Photocatalytic inactivation of Enterobacter cloacae and Escherichia coli using titanium dioxide supported on two substrates

The antibacterial photocatalytic activity of TiO2 supported over two types of substrates, borosilicate glass tubes (TiO2/SiO2-borosilicate glass tubes (BGT)) and low-density polyethylene pellets (TiO2-LDPE pellets), which were placed in a compound parabolic collectors (CPC) reactor, was evaluated ag...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6157
Acceso en línea:
http://hdl.handle.net/11407/6157
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_80874a344e47eb27504a5c4d4c38d81d
oai_identifier_str oai:repository.udem.edu.co:11407/6157
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Photocatalytic inactivation of Enterobacter cloacae and Escherichia coli using titanium dioxide supported on two substrates
title Photocatalytic inactivation of Enterobacter cloacae and Escherichia coli using titanium dioxide supported on two substrates
spellingShingle Photocatalytic inactivation of Enterobacter cloacae and Escherichia coli using titanium dioxide supported on two substrates
title_short Photocatalytic inactivation of Enterobacter cloacae and Escherichia coli using titanium dioxide supported on two substrates
title_full Photocatalytic inactivation of Enterobacter cloacae and Escherichia coli using titanium dioxide supported on two substrates
title_fullStr Photocatalytic inactivation of Enterobacter cloacae and Escherichia coli using titanium dioxide supported on two substrates
title_full_unstemmed Photocatalytic inactivation of Enterobacter cloacae and Escherichia coli using titanium dioxide supported on two substrates
title_sort Photocatalytic inactivation of Enterobacter cloacae and Escherichia coli using titanium dioxide supported on two substrates
description The antibacterial photocatalytic activity of TiO2 supported over two types of substrates, borosilicate glass tubes (TiO2/SiO2-borosilicate glass tubes (BGT)) and low-density polyethylene pellets (TiO2-LDPE pellets), which were placed in a compound parabolic collectors (CPC) reactor, was evaluated against Enterobacter cloacae and Escherichia coli under sunlight. Three solar photocatalytic systems were assessed, suspended TiO2, TiO2/SiO2-BGT and TiO2-LDPE pellets, at three initial bacterial concentrations, 1 × 105; 1 × 103; 1 × 101 CFU/mL of E. coli and total bacteria (E. cloacae and E. coli). The solar photo-inactivation of E. coli was achieved after two hours with 7.2 kJ/L of UV-A, while total bacteria required four hours and 16.5 kJ/L of UV-A. Inactivation order of E. coli was determined, as follows, suspended TiO2/sunlight (50 mg/L) > TiO2-LDPE pellets/sunlight (52 mg/L) > TiO2/SiO2-BGT/sunlight (59 mg/L), the best E. coli. inactivation rate was obtained with TiO2-LDPE pellets/sunlight, within 4.5 kJ/L and 90 min. The highest total bacteria inactivation rate was found for TiO2/sunlight (50 mg/L) and TiO2-LDPE pellets/sunlight (52 mg/L), within 11.2 kJ/L and 180 min. TiO2 deposited over LDPE pellets was the most effective material, which can be successfully used for water disinfection applications. Bacterial regrowth was assessed 24 h after all photocatalytic treatments, none of those microorganisms showed any recovery above the detection limit (2 CFU/mL). © 2018 by the authors.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2021-02-05T15:00:13Z
dc.date.available.none.fl_str_mv 2021-02-05T15:00:13Z
dc.date.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 22279717
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6157
dc.identifier.doi.none.fl_str_mv 10.3390/pr6090137
identifier_str_mv 22279717
10.3390/pr6090137
url http://hdl.handle.net/11407/6157
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053816693&doi=10.3390%2fpr6090137&partnerID=40&md5=aa1a96e7a7fba6e2bb9457b5b75b163f
