Tunable band structure in 2D Bravais–Moiré photonic crystal lattices
This work introduces the recent so called Bravais Moiré theory in the context of two dimensional photonic crystals. In particular, new periodic cells involving commensurable bilayer rotated square alignments of photonic crystals with different permittivity constants are considered. The corresponding...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5748
- Acceso en línea:
- http://hdl.handle.net/11407/5748
- Palabra clave:
- 2D photonic crystals
Bravais Moiré lattice
Tunable band gap
Crystal lattices
Energy gap
Permittivity
2-D photonic crystals
Bravais
Dielectric structure
Permittivity constant
Square lattices
Tunable band structures
Tunable Band-gap
Two-dimensional photonic crystals
Photonic band gap
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_8072aa435311f7aad00139bbf1e4b29a |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5748 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Tunable band structure in 2D Bravais–Moiré photonic crystal lattices |
title |
Tunable band structure in 2D Bravais–Moiré photonic crystal lattices |
spellingShingle |
Tunable band structure in 2D Bravais–Moiré photonic crystal lattices 2D photonic crystals Bravais Moiré lattice Tunable band gap Crystal lattices Energy gap Permittivity 2-D photonic crystals Bravais Dielectric structure Permittivity constant Square lattices Tunable band structures Tunable Band-gap Two-dimensional photonic crystals Photonic band gap |
title_short |
Tunable band structure in 2D Bravais–Moiré photonic crystal lattices |
title_full |
Tunable band structure in 2D Bravais–Moiré photonic crystal lattices |
title_fullStr |
Tunable band structure in 2D Bravais–Moiré photonic crystal lattices |
title_full_unstemmed |
Tunable band structure in 2D Bravais–Moiré photonic crystal lattices |
title_sort |
Tunable band structure in 2D Bravais–Moiré photonic crystal lattices |
dc.subject.none.fl_str_mv |
2D photonic crystals Bravais Moiré lattice Tunable band gap Crystal lattices Energy gap Permittivity 2-D photonic crystals Bravais Dielectric structure Permittivity constant Square lattices Tunable band structures Tunable Band-gap Two-dimensional photonic crystals Photonic band gap |
topic |
2D photonic crystals Bravais Moiré lattice Tunable band gap Crystal lattices Energy gap Permittivity 2-D photonic crystals Bravais Dielectric structure Permittivity constant Square lattices Tunable band structures Tunable Band-gap Two-dimensional photonic crystals Photonic band gap |
description |
This work introduces the recent so called Bravais Moiré theory in the context of two dimensional photonic crystals. In particular, new periodic cells involving commensurable bilayer rotated square alignments of photonic crystals with different permittivity constants are considered. The corresponding band gaps are wider than those usually reported in literature for square lattice dielectric structures, and a practical comparison is carried out in the calculation in order to verify such assert. These photonic gaps can be adjusted by changing different lattice parameters, such as the commensurable angle, and the permittivities involved. © 2019 Elsevier B.V. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:52Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:52Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
304018 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5748 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.optcom.2019.125081 |
identifier_str_mv |
304018 10.1016/j.optcom.2019.125081 |
url |
http://hdl.handle.net/11407/5748 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076262194&doi=10.1016%2fj.optcom.2019.125081&partnerID=40&md5=c22cc1905eb402db914a7de7549e5fda |
dc.relation.citationvolume.none.fl_str_mv |
459 |
dc.relation.references.none.fl_str_mv |
