The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective
We investigate on the origin of the high reactivity of triazolinediones compared to maleimides in Diels-Alder reactions by using a combination of Molecular Orbital Theory and the Activation Strain Model of reactivity. Calculations at M06-2X/6–311++G(d,p)//M06-2X/6-31+G(d) level show that the energy...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6034
- Acceso en línea:
- http://hdl.handle.net/11407/6034
- Palabra clave:
- Activation strain model
Charge transfer
Diels Alder
Maleimides
Strain energies
Triazolinediones
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_869e1f3cd6a1d4efd019d0f181733f2e |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6034 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective |
title |
The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective |
spellingShingle |
The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective Activation strain model Charge transfer Diels Alder Maleimides Strain energies Triazolinediones |
title_short |
The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective |
title_full |
The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective |
title_fullStr |
The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective |
title_full_unstemmed |
The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective |
title_sort |
The origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspective |
dc.subject.spa.fl_str_mv |
Activation strain model Charge transfer Diels Alder Maleimides Strain energies Triazolinediones |
topic |
Activation strain model Charge transfer Diels Alder Maleimides Strain energies Triazolinediones |
description |
We investigate on the origin of the high reactivity of triazolinediones compared to maleimides in Diels-Alder reactions by using a combination of Molecular Orbital Theory and the Activation Strain Model of reactivity. Calculations at M06-2X/6–311++G(d,p)//M06-2X/6-31+G(d) level show that the energy barrier of the cycloaddition between anthracene and triazolinedione is much lower than that for maleimides. The analysis of frontier molecular orbitals (FMO) reveals that for the TAD system there is a much efficient charge transfer as consequence of a more delocalized HOMO over the dienophile fragment at the transition state structure. The Activation Strain Model revealed that the higher reactivity of TAD in the cycloaddition is related to the lower distortion of both fragments to attain the geometry of the transition state. © 2020 Elsevier Ltd |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:55Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:55Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
404020 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6034 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.tet.2020.131459 |
identifier_str_mv |
404020 10.1016/j.tet.2020.131459 |
url |
http://hdl.handle.net/11407/6034 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089252149&doi=10.1016%2fj.tet.2020.131459&partnerID=40&md5=64af72f89eb3f1d9aa5034b7155d0d59 |
dc.relation.references.none.fl_str_mv |
