Matrix variate Birnbaum–Saunders distribution under elliptical models

This paper derives the elliptical matrix variate version of the well known univariate Birnbaum–Saunders distribution of 1969. A generalisation based on a matrix transformation is proposed, instead of the independent element-to-element elliptical extension of the Gaussian univariate case. Some result...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5895
Acceso en línea:
http://hdl.handle.net/11407/5895
Palabra clave:
Birnbaum–Saunders distribution
Elliptical distributions
Kotz distribution
Matrix multivariate distributions
Random matrices
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_85030e574022b7155b8b6d628e41c26f
oai_identifier_str oai:repository.udem.edu.co:11407/5895
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Matrix variate Birnbaum–Saunders distribution under elliptical models
title Matrix variate Birnbaum–Saunders distribution under elliptical models
spellingShingle Matrix variate Birnbaum–Saunders distribution under elliptical models
Birnbaum–Saunders distribution
Elliptical distributions
Kotz distribution
Matrix multivariate distributions
Random matrices
title_short Matrix variate Birnbaum–Saunders distribution under elliptical models
title_full Matrix variate Birnbaum–Saunders distribution under elliptical models
title_fullStr Matrix variate Birnbaum–Saunders distribution under elliptical models
title_full_unstemmed Matrix variate Birnbaum–Saunders distribution under elliptical models
title_sort Matrix variate Birnbaum–Saunders distribution under elliptical models
dc.subject.spa.fl_str_mv Birnbaum–Saunders distribution
Elliptical distributions
Kotz distribution
Matrix multivariate distributions
Random matrices
topic Birnbaum–Saunders distribution
Elliptical distributions
Kotz distribution
Matrix multivariate distributions
Random matrices
description This paper derives the elliptical matrix variate version of the well known univariate Birnbaum–Saunders distribution of 1969. A generalisation based on a matrix transformation is proposed, instead of the independent element-to-element elliptical extension of the Gaussian univariate case. Some results on Jacobians were needed to derive the new matrix variate distribution. A number of particular distributions are studied and some basic properties are found. Finally, an example based on real data of two populations is given and the maximum likelihood estimates are obtained for the class of Kotz models. A comparison with the Gaussian kernel is also given by using a modified BIC criterion. © 2020 Elsevier B.V.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:37Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:37Z
dc.date.none.fl_str_mv 2021
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 3783758
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5895
dc.identifier.doi.none.fl_str_mv 10.1016/j.jspi.2020.04.012
identifier_str_mv 3783758
10.1016/j.jspi.2020.04.012
url http://hdl.handle.net/11407/5895
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084979891&doi=10.1016%2fj.jspi.2020.04.012&partnerID=40&md5=6c471639fb8438561cbc46d036870367
dc.relation.citationvolume.none.fl_str_mv 210
dc.relation.citationstartpage.none.fl_str_mv 100
dc.relation.citationendpage.none.fl_str_mv 113
dc.relation.references.none.fl_str_mv Balakrishnan, N., Kundu, D., Birnbaum–Saunders distribution: A review of model, analysis and applications (2019) Appl. Stoch. Models Bus. Ind., 35 (1), pp. 1-151. , with discussion
Birnbaum, Z.W., Saunders, S.C., A new family of life distributions (1969) J. Appl. Probab., 6, pp. 637-652
Cadet, A., Polar coordinates in Rnp
application to the computation of the Wishart and beta laws (1996) Sankhyā A, 58, pp. 101-113
Caro-Lopera, F.J., Díaz-García, J.A., Diagonalization matrix and its application in distribution theory (2016) Statistics, 50 (4), pp. 870-880
Caro-Lopera, F.J., Leiva, V., Balakrishnan, N., Connection between the hadamard and matrix products with an application to matrix-variate Birnbaum–Saunders distributions (2012) J. Multivariate Anal., 104 (1), pp. 126-139
Chen, J.J., Novick, M.R., Bayesian analysis for binomial models with generalized beta prior distributions (1984) J. Educ. Stat., 9, pp. 163-175
Davis, A.W., Invariant polynomials with two matrix arguments, extending the zonal polynomials: Applications to multivariate distribution theory (1979) Ann. Inst. Stat. Math. A, 31, pp. 465-485
Desmond, A., Stochastic models of failure in random enviorments (1985) Canad. J. Stat., 13, pp. 171-183
Díaz-García, J.A., Caro-Lopera, F.J., Pérez Ramírez, F.O., Multivector variate distributions (2019) Sankhyā, , (in press)
Díaz-García, J.A., Domínguez Molina, J.R., Some generalisations of Birnbaum–Saunders and sinh-normal distributions (2006) Int. Math. Forum., 1 (35), pp. 1709-1727
Díaz-García, J.A., Domínguez Molina, J.R., A new family of life distributions for dependent data: Estimation (2007) Comput. Statist. Data Anal., 51 (12), pp. 5927-5939
Díaz-García, J.A., Gutiérrez-Jáimez, R., Functions of singular random matrices and its applications (2005) Test, 14 (2), pp. 475-487
Díaz-García, J.A., Leiva-Sánchez, V., A new family of life distributions based on elliptically contoured distributions (2005) J. Stat. Plan. Inf., 128 (2), pp. 445-457
Díaz-García, J.A., Leiva-Sánchez, V., A new family of life distributions based on the elliptically contoured distributions (2006) J. Statist. Plann. Inference, J. Stat. Plan. Inf., 137 (4), pp. 1512-1513. , Erratum to
Fang, K.T., Zhang, Y.T., Generalized Multivariate Analysis (1990), Science Press, Springer-Verlag Beijing
Gupta, A.K., Varga, Y., Bodnar, T., Elliptical Contoured Models in Statistics and Portfolio Theory (2013), second ed. Springer New York
Herz, C.S., Bessel functions of matrix argument (1955) Ann. of Math., 61 (3), pp. 474-523
James, A.T., Normal multivariate analysis and the orthogonal group (1954) Ann. Math. Stat., 25 (1), pp. 40-75
Kass, R.E., Raftery, A.E., Bayes factor (1995) J. Am. Stat. Soc., 90, pp. 773-795
Kotz, S., Nadarajah, S., Multivariate T Distributions and their Applications (2004), Cambridge University Press United Kingdom
Libby, D.L., Novick, M.R., Multivariate generalized beta distributions with applications to utility assessment (1982) J. Educ. Stat., 7, pp. 271-294
Magnus, J.R., Linear Structures (1988), Charles Griffin & Company Ltd London
Magnus, J.R., Neudecker, H., Matrix Differential Calculus with Application in Statistics and Econometrics (2007), third ed. John Wiley & Sons Chichester
Mathai, A.M., Jacobian of Matrix Transformations and Functions of Matrix Argument (1997), World Scinentific Singapore
Muirhead, R.J., Aspects of Multivariate Statistical Theory (2005), John Wiley & Sons New York
Ng, H.K.T., Kundu, D., Balakrishnan, N., Modified moment estimation for the two-parameter Birnbaum–Saunders distribution (2003) Comput. Stat. Data Anal., 43 (2003), pp. 283-298
Olkin, I., Rubin, H., Multivariate beta distributions and independence properties of Wishart distribution (1964) Ann. Math. Stat., 35 (1), pp. 261-269. , Correction
Raftery, A.E., Bayesian model selection in social research (1995) Sociol. Methodol., 25, pp. 111-163
Rao, C.R., Linear Statistical Inference and Its Applications (2005), second ed. John Wiley & Sons New York
Roy, S.N., Some Aspects of Multivariate Analysis (1957), John Wiley & Sons, Inc. New York
Sánchez, L., Leiva, V., Caro-Lopera, F., Cysneiros, F.J., On matrix-variate BirnbaumSaunders distributions and their estimation and application (2015) Braz. J. Probab. Stat., 29 (4), pp. 790-812
Srivastava, M.S., Khatri, C.G., An Introduction To Multivariate Analysis (1979), North-Holland Publ Amsterdam
Yang, C.C., Yang, C.C., Separating latent classes by information criteria (2007) J Classification, 24, pp. 183-203
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Journal of Statistical Planning and Inference
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159166950866944
spelling 20212021-02-05T14:57:37Z2021-02-05T14:57:37Z3783758http://hdl.handle.net/11407/589510.1016/j.jspi.2020.04.012This paper derives the elliptical matrix variate version of the well known univariate Birnbaum–Saunders distribution of 1969. A generalisation based on a matrix transformation is proposed, instead of the independent element-to-element elliptical extension of the Gaussian univariate case. Some results on Jacobians were needed to derive the new matrix variate distribution. A number of particular distributions are studied and some basic properties are found. Finally, an example based on real data of two populations is given and the maximum likelihood estimates are obtained for the class of Kotz models. A comparison with the Gaussian kernel is also given by using a modified BIC criterion. © 2020 Elsevier B.V.engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084979891&doi=10.1016%2fj.jspi.2020.04.012&partnerID=40&md5=6c471639fb8438561cbc46d036870367210100113Balakrishnan, N., Kundu, D., Birnbaum–Saunders distribution: A review of model, analysis and applications (2019) Appl. Stoch. Models Bus. Ind., 35 (1), pp. 1-151. , with discussionBirnbaum, Z.W., Saunders, S.C., A new family of life distributions (1969) J. Appl. Probab., 6, pp. 637-652Cadet, A., Polar coordinates in Rnpapplication to the computation of the Wishart and beta laws (1996) Sankhyā A, 58, pp. 101-113Caro-Lopera, F.J., Díaz-García, J.A., Diagonalization matrix and its application in distribution theory (2016) Statistics, 50 (4), pp. 870-880Caro-Lopera, F.J., Leiva, V., Balakrishnan, N., Connection between the hadamard and matrix products with an application to matrix-variate Birnbaum–Saunders distributions (2012) J. Multivariate Anal., 104 (1), pp. 126-139Chen, J.J., Novick, M.R., Bayesian analysis for binomial models with generalized beta prior distributions (1984) J. Educ. Stat., 9, pp. 163-175Davis, A.W., Invariant polynomials with two matrix arguments, extending the zonal polynomials: Applications to multivariate distribution theory (1979) Ann. Inst. Stat. Math. A, 31, pp. 465-485Desmond, A., Stochastic models of failure in random enviorments (1985) Canad. J. Stat., 13, pp. 171-183Díaz-García, J.A., Caro-Lopera, F.J., Pérez Ramírez, F.O., Multivector variate distributions (2019) Sankhyā, , (in press)Díaz-García, J.A., Domínguez Molina, J.R., Some generalisations of Birnbaum–Saunders and sinh-normal distributions (2006) Int. Math. Forum., 1 (35), pp. 1709-1727Díaz-García, J.A., Domínguez Molina, J.R., A new family of life distributions for dependent data: Estimation (2007) Comput. Statist. Data Anal., 51 (12), pp. 5927-5939Díaz-García, J.A., Gutiérrez-Jáimez, R., Functions of singular random matrices and its applications (2005) Test, 14 (2), pp. 475-487Díaz-García, J.A., Leiva-Sánchez, V., A new family of life distributions based on elliptically contoured distributions (2005) J. Stat. Plan. Inf., 128 (2), pp. 445-457Díaz-García, J.A., Leiva-Sánchez, V., A new family of life distributions based on the elliptically contoured distributions (2006) J. Statist. Plann. Inference, J. Stat. Plan. Inf., 137 (4), pp. 1512-1513. , Erratum toFang, K.T., Zhang, Y.T., Generalized Multivariate Analysis (1990), Science Press, Springer-Verlag BeijingGupta, A.K., Varga, Y., Bodnar, T., Elliptical Contoured Models in Statistics and Portfolio Theory (2013), second ed. Springer New YorkHerz, C.S., Bessel functions of matrix argument (1955) Ann. of Math., 61 (3), pp. 474-523James, A.T., Normal multivariate analysis and the orthogonal group (1954) Ann. Math. Stat., 25 (1), pp. 40-75Kass, R.E., Raftery, A.E., Bayes factor (1995) J. Am. Stat. Soc., 90, pp. 773-795Kotz, S., Nadarajah, S., Multivariate T Distributions and their Applications (2004), Cambridge University Press United KingdomLibby, D.L., Novick, M.R., Multivariate generalized beta distributions with applications to utility assessment (1982) J. Educ. Stat., 7, pp. 271-294Magnus, J.R., Linear Structures (1988), Charles Griffin & Company Ltd LondonMagnus, J.R., Neudecker, H., Matrix Differential Calculus with Application in Statistics and Econometrics (2007), third ed. John Wiley & Sons ChichesterMathai, A.M., Jacobian of Matrix Transformations and Functions of Matrix Argument (1997), World Scinentific SingaporeMuirhead, R.J., Aspects of Multivariate Statistical Theory (2005), John Wiley & Sons New YorkNg, H.K.T., Kundu, D., Balakrishnan, N., Modified moment estimation for the two-parameter Birnbaum–Saunders distribution (2003) Comput. Stat. Data Anal., 43 (2003), pp. 283-298Olkin, I., Rubin, H., Multivariate beta distributions and independence properties of Wishart distribution (1964) Ann. Math. Stat., 35 (1), pp. 261-269. , CorrectionRaftery, A.E., Bayesian model selection in social research (1995) Sociol. Methodol., 25, pp. 111-163Rao, C.R., Linear Statistical Inference and Its Applications (2005), second ed. John Wiley & Sons New YorkRoy, S.N., Some Aspects of Multivariate Analysis (1957), John Wiley & Sons, Inc. New YorkSánchez, L., Leiva, V., Caro-Lopera, F., Cysneiros, F.J., On matrix-variate BirnbaumSaunders distributions and their estimation and application (2015) Braz. J. Probab. Stat., 29 (4), pp. 790-812Srivastava, M.S., Khatri, C.G., An Introduction To Multivariate Analysis (1979), North-Holland Publ AmsterdamYang, C.C., Yang, C.C., Separating latent classes by information criteria (2007) J Classification, 24, pp. 183-203Journal of Statistical Planning and InferenceBirnbaum–Saunders distributionElliptical distributionsKotz distributionMatrix multivariate distributionsRandom matricesMatrix variate Birnbaum–Saunders distribution under elliptical modelsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Díaz-García, J.A., Independent ScholarCaro-Lopera, F.J., Universidad de Medellín, Faculty of Basic Sciences, Carrera 87 No.30-65, of. 4-216, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecDíaz-García J.A.Caro-Lopera F.J.11407/5895oai:repository.udem.edu.co:11407/58952021-02-05 09:57:37.464Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co