Joannopoulos, J.D., Photonic Crystals, Molding the Flow of Light (2007), Princeton University Press Anderson, C.M., Giapis, K.P., Larger two-dimensional photonic band gaps (1996) Phys. Rev. Lett., 77, pp. 2949-2952 Kushwaha, M.S., Djafari-Rouhani, B., Band-gap engineering in two-dimensional periodic photonic crystals (2000) J. Appl. Phys., 88, pp. 2877-2884 Qiu, M., He, S., Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap (2000) J. Opt. Soc. Amer. B, 17, pp. 1027-1030 David, S., Chelnokov, A., Lourtioz, J.-M., Wide angularly isotropic photonic bandgaps obtained from the two-dimensional photonic crystals with archimedean-like tilings (2000) Opt. Lett., 25, pp. 1001-1003 David, S., Chelnokov, A., Lourtioz, J.-M., Isotropic photonic structures: Archimedean-like tilings an quasi-crystals (2001) Opt. Quantum. Electron., 37, pp. 1427-1434 Ye, Z., Shen, L., He, S., Design for 2D anisotropic photonic crystal with large absolute band gaps by using a genetic algorithm (2004) Eur. Phys. J. B, 37, pp. 417-419 Preble, S., Lipson, M., Lipson, H., Two-dimensional photonic crystals designed by evolutionary algorithms (2005) Appl. Phys. Lett., 86 Zarei, S., Shahabadi, M., Mohajerzadeh, S., Symmetry reduction for maximization of higher-order stop-bands in two-dimensional photonic crystals (2008) J. Modern Opt., 55, pp. 2971-2980 Sigmund, O., Hougaard, K., Geometric properties of optimal photonic crystals (2008) Phys. Rev. Lett., 100 Dyogtyev, A.V., Sukhoivanov, I.A., De La Rue, R.M., Photonic band-gap maps for different two dimensionally periodic photonic crystal structures (2010) J. Appl. Phys., 107 Men, H., Nguyen, N.C., Freund, R.M., Lim, K.M., Parrilo, P.A., Peraire, J., Design of photonic crystals with multiple and combined band gaps (2011) Phys. Rev. E, 83 Men, H., Nguyen, N.C., Freund, R.M., Lim, K.M., Parrilo, P.A., Peraire, J., (2012) Phys. Rev. E, 85, p. 049909. , (erratum) Shi, P., Huang, K., Li, Y.-P., Photonic crystal with complex unit cell for large complete band gap (2012) Opt. Commun., 285, pp. 3128-3132 Cheng, X.-L., Yang, J., Maximizing band gaps in two-dimensional photonic crystals in square lattices (2013) J. Opt. Soc. Amer. A, 30, pp. 2314-2319 Meng, F., Li, Y., Li, S., Lin, H., Jia, B., Huang, X., Achieving large band gaps in 2D symmetric and asymmetric photonic crystals (2017) J. Lightwave Technol., 35, p. 1670 Cerjan, A., Fan, S., Complete photonic band gaps in supercell photonic crystals (2017) Phys. Rev. A, 96 Li, S., Lin, H., Meng, F., Moss, D., Huang, X., Jia, B., On-demand design of tunable complete photonic band gaps based on bloch mode analysis (2018) Sci. Rep., 8, p. 14283 Li, W., Meng, F., Chen, Y., Li, Y., Huang, X., Topology optimization of photonic and phononic crystals and metamaterials: A review (2019) Adv. Theory Simul., 2, p. 1900017 Bravais, A., Mémoire sur les systèmes formés par les points distribués régulièrement sur un plan ou dans l'espace (1850) J. Ecole Polytech., 33 (19), pp. 1-128 Balci, S., Karabiyik, M., Kosabas, A., Kosabas, C., Aydinli, A., Coupled plasmonic cavities on Moiré surfaces (2010) Plasmonics, 5, p. 429 Balci, S., Kocabas, A., Kocabas, C., Aydinli, A., Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities (2011) Appl. Phys. Lett., 98 Lubin, S.M., Hryn, A.J., Huntington, M.D., Engel, C.J., Odom, T.W., Quasiperiodic Moiré plasmonic crystals (2011) ACS Nano, 98 Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P., Unconventional superconductivity in magic-angle graphene superlattices (2018) Nature, 556, pp. 43-50 Shallcross, S., Sharma, S., Pankratov, O.A., Document quantum interference at the twist boundary in graphene (2008) Phys. Rev. Lett., 101 Shallcross, S., Sharma, S., Kandelaki, E., Pankratov, O.A., Electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81 (16) Shallcross, S., Sharma, S., Pankratov, O.A., Erratum: Electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81 Caro-Lopera, F.J., Bravais-Moiré Theory: Technical Report (2017), University of Medellin Tiutiunnyk, A., Duque, C.A., Caro-Lopera, F.J., Mora-Ramos, M.E., Correa, J.D., Opto-electronic properties of