Diels, O., Alder, K., (1928) Justus Liebigs Ann. Chem., 460, p. 98 Gregoritza, M., Brandl, F.P., (2015) Eur. J. Pharm. Biopharm., 97, p. 438 Fringuelli, F., Taticchi, A., The Diels–Alder Reaction: Selected Practical Methods (2002), John Wiley & Sons, Ltd Chichester De Bruycker, K., Billiet, S., Houck, H.A., Chattopadhyay, S., Winne, J.M., Du Prez, F.E., (2016) Chem. Rev., 116, p. 3919 Burrage, M.E., Cookson, R.C., Gupte, S.S., Stevens, I.D.R., (1975) J. Chem. Soc., Perkin Trans., 2, p. 1325 Chen, J.S., Houk, K.N., Foote, C.S., (1998) J. Am. Chem. Soc., 120, p. 12303 Fernandez-Herrera, M.A., Zavala-Oseguera, C., Cabellos, J.L., Sandoval-Ramirez, J., Domingo, L.R., Merino, G., (2014) J. Mol. Model., 20, p. 2207 Domingo, L.R., Emamian, S.R., (2014) Indian J. Chem., 53A, p. 940 Levandowski, B.J., Houk, K.N., (2015) J. Org. Chem., 80, p. 3530 Adams, H., Elsunaki, T.M., Ojea-Jiménez, I., Jones, S., Meijer, A.J.H.M., (2010) J. Org. Chem., 75, p. 6252 Sanyal, A., Snyder, J.K., (2000) Org. Lett., 2, p. 2527 Bawa, R.A., Gautier, F.M., Adams, H., Meijer, A.J., Jones, S., (2015) Org. Biomol. Chem., 13, p. 10569 Chen, H., Yao, E., Xu, C., Meng, X., Ma, Y., (2014) Org. Biomol. Chem., 12, p. 5102 Agopcan, S., Celebi-Olcum, N., Ucisik, M.N., Sanyal, A., Aviyente, V., (2011) Org. Biomol. Chem., 9, p. 8079 Hernández, J.P., Núñez-Zarur, F., Vivas, R., (2020) Chemistry Open, 9, p. 748 Hernández Mancera, J.P., Núñez-Zarur, F., Gutiérrez-Oliva, S., Toro-Labbé, A., Vivas-Reyes, R., (2020) J. Comput. Chem., 41, p. 2022 Roy, N., Lehn, J.M., (2011) Chem. Asian J., 6, p. 2419 Domingo, L.R., Ríos-Gutiérrez, M., Chamorro, E., Pérez, P., (2019) Org. Biomol. Chem., 17, p. 8185 Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., Gaussian 09, Revision D.01 (2016), Gaussian, Inc. Wallingford CT Zhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, p. 215 Hehre, W.J., Ditchfield, R., Pople, J.A., (1972) J. Chem. Phys., 56, p. 2257 Clark, T., Chandrasekhar, J., Spitznagel, G.W., Schleyer, P.V., (1983) J. Comput. Chem., 4, p. 294 Frisch, M.J., Pople, J.A., Binkley, J.S., (1984) J. Chem. Phys., 80, p. 3265 Hamlin, T.A., Levandowski, B.J., Narsaria, A.K., Houk, K.N., Bickelhaupt, F.M., (2019) Chem. Eur J., 25, p. 6342 Yepes, D., Valenzuela, J., Martinez-Araya, J.I., Perez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, p. 7412 Levandowski, B.J., Hamlin, T.A., Bickelhaupt, F.M., Houk, K.N., (2017) J. Org. Chem., 82, p. 8668 Levandowski, B.J., Hamlin, T.A., Helgeson, R.C., Bickelhaupt, F.M., Houk, K.N., (2018) J. Org. Chem., 83, p. 3164 Liu, F., Liang, Y., Houk, K.N., (2014) J. Am. Chem. Soc., 136, p. 11483 Fukui, K., (1981) Acc. Chem. Res., 14, p. 363 Schäfer, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, p. 2571 Schäfer, A., Huber, C., Ahlrichs, R., (1994) J. Chem. Phys., 100, p. 5829 Lu, T., Chen, F., (2012) J. Comput. Chem., 33, p. 580 van Zeist, W.J., Bickelhaupt, F.M., (2010) Org. Biomol. Chem., 8, p. 3118 Fernandez, I., Bickelhaupt, F.M., (2014) Chem. Soc. Rev., 43, p. 4953 Fernandez, I., (2014) Phys. Chem. Chem. Phys., 16, p. 7662 Wolters, L.P., Bickelhaupt, F.M., (2015) WIREs Comput. Mol. Sci., 5, p. 324 Fernandez, I., Bickelhaupt, F.M., (2016) Chem. Asian J., 11, p. 3297 Bickelhaupt, F.M., Houk, K.N., (2017) Angew. Chem. Int. Ed., 56, p. 10070 Vermeeren, P., van