dc.relation.citationvolume.none.fl_str_mv 6
dc.relation.citationissue.none.fl_str_mv 9
dc.relation.references.none.fl_str_mv Lanao, M., Ormad, M.P., Mosteo, R., Ovelleiro, J.L., Inactivation of Enterococcus sp. by photolysis and TiO2 photocatalysis with H2O2 in natural water (2012) Sol. Energy, 86, pp. 619-625
Rincón, A.-G., Pulgarin, C., Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale (2007) Catal. Today, 122, pp. 128-136
Andreozzi, R., Caprio, V., Insola, A., Marotta, R., Advanced oxidation processes (AOP) for water purification and recovery (1999) Catal. Today, 53, pp. 51-59
Booshehri, A.Y., Polo-Lopez, M.I., Castro-Alférez, M., Hea, P., Xu, R., Rong, W., Malato, S., Férnandez-Ibañez, P., Assessment of solar photocatalysis using Ag/BiVO4 at pilot solar Compound Parabolic Collector for inactivation of pathogens in well water and secondary effluents (2017) Catal. Today, 281, pp. 124-134
Cruz-Ortiz, B.R., Hamilton, J.W.J., Pablos, C., Díaz-Jiménez, L., Cortés-Hernández, P.F.-I.D., Sharma, P.K., Castro-Alférez, M., Byrne, J.A., Mechanism of photocatalytic disinfection using titania-graphene composites under UV and visible irradiation (2017) Chem. Eng. J, 316, pp. 179-186
Castro-Alférez, M., Polo-López, M.I., Fernández-Ibáñez, P., Intracellular mechanisms of solar water disinfection (2016) Sci. Rep, 6
Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends (2009) Catal. Today, 147, pp. 1-59
Mills, A., Le Hunte, S., An overview of semiconductor photocatalysis (1997) J. Photochem. Photobiol. A Chem, 108, pp. 1-35
Huang, Z., Maness, P.-C., Blake, D.M., Wolfrum, E.J., Smolinski, S.L., Jacoby, W.A., Bactericidal mode of titanium dioxide photocatalysis (2000) J. Photochem. Photobiol. A Chem, 130, pp. 163-170
Gelover, S., Gómez, L.A., Reyes, K., Teresa Leal, M., A practical demonstration of water disinfection using TiO2 films and sunlight (2006) Water Res, 40, pp. 3274-3280
Gelover, S., Mondragón, P., Jiménez, A., Titanium dioxide sol-gel deposited over glass and its application as a photocatalyst for water decontamination (2004) J. Photochem. Photobiol. A Chem, 16, pp. 241-246
Pozzo, R.L., Baltanás, M.A., Cassano, A.E., Supported titanium oxide as photocatalyst in water decontamination: State of the art (1997) Catal. Today, 39, pp. 219-231
Portela, R., Sánchez, B., Coronado, J.M., Candal, R., Suárez, S., Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal (2007) Catal. Today, 129, pp. 223-230
Turki, A., Kochkar, H., García-Fernández, I., Polo-López, M.I., Ghorbel, A., Guillard, C., Berhault, G., Fernández-Ibáñez, P., Solar photocatalytic inactivation of Fusarium Solani over TiO2 nanomaterials with controlled morphology-Formic acid effect (2013) Catal. Today, 209, pp. 147-152
Mejía, M.I., Marín, J.M., Restrepo, G., Rios, L.A., Pulgarín, C., Kiwi, J., Preparation, testing and performance of a TiO2/polyester photocatalyst for the degradation of gaseous methanol (2010) Appl. Catal. B Environ, 94, pp. 166-172
Grieken, R.V., Marugán, J., Sordo, C., Pablos, C., Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors (2009) Catal. Today, 144, pp. 48-54
Alrousan, D.M.A., Polo-López, M.I., Dunlop, P.S.M., Fernández-Ibáñez, P., Byrne, J.A., Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors (2012) Appl. Catal. B Environ, 128, pp. 126-134
Mallak, M., Bockmeyer, M., Löbmann, P., Liquid phase deposition of TiO2 on glass: Systematic comparison to films prepared by sol-gel processing (2007) Thin Solid Films, 515, pp. 8072-8077
Song, M.Y., Park, Y.K., Jurng, J., Direct coating of V2O5/TiO2 nanoparticles onto glass beads by chemical vapor deposition (2012) Power Technol, 231, pp. 135-140
Velásquez, J., Valencia, S., Rios, L., Restrepo, G., Marín, J., Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlled-temperature embedding method (2012) Chem. Eng. J, 203, pp. 398-405