twisted bilayer graphene quantum dots (2019) Physica E, 112, pp. 36-43 Yokota, M., Sesay, M., Two-dimensional scattering of a plane wave from a periodic array of dielectric cylinders with arbitrary shape (2008) J. Opt. Soc. Amer. A, 25, pp. 1691-1696 Zhu, N., Liu, W., Zhang, N., Wang, J., Cheng, C., Photonic band gap failure in photonic crystal devices (2011) Optik, 122, pp. 1625-1627 Solli, D.R., Hickmann, J.M., Study of the properties of 2d photonic crystal structures as a function of the air-filling fraction and refractive index contrast (2011) Opt. Mater., 33, pp. 523-526 Gaji?, R., Jovanovi?, D., Hingerl, K., R, J., Meisels, C., Kuchar, F., 2D photonic crystals on the Archimedean lattices (tribute to Johannes Kepler (1571-1630)) (2008) Opt. Mater., 30, pp. 1065-1069 Jovanovi?, D., Gaji?, R., Hingerl, K., Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices (2008) Opt. Express, 16, pp. 4048-4058 Berman, O.L., Boyko, V.S., Ya. Kezerashvili, R., Kolesnikov, A.A., Yu. E. Lozovik, C., Graphene-based photonic crystal (2018) Phys. Lett. A, 374, pp. 4784-4786 Berman, O.L., Boyko, V.S., Ya. Kezerashvili, R., Kolesnikov, A.A., Lozovik, Y.E., On transmittance and localization of the electromagnetic wave in two-dimensional graphene-based photonic crystals (2018) Phys. Lett. A, 382, p. 429 Taflove, A., Hagness, S.G., Computational Electrodynamics: The Finite-Difference Time Domain Method (2005), third ed. Artech House Boston Sözüer, H.S., Haus, J.W., Inguva, R., Photonic bands: Convergence problems with the plane-wave method (1992) Phys. Rev. B., 45, pp. 13962-13972 Sukhoivanov, I.A., Guryev, I.V., Photonic Crystals, Physics and Practical Modeling (2009), first ed. Springer-Verlag Berlin Heidelberg Ung, B., Study of the interaction of surface waves with a metallic nano-slit via the finite-difference time-domain method (2007), (M.Sc. thesis) https://refractiveindex.info/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Optics Communications |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159105822031872 |
spelling |
20202020-04-29T14:53:52Z2020-04-29T14:53:52Z304018http://hdl.handle.net/11407/574810.1016/j.optcom.2019.125081This work introduces the recent so called Bravais Moiré theory in the context of two dimensional photonic crystals. In particular, new periodic cells involving commensurable bilayer rotated square alignments of photonic crystals with different permittivity constants are considered. The corresponding band gaps are wider than those usually reported in literature for square lattice dielectric structures, and a practical comparison is carried out in the calculation in order to verify such assert. These photonic gaps can be adjusted by changing different lattice parameters, such as the commensurable angle, and the permittivities involved. © 2019 Elsevier B.V.engElsevier B.V.Facultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076262194&doi=10.1016%2fj.optcom.2019.125081&partnerID=40&md5=c22cc1905eb402db914a7de7549e5fda459Joannopoulos, J.D., Photonic Crystals, Molding the Flow of Light (2007), Princeton University PressAnderson, C.M., Giapis, K.P., Larger two-dimensional photonic band gaps (1996) Phys. Rev. Lett., 77, pp. 2949-2952Kushwaha, M.S., Djafari-Rouhani, B., Band-gap engineering in two-dimensional periodic photonic crystals (2000) J. Appl. Phys., 88, pp. 2877-2884Qiu, M., He, S., Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap (2000) J. Opt. Soc. Amer. B, 17, pp. 1027-1030David, S., Chelnokov, A., Lourtioz, J.-M., Wide angularly isotropic photonic bandgaps obtained from the two-dimensional photonic crystals with archimedean-like tilings (2000) Opt. Lett., 25, pp. 1001-1003David, S., Chelnokov, A., Lourtioz, J.-M., Isotropic photonic structures: Archimedean-like tilings an quasi-crystals (2001) Opt. Quantum. Electron., 37, pp. 1427-1434Ye, Z., Shen, L., He, S., Design for 2D anisotropic photonic crystal with large absolute band gaps by using a genetic algorithm (2004) Eur. Phys. J. B, 37, pp. 417-419Preble, S., Lipson, M., Lipson, H., Two-dimensional photonic crystals designed by evolutionary algorithms (2005) Appl. Phys. Lett., 86Zarei, S., Shahabadi, M., Mohajerzadeh, S., Symmetry reduction for maximization of higher-order stop-bands in two-dimensional photonic crystals (2008) J. Modern Opt., 55, pp. 2971-2980Sigmund, O., Hougaard, K., Geometric properties of optimal photonic crystals (2008) Phys. Rev. Lett., 100Dyogtyev, A.V., Sukhoivanov, I.A., De La Rue, R.M., Photonic band-gap maps for different two dimensionally periodic photonic crystal structures (2010) J. Appl. Phys., 107Men, H., Nguyen, N.C., Freund, R.M., Lim, K.M., Parrilo, P.A., Peraire, J., Design of photonic crystals with multiple and combined band gaps (2011) Phys. Rev. E, 83Men, H., Nguyen, N.C., Freund, R.M., Lim, K.M., Parrilo, P.A., Peraire, J., (2012) Phys. Rev. E, 85, p. 049909. , (erratum)Shi, P., Huang, K., Li, Y.-P., Photonic crystal with complex unit cell for large complete band gap (2012) Opt. Commun., 285, pp. 3128-3132Cheng, X.-L., Yang, J., Maximizing band gaps in two-dimensional photonic crystals in square lattices (2013) J. Opt. Soc. Amer. A, 30, pp. 2314-2319Meng, F., Li, Y., Li, S., Lin, H., Jia, B., Huang, X., Achieving large band gaps in 2D symmetric and asymmetric photonic crystals (2017) J. Lightwave Technol., 35, p. 1670Cerjan, A., Fan, S., Complete photonic band gaps in supercell photonic crystals (2017) Phys. Rev. A, 96Li, S., Lin, H., Meng, F., Moss, D., Huang, X., Jia, B., On-demand design of tunable complete photonic band gaps based on bloch mode analysis (2018) Sci. Rep., 8, p. 14283Li, W., Meng, F., Chen, Y., Li, Y., Huang, X., Topology optimization of photonic and phononic crystals and metamaterials: A review (2019) Adv. Theory Simul., 2, p. 1900017Bravais, A., Mémoire sur les systèmes formés par les points distribués régulièrement sur un plan ou dans l'espace (1850) J. Ecole Polytech., 33 (19), pp. 1-128Balci, S., Karabiyik, M., Kosabas, A., Kosabas, C., Aydinli, A., Coupled plasmonic cavities on Moiré surfaces (2010) Plasmonics, 5, p. 429Balci, S., Kocabas, A., Kocabas, C., Aydinli, A., Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities (2011) Appl. Phys. Lett., 98Lubin, S.M., Hryn, A.J., Huntington, M.D., Engel, C.J., Odom, T.W., Quasiperiodic Moiré plasmonic crystals (2011) ACS Nano, 98Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P., Unconventional superconductivity in magic-angle graphene superlattices (2018) Nature, 556, pp. 43-50Shallcross, S., Sharma, S., Pankratov, O.A., Document quantum interference at the twist boundary in graphene (2008) Phys. Rev. Lett., 101Shallcross, S., Sharma, S., Kandelaki, E., Pankratov, O.A., Electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81 (16)Shallcross, S., Sharma, S., Pankratov, O.A., Erratum: Electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81Caro-Lopera, F.J., Bravais-Moiré Theory: Technical Report (2017), University of MedellinTiutiunnyk, A., Duque, C.A., Caro-Lopera, F.J., Mora-Ramos, M.E., Correa, J.D., Opto-electronic properties of twisted bilayer graphene quantum dots (2019) Physica E, 112, pp. 36-43Yokota, M., Sesay, M., Two-dimensional scattering of a plane wave from a periodic array of dielectric cylinders with arbitrary shape (2008) J. Opt. Soc. Amer. A, 25, pp. 1691-1696Zhu, N., Liu, W., Zhang, N., Wang, J., Cheng, C., Photonic band gap failure in photonic crystal devices (2011) Optik, 122, pp. 1625-1627Solli, D.R., Hickmann, J.M., Study of the properties of 2d photonic crystal structures as a function of the air-filling fraction and refractive index contrast (2011) Opt. Mater., 33, pp. 523-526Gaji?, R., Jovanovi?, D., Hingerl, K., R, J., Meisels, C., Kuchar, F., 2D photonic crystals on the Archimedean lattices (tribute to Johannes Kepler (1571-1630)) (2008) Opt. Mater., 30, pp. 1065-1069Jovanovi?, D., Gaji?, R., Hingerl, K., Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices (2008) Opt. Express, 16, pