Geerlings, P., De Proft, F., Langenaeker, W., (2003) Chem. Rev., 103, p. 1793Domingo, L.R., Rios-Gutierrez, M., Perez, P., (2016) Molecules, p. 21Geerlings, P., Chamorro, E., Chattaraj, P.K., De Proft, F., Gázquez, J.L., Liu, S., Morell, C., Ayers, P., (2020) Theor. Chem. Acc., 139, p. 36Parr, R.G., Szentpály, L.V., Liu, S., (1999) J. Am. Chem. Soc., 121, p. 1922Chattaraj, P.K., Sarkar, U., Roy, D.R., (2006) Chem. Rev., 106, p. 2065Pérez, P., Domingo, L.R., Aizman, A., Contreras, R., Chapter 9 the electrophilicity index in organic chemistry (2007) Theoretical and Computational Chemistry, 19, p. 139. , A. Toro-Labbé ElsevierChattaraj, P.K., Giri, S., (2009) Annu. Rep. Sect. C Phys. Chem., 105, p. 13Domingo, L.R., Pérez, P., (2011) Org. Biomol. Chem., 9, p. 7168Domingo, L.R., Rios-Gutierrez, M., Perez, P., (2020) Org. Biomol. Chem., 18, p. 292Ess, D.H., Jones, G.O., Houk, K.N., (2006) Adv. Synth. Catal., 348, p. 2337Domingo, L.R., Ríos-Gutiérrez, M., Pérez, P., (2020) RSC Adv., 10, p. 15394Domingo, L.R., Ríos-Gutiérrez, M., Pérez, P., (2017) Tetrahedron, 73, p. 1718Andrews, L.J., Keefer, R.M., (1955) J. Am. Chem. Soc., 77, p. 6284Wise, K.E., Wheeler, R.A., (1999) J. Phys. Chem., 103, p. 8279Kiselev, V.D., Miller, J.G., (1975) J. Am. Chem. Soc., 97, p. 4036Sustmann, R., Dern, M., Kasten, R., Sicking, W., (1987) Chem. Ber., 120, p. 1315Sustmann, R., Korth, H.-G., Nüchter, U., Siangouri-Feulner, J., Sicking, W., (1991) Chem. Ber., 124, p. 2811Suárez, D., Sordo, J.A., (1998) Chem. Commun., 385Berionni, G., Bertelle, P.-A., Marrot, J., Goumont, R., (2009) J. Am. Chem. Soc., 131, p. 18224Salavati-fard, T., Caratzoulas, S., Doren, D.J., (2015) J. Phys. Chem., 119, p. 9834Domingo, L.R., Saez, J.A., (2009) Org. Biomol. Chem., 7, p. 3576TetrahedronActivation strain modelCharge transferDiels AlderMaleimidesStrain energiesTriazolinedionesThe origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspectiveArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Rojas-Valencia, N., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 Nº 30-65, Medellín, 050026, ColombiaNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 Nº 30-65, Medellín, 050026, Colombiahttp://purl.org/coar/access_right/c_16ecRojas-Valencia N.Núñez-Zarur F.11407/6034oai:repository.udem.edu.co:11407/60342021-02-05 09:58:55.305Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co