Giovannetti, R., D'Amato, C.A., Zannotti, M., Rommozzi, E., Gunnella, R., Miniucci, M., Di Cicco, A., Visible light photoactivity of polypropylene coated Nano-TiO2 for dyes degradation in water (2015) Sci. Rep, 5
Rubio, D., Casanueva, J.F., Nebot, E., Improving UV seawater disinfection with immobilized TiO2: Study of the viability of photocatalysis (UV254/ TiO2) as seawater disinfection technology (2013) J. Photochem. Photobiol. A Chem, 271, pp. 16-23
Yu, H., Song, L., Hao, Y., Lu, N., Quan, X., Chen, S., Zhang, Y., Feng, Y., Fabrication of pilot-scale photocatalytic disinfection device by installing TiO2 coated helical support into UV annular reactor for strengthening sterilization (2016) Chem. Eng. J, 283, pp. 1506-1513
Ratova, M., Mills, A., Antibacterial titania-based photocatalytic extruded plastic films (2015) J. Photochem. Photobiol. A Chem, 299, pp. 159-165
Rtimi, S., Sanjines, R., Andrzejczuk, M., Pulgarin, C., Kulik, A., Kiwi, J., Innovative transparent non-scattering TiO2 bactericide thin films inducing increased E. coli cell wall fluidity (2014) Surf. Coat. Technol, 254, pp. 333-343
Yemmireddy, V.K., Hung, Y.C., Photocatalytic TiO2 coating of plastic cutting board to prevent microbial cross-contamination (2017) Food Control, 77, pp. 88-95
Yañez, D., Guerrero, S., Lieberwirth, I., Ulloa, M.T., Gomez, T., Rabagliati, F.M., Zapata, P.A., Photocatalytic inhibition of bacteria by TiO2 nanotubes-doped polyethylene composites (2015) Appl. Catal. A Gen, 489, pp. 255-261
Bahloul, W., Mélis, F., Bounor-Legaré, V., Cassagnau, P., Structural characterisation and antibacterial activity of PP/TiO2 nanocomposites prepared by an in situ sol-gel method (2012) Mater. Chem. Phys, 134, pp. 399-406
Marín, J.M., Fidelgranda, C., Galeano, L., Rios, L.A., Restrepo, G., Impregnación de TiO2 sobre borosilicato por el método sol-gel usando inmersión a velocidad controlada (2007) Sci. Tech, 2, pp. 441-446
García-Fernández, I., Polo-López, M.I., Oller, I., Fernández-Ibáñez, P., Bacteria and fungi inactivation using Fe3+/sunlight, H2O2sunlight and near neutral photo-Fenton: A comparative study (2012) Appl. Catal. B Environ, 121-122, pp. 20-29
Lei, P., Wang, F., Gao, X., Ding, Y., Zhang, S., Zhao, J., Liu, S., Yang, M., Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants (2012) J. Hazard. Mater, 227-228, pp. 185-194
Safajou, H., Khojasteh, H., Salavati-Niasari, M., Mortazavi-Derazkola, S., Enhanced photocatalytic degradation of dyes over graphene/Pd/ TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles (2017) J. Colloid Interface Sci, 498, pp. 423-432
León, A., Reuquen, P., Garín, C., Segura, R., Vargas, P., Zapata, P., Orihuela, P.A., FTIR and raman characterization of TiO2 nanoparticles coated with Polyethylene Glycol as carrier for 2-Methoxyestradiol (2017) Appl. Sci, 7, p. 49
Fischer, E.W., Effect of annealing and temperature on the morphological structure of polymers (1972) Pure Appl. Chem, 31, pp. 113-132
Matsuzawa, S., Maneerat, C., Hayata, Y., Hirakawa, T., Negishi, N., Sano, T., Immobilization of TiO2 nanoparticles on polymeric substrates by using electrostatic interaction in the aqueous phase (2008) Appl. Catal. B Environ, 83, pp. 39-45
Sordo, C., Van Grieken, R., Marugán, J., Fernández-Ibáñez, P., Solar photocatalytic disinfection with immobilised TiO2 at pilot-plant scale (2010) Water Sci. Technol, 61, p. 507
Hincapié, M., Balaguera, A., Botero, L., Sánchez, C., Restrepo, G., Marín, J., Purificación del agua por fotocatálisis. Even. X Jornadas Investig. Univ. Medellín INNOVACIóN Y Transf (2014) Conoc. EN Ing, pp. 75-92. , Sello Editorial Universidad de MedellSín: Medellín, Colombia
Marugán, J., Grieken, R.V., Sordo, C., Cruz, C., Kinetics of the photocatalytic disinfection of Escherichia coli suspensions (2008) Appl. Catal. B Environ, 82, pp. 27-36
Helali, S., Polo-López, M.I., Fernández-Ibáñez, P., Ohtani, B., Amano, F., Malato, S., Guillard, C., Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst (2014) J. Photochem. Photobiol. A Chem, 276, pp. 31-40
Rincón, A.G., Pulgarin, C., Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time (2004) Appl. Catal. B Environ, 49, pp. 99-112
Craik, S.A., Weldon, D., Finch, G.R., Bolton, J.R., Belosevic, M., Inactivation of cryptosporidium parvum oocysts using medium-and low-pressure ultraviolet radiation (2001) Water Res, 35, pp. 1387-1398
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv MDPI AG
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv Processes
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481179392802816
spelling 20182021-02-05T15:00:13Z2021-02-05T15:00:13Z22279717http://hdl.handle.net/11407/615710.3390/pr6090137The antibacterial photocatalytic activity of TiO2 supported over two types of substrates, borosilicate glass tubes (TiO2/SiO2-borosilicate glass tubes (BGT)) and low-density polyethylene pellets (TiO2-LDPE pellets), which were placed in a compound parabolic collectors (CPC) reactor, was evaluated against Enterobacter cloacae and Escherichia coli under sunlight. Three solar photocatalytic systems were assessed, suspended TiO2, TiO2/SiO2-BGT and TiO2-LDPE pellets, at three initial bacterial concentrations, 1 × 105; 1 × 103; 1 × 101 CFU/mL of E. coli and total bacteria (E. cloacae and E. coli). The solar photo-inactivation of E. coli was achieved after two hours with 7.2 kJ/L of UV-A, while total bacteria required four hours and 16.5 kJ/L of UV-A. Inactivation order of E. coli was determined, as follows, suspended TiO2/sunlight (50 mg/L) > TiO2-LDPE pellets/sunlight (52 mg/L) > TiO2/SiO2-BGT/sunlight (59 mg/L), the best E. coli. inactivation rate was obtained with TiO2-LDPE pellets/sunlight, within 4.5 kJ/L and 90 min. The highest total bacteria inactivation rate was found for TiO2/sunlight (50 mg/L) and TiO2-LDPE pellets/sunlight (52 mg/L), within 11.2 kJ/L and 180 min. TiO2 deposited over LDPE pellets was the most effective material, which can be successfully used for water disinfection applications. Bacterial regrowth was assessed 24 h after all photocatalytic treatments, none of those microorganisms showed any recovery above the detection limit (2 CFU/mL). © 2018 by the authors.engMDPI AGIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053816693&doi=10.3390%2fpr6090137&partnerID=40&md5=aa1a96e7a7fba6e2bb9457b5b75b163f69Lanao, M., Ormad, M.P., Mosteo, R., Ovelleiro, J.L., Inactivation of Enterococcus sp. by photolysis and TiO2 photocatalysis with H2O2 in natural water (2012) Sol. Energy, 86, pp. 619-625Rincón, A.-G., Pulgarin, C., Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale (2007) Catal. Today, 122, pp. 128-136Andreozzi, R., Caprio, V., Insola, A., Marotta, R., Advanced oxidation processes (AOP) for water purification and recovery (1999) Catal. Today, 53, pp. 51-59Booshehri, A.Y., Polo-Lopez, M.I., Castro-Alférez, M., Hea, P., Xu, R., Rong, W., Malato, S., Férnandez-Ibañez, P., Assessment of solar photocatalysis using Ag/BiVO4 at pilot solar Compound Parabolic Collector for inactivation of pathogens in well water and secondary effluents (2017) Catal. Today, 281, pp. 124-134Cruz-Ortiz, B.R., Hamilton, J.W.J., Pablos, C., Díaz-Jiménez, L., Cortés-Hernández, P.F.-I.D., Sharma, P.K., Castro-Alférez, M., Byrne, J.A., Mechanism of photocatalytic disinfection using titania-graphene composites under UV and visible irradiation (2017) Chem. Eng. J, 316, pp. 179-186Castro-Alférez, M., Polo-López, M.I., Fernández-Ibáñez, P., Intracellular mechanisms of solar water disinfection (2016) Sci. Rep, 6Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends (2009) Catal. Today, 147, pp. 1-59Mills, A., Le Hunte, S., An overview of semiconductor photocatalysis (1997) J. Photochem. Photobiol. A Chem, 108, pp. 1-35Huang, Z., Maness, P.-C., Blake, D.M., Wolfrum, E.J., Smolinski, S.L., Jacoby, W.A., Bactericidal mode of titanium dioxide photocatalysis (2000) J. Photochem. Photobiol. A Chem, 130, pp. 163-170Gelover, S., Gómez, L.A., Reyes, K., Teresa Leal, M., A practical demonstration of water disinfection using TiO2 films and sunlight (2006) Water Res, 40, pp. 3274-3280Gelover, S., Mondragón, P., Jiménez, A., Titanium dioxide sol-gel deposited over glass and its application as a photocatalyst for water decontamination (2004) J. Photochem. Photobiol. A Chem, 16, pp. 241-246Pozzo, R.L., Baltanás, M.A., Cassano, A.E., Supported titanium oxide as photocatalyst in water decontamination: State of the art (1997) Catal. Today, 39, pp. 219-231Portela, R., Sánchez, B., Coronado, J.M., Candal, R., Suárez, S., Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal (2007) Catal. Today, 129, pp. 223-230Turki, A., Kochkar, H., García-Fernández, I., Polo-López, M.I., Ghorbel, A., Guillard, C., Berhault, G., Fernández-Ibáñez, P., Solar photocatalytic inactivation of Fusarium Solani over TiO2 nanomaterials with controlled morphology-Formic acid effect (2013) Catal. Today, 209, pp. 147-152Mejía, M.I., Marín, J.M., Restrepo, G., Rios, L.A., Pulgarín, C., Kiwi, J., Preparation, testing and performance of a TiO2/polyester photocatalyst for the degradation of gaseous methanol (2010) Appl. Catal. B Environ, 94, pp. 166-172Grieken, R.V., Marugán, J., Sordo, C., Pablos, C., Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors (2009) Catal. Today, 144, pp. 48-54Alrousan, D.M.A., Polo-López, M.I., Dunlop, P.S.M., Fernández-Ibáñez, P., Byrne, J.A., Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors (2012) Appl. Catal. B Environ, 128, pp. 126-134Mallak, M., Bockmeyer, M., Löbmann, P., Liquid phase deposition of TiO2 on glass: Systematic comparison to films prepared by sol-gel processing (2007) Thin Solid Films, 515, pp. 8072-8077Song, M.Y., Park, Y.K., Jurng, J., Direct coating of V2O5/TiO2 nanoparticles onto glass beads by chemical vapor deposition (2012) Power Technol, 231, pp. 135-140Velásquez, J., Valencia, S., Rios, L., Restrepo, G., Marín, J., Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlled-temperature embedding method (2012) Chem. Eng. J, 203, pp. 398-405Giovannetti, R., D'Amato, C.A., Zannotti, M., Rommozzi, E., Gunnella, R., Miniucci, M., Di Cicco, A., Visible light photoactivity of polypropylene coated Nano-TiO2 for dyes degradation in water (2015) Sci. Rep, 5Rubio, D., Casanueva, J.F., Nebot, E., Improving UV seawater disinfection with immobilized TiO2: Study of the viability of photocatalysis (UV254/ TiO2) as seawater disinfection technology (2013) J. Photochem. Photobiol. A Chem, 271, pp. 16-23Yu, H., Song, L., Hao, Y., Lu, N., Quan, X., Chen, S., Zhang, Y., Feng, Y., Fabrication of pilot-scale photocatalytic disinfection device by installing TiO2 coated helical support into UV annular reactor for strengthening sterilization (2016) Chem. Eng. J, 283, pp. 1506-1513Ratova, M., Mills, A., Antibacterial titania-based photocatalytic extruded plastic films (2015) J. Photochem. Photobiol. A Chem, 299, pp. 159-165Rtimi, S., Sanjines, R., Andrzejczuk, M., Pulgarin, C., Kulik, A., Kiwi, J., Innovative transparent non-scattering TiO2 bactericide thin films inducing increased E. coli cell wall fluidity (2014) Surf. Coat. Technol, 254, pp. 333-343Yemmireddy, V.K., Hung, Y.C., Photocatalytic TiO2 coating of plastic cutting board to prevent microbial cross-contamination (2017) Food Control, 77, pp. 88-95Yañez, D., Guerrero, S., Lieberwirth, I., Ulloa, M.T., Gomez, T., Rabagliati, F.M., Zapata, P.A., Photocatalytic inhibition of bacteria by TiO2 nanotubes-doped polyethylene composites (2015) Appl. Catal. A Gen, 489, pp. 255-261Bahloul, W., Mélis, F., Bounor-Legaré, V., Cassagnau, P., Structural characterisation and antibacterial activity of PP/TiO2 nanocomposites prepared by an in situ sol-gel method (2012) Mater. Chem. Phys, 134, pp. 399-406Marín, J.M., Fidelgranda, C., Galeano, L., Rios, L.A., Restrepo, G., Impregnación de TiO2 sobre borosilicato por el método sol-gel usando inmersión a velocidad controlada (2007) Sci. Tech, 2, pp. 441-446García-Fernández, I., Polo-López, M.I., Oller, I., Fernández-Ibáñez, P., Bacteria and fungi inactivation using Fe3+/sunlight, H2O2sunlight and near neutral photo-Fenton: A comparative study (2012) Appl. Catal. B Environ, 121-122, pp. 20-29Lei, P., Wang, F., Gao, X., Ding, Y., Zhang, S., Zhao, J., Liu, S., Yang, M., Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants (2012) J. Hazard. Mater, 227-228, pp. 185-194Safajou, H., Khojasteh, H., Salavati-Niasari, M., Mortazavi-Derazkola, S., Enhanced photocatalytic degradation of dyes over graphene/Pd/ TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles (2017) J. Colloid Interface Sci, 498, pp. 423-432León, A., Reuquen, P., Garín, C., Segura, R., Vargas, P., Zapata, P., Orihuela, P.A., FTIR and raman characterization of TiO2 nanoparticles coated with Polyethylene Glycol as carrier for 2-Methoxyestradiol (2017) Appl. Sci, 7, p. 49Fischer, E.W., Effect of annealing and temperature on the morphological structure of polymers (1972) Pure Appl. Chem, 31, pp. 113-132Matsuzawa, S., Maneerat, C., Hayata, Y., Hirakawa, T., Negishi, N., Sano, T., Immobilization of TiO2 nanoparticles on polymeric substrates by using electrostatic interaction in the aqueous phase (2008) Appl. Catal. B Environ, 83, pp. 39-45Sordo, C., Van Grieken, R., Marugán, J., Fernández-Ibáñez, P., Solar photocatalytic disinfection with immobilised TiO2 at pilot-plant scale (2010) Water Sci. Technol, 61, p. 507Hincapié, M., Balaguera, A., Botero, L., Sánchez, C., Restrepo, G., Marín, J., Purificación del agua por fotocatálisis. Even. X Jornadas Investig. Univ. Medellín INNOVACIóN Y Transf (2014) Conoc. EN Ing, pp. 75-92. , Sello Editorial Universidad de MedellSín: Medellín, ColombiaMarugán, J., Grieken, R.V., Sordo, C., Cruz, C., Kinetics of the photocatalytic disinfection of Escherichia coli suspensions (2008) Appl. Catal. B Environ, 82, pp. 27-36Helali, S., Polo-López, M.I., Fernández-Ibáñez, P., Ohtani, B., Amano, F., Malato, S., Guillard, C., Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst (2014) J. Photochem. Photobiol. A Chem, 276, pp. 31-40Rincón, A.G., Pulgarin, C., Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time (2004) Appl. Catal. B Environ, 49, pp. 99-112Craik, S.A., Weldon, D., Finch, G.R., Bolton, J.R., Belosevic, M., Inactivation of cryptosporidium parvum oocysts using medium-and low-pressure ultraviolet radiation (2001) Water Res, 35, pp. 1387-1398ProcessesPhotocatalytic inactivation of Enterobacter cloacae and Escherichia coli using titanium dioxide supported on two substratesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Aguas, Y., School of Engineering, Universidad de Sucre, Sincelejo, 700001, Colombia, School of Engineering, Universidad de Medellín, Medellín, 050026, ColombiaHincapié, M., School of Engineering, Universidad de Medellín, Medellín, 050026, ColombiaSánchez, C., School of Engineering, Universidad de Antioquia, Medellín, 050010, ColombiaBotero, L., School of Engineering, Universidad de Medellín, Medellín, 050026, ColombiaFernández-Ibañez, P., Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland, BT37 0QB, United Kingdomhttp://purl.org/coar/access_right/c_16ecAguas Y.Hincapié M.Sánchez C.Botero L.Fernández-Ibañez P.11407/6157oai:repository.udem.edu.co:11407/61572021-02-05 10:00:13.392Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co