der Lubbe, S.C.C., Fonseca Guerra, C., Bickelhaupt, F.M., Hamlin, T.A., (2020) Nat. Protoc., 15, p. 649 Casals-Sainz, J.L., Francisco, E., Martín Pendás, Á., (2020) Z. Anorg. Allg. Chem., , Early View Bader, R.F.W., (1985) Acc. Chem. Res., 18, p. 9 Zhao, L., von Hopffgarten, M., Andrada, D.M., Frenking, G., (2018) WIREs Comput. Mol. Sci., 8, p. e1345 Yepes, D., Donoso-Tauda, O., Pérez, P., Murray, J.S., Politzer, P., Jaque, P., (2013) Phys. Chem. Chem. Phys., 15, p. 7311 Geerlings, P., De Proft, F., Langenaeker, W., (2003) Chem. Rev., 103, p. 1793 Domingo, L.R., Rios-Gutierrez, M., Perez, P., (2016) Molecules, p. 21 Geerlings, P., Chamorro, E., Chattaraj, P.K., De Proft, F., Gázquez, J.L., Liu, S., Morell, C., Ayers, P., (2020) Theor. Chem. Acc., 139, p. 36 Parr, R.G., Szentpály, L.V., Liu, S., (1999) J. Am. Chem. Soc., 121, p. 1922 Chattaraj, P.K., Sarkar, U., Roy, D.R., (2006) Chem. Rev., 106, p. 2065 Pérez, P., Domingo, L.R., Aizman, A., Contreras, R., Chapter 9 the electrophilicity index in organic chemistry (2007) Theoretical and Computational Chemistry, 19, p. 139. , A. Toro-Labbé Elsevier Chattaraj, P.K., Giri, S., (2009) Annu. Rep. Sect. C Phys. Chem., 105, p. 13 Domingo, L.R., Pérez, P., (2011) Org. Biomol. Chem., 9, p. 7168 Domingo, L.R., Rios-Gutierrez, M., Perez, P., (2020) Org. Biomol. Chem., 18, p. 292 Ess, D.H., Jones, G.O., Houk, K.N., (2006) Adv. Synth. Catal., 348, p. 2337 Domingo, L.R., Ríos-Gutiérrez, M., Pérez, P., (2020) RSC Adv., 10, p. 15394 Domingo, L.R., Ríos-Gutiérrez, M., Pérez, P., (2017) Tetrahedron, 73, p. 1718 Andrews, L.J., Keefer, R.M., (1955) J. Am. Chem. Soc., 77, p. 6284 Wise, K.E., Wheeler, R.A., (1999) J. Phys. Chem., 103, p. 8279 Kiselev, V.D., Miller, J.G., (1975) J. Am. Chem. Soc., 97, p. 4036 Sustmann, R., Dern, M., Kasten, R., Sicking, W., (1987) Chem. Ber., 120, p. 1315 Sustmann, R., Korth, H.-G., Nüchter, U., Siangouri-Feulner, J., Sicking, W., (1991) Chem. Ber., 124, p. 2811 Suárez, D., Sordo, J.A., (1998) Chem. Commun., 385 Berionni, G., Bertelle, P.-A., Marrot, J., Goumont, R., (2009) J. Am. Chem. Soc., 131, p. 18224 Salavati-fard, T., Caratzoulas, S., Doren, D.J., (2015) J. Phys. Chem., 119, p. 9834 Domingo, L.R., Saez, J.A., (2009) Org. Biomol. Chem., 7, p. 3576 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
Tetrahedron |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159169572306944 |
spelling |
20202021-02-05T14:58:55Z2021-02-05T14:58:55Z404020http://hdl.handle.net/11407/603410.1016/j.tet.2020.131459We investigate on the origin of the high reactivity of triazolinediones compared to maleimides in Diels-Alder reactions by using a combination of Molecular Orbital Theory and the Activation Strain Model of reactivity. Calculations at M06-2X/6–311++G(d,p)//M06-2X/6-31+G(d) level show that the energy barrier of the cycloaddition between anthracene and triazolinedione is much lower than that for maleimides. The analysis of frontier molecular orbitals (FMO) reveals that for the TAD system there is a much efficient charge transfer as consequence of a more delocalized HOMO over the dienophile fragment at the transition state structure. The Activation Strain Model revealed that the higher reactivity of TAD in the cycloaddition is related to the lower distortion of both fragments to attain the geometry of the transition state. © 2020 Elsevier LtdengElsevier LtdFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089252149&doi=10.1016%2fj.tet.2020.131459&partnerID=40&md5=64af72f89eb3f1d9aa5034b7155d0d59Diels, O., Alder, K., (1928) Justus Liebigs Ann. Chem., 460, p. 98Gregoritza, M., Brandl, F.P., (2015) Eur. J. Pharm. Biopharm., 97, p. 438Fringuelli, F., Taticchi, A., The Diels–Alder Reaction: Selected Practical Methods (2002), John Wiley & Sons, Ltd ChichesterDe Bruycker, K., Billiet, S., Houck, H.A., Chattopadhyay, S., Winne, J.M., Du Prez, F.E., (2016) Chem. Rev., 116, p. 3919Burrage, M.E., Cookson, R.C., Gupte, S.S., Stevens, I.D.R., (1975) J. Chem. Soc., Perkin Trans., 2, p. 1325Chen, J.S., Houk, K.N., Foote, C.S., (1998) J. Am. Chem. Soc., 120, p. 12303Fernandez-Herrera, M.A., Zavala-Oseguera, C., Cabellos, J.L., Sandoval-Ramirez, J., Domingo, L.R., Merino, G., (2014) J. Mol. Model., 20, p. 2207Domingo, L.R., Emamian, S.R., (2014) Indian J. Chem., 53A, p. 940Levandowski, B.J., Houk, K.N., (2015) J. Org. Chem., 80, p. 3530Adams, H., Elsunaki, T.M., Ojea-Jiménez, I., Jones, S., Meijer, A.J.H.M., (2010) J. Org. Chem., 75, p. 6252Sanyal, A., Snyder, J.K., (2000) Org. Lett., 2, p. 2527Bawa, R.A., Gautier, F.M., Adams, H., Meijer, A.J., Jones, S., (2015) Org. Biomol. Chem., 13, p. 10569Chen, H., Yao, E., Xu, C., Meng, X., Ma, Y., (2014) Org. Biomol. Chem., 12, p. 5102Agopcan, S., Celebi-Olcum, N., Ucisik, M.N., Sanyal, A., Aviyente, V., (2011) Org. Biomol. Chem., 9, p. 8079Hernández, J.P., Núñez-Zarur, F., Vivas, R., (2020) Chemistry Open, 9, p. 748Hernández Mancera, J.P., Núñez-Zarur, F., Gutiérrez-Oliva, S., Toro-Labbé, A., Vivas-Reyes, R., (2020) J. Comput. Chem., 41, p. 2022Roy, N., Lehn, J.M., (2011) Chem. Asian J., 6, p. 2419Domingo, L.R., Ríos-Gutiérrez, M., Chamorro, E., Pérez, P., (2019) Org. Biomol. Chem., 17, p. 8185Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., Gaussian 09, Revision D.01 (2016), Gaussian, Inc. Wallingford CTZhao, Y., Truhlar, D.G., (2008) Theor. Chem. Acc., 120, p. 215Hehre, W.J., Ditchfield, R., Pople, J.A., (1972) J. Chem. Phys., 56, p. 2257Clark, T., Chandrasekhar, J., Spitznagel, G.W., Schleyer, P.V., (1983) J. Comput. Chem., 4, p. 294Frisch, M.J., Pople, J.A., Binkley, J.S., (1984) J. Chem. Phys., 80, p. 3265Hamlin, T.A., Levandowski, B.J., Narsaria, A.K., Houk, K.N., Bickelhaupt, F.M., (2019) Chem. Eur J., 25, p. 6342Yepes, D., Valenzuela, J., Martinez-Araya, J.I., Perez, P., Jaque, P., (2019) Phys. Chem. Chem. Phys., 21, p. 7412Levandowski, B.J., Hamlin, T.A., Bickelhaupt, F.M., Houk, K.N., (2017) J. Org. Chem., 82, p. 8668Levandowski, B.J., Hamlin, T.A., Helgeson, R.C., Bickelhaupt, F.M., Houk, K.N., (2018) J. Org. Chem., 83, p. 3164Liu, F., Liang, Y., Houk, K.N., (2014) J. Am. Chem. Soc., 136, p. 11483Fukui, K., (1981) Acc. Chem. Res., 14, p. 363Schäfer, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, p. 2571Schäfer, A., Huber, C., Ahlrichs, R., (1994) J. Chem. Phys., 100, p. 5829Lu, T., Chen, F., (2012) J. Comput. Chem., 33, p. 580van Zeist, W.J., Bickelhaupt, F.M., (2010) Org. Biomol. Chem., 8, p. 3118Fernandez, I., Bickelhaupt, F.M., (2014) Chem. Soc. Rev., 43, p. 4953Fernandez, I., (2014) Phys. Chem. Chem. Phys., 16, p. 7662Wolters, L.P., Bickelhaupt, F.M., (2015) WIREs Comput. Mol. Sci., 5, p. 324Fernandez, I., Bickelhaupt, F.M., (2016) Chem. Asian J., 11, p. 3297Bickelhaupt, F.M., Houk, K.N., (2017) Angew. Chem. Int. Ed., 56, p. 10070Vermeeren, P., van der Lubbe, S.C.C., Fonseca Guerra, C., Bickelhaupt, F.M., Hamlin, T.A., (2020) Nat. Protoc., 15, p. 649Casals-Sainz, J.L., Francisco, E., Martín Pendás, Á., (2020) Z. Anorg. Allg. Chem., , Early ViewBader, R.F.W., (1985) Acc. Chem. Res., 18, p. 9Zhao, L., von Hopffgarten, M., Andrada, D.M., Frenking, G., (2018) WIREs Comput. Mol. Sci., 8, p. e1345Yepes, D., Donoso-Tauda, O., Pérez, P., Murray, J.S., Politzer, P., Jaque, P., (2013) Phys. Chem. Chem. Phys., 15, p. 7311Geerlings, P., De Proft, F., Langenaeker, W., (2003) Chem. Rev., 103, p. 1793Domingo, L.R., Rios-Gutierrez, M., Perez, P., (2016) Molecules, p. 21Geerlings, P., Chamorro, E., Chattaraj, P.K., De Proft, F., Gázquez, J.L., Liu, S., Morell, C., Ayers, P., (2020) Theor. Chem. Acc., 139, p. 36Parr, R.G., Szentpály, L.V., Liu, S., (1999) J. Am. Chem. Soc., 121, p. 1922Chattaraj, P.K., Sarkar, U., Roy, D.R., (2006) Chem. Rev., 106, p. 2065Pérez, P., Domingo, L.R., Aizman, A., Contreras, R., Chapter 9 the electrophilicity index in organic chemistry (2007) Theoretical and Computational Chemistry, 19, p. 139. , A. Toro-Labbé ElsevierChattaraj, P.K., Giri, S., (2009) Annu. Rep. Sect. C Phys. Chem., 105, p. 13Domingo, L.R., Pérez, P., (2011) Org. Biomol. Chem., 9, p. 7168Domingo, L.R., Rios-Gutierrez, M., Perez, P., (2020) Org. Biomol. Chem., 18, p. 292Ess, D.H., Jones, G.O., Houk, K.N., (2006) Adv. Synth. Catal., 348, p. 2337Domingo, L.R., Ríos-Gutiérrez, M., Pérez, P., (2020) RSC Adv., 10, p. 15394Domingo, L.R., Ríos-Gutiérrez, M., Pérez, P., (2017) Tetrahedron, 73, p. 1718Andrews, L.J., Keefer, R.M., (1955) J. Am. Chem. Soc., 77, p. 6284Wise, K.E., Wheeler, R.A., (1999) J. Phys. Chem., 103, p. 8279Kiselev, V.D., Miller, J.G., (1975) J. Am. Chem. Soc., 97, p. 4036Sustmann, R., Dern, M., Kasten, R., Sicking, W., (1987) Chem. Ber., 120, p. 1315Sustmann, R., Korth, H.-G., Nüchter, U., Siangouri-Feulner, J., Sicking, W., (1991) Chem. Ber., 124, p. 2811Suárez, D., Sordo, J.A., (1998) Chem. Commun., 385Berionni, G., Bertelle, P.-A., Marrot, J., Goumont, R., (2009) J. Am. Chem. Soc., 131, p. 18224Salavati-fard, T., Caratzoulas, S., Doren, D.J., (2015) J. Phys. Chem., 119, p. 9834Domingo, L.R., Saez, J.A., (2009) Org. Biomol. Chem., 7, p. 3576TetrahedronActivation strain modelCharge transferDiels AlderMaleimidesStrain energiesTriazolinedionesThe origin of the high reactivity of triazolinediones (TADs) in Diels-Alder reactions from a theoretical perspectiveArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Rojas-Valencia, N., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 Nº 30-65, Medellín, 050026, ColombiaNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 Nº 30-65, Medellín, 050026, Colombiahttp://purl.org/coar/access_right/c_16ecRojas-Valencia N.Núñez-Zarur F.11407/6034oai:repository.udem.edu.co:11407/60342021-02-05 09:58:55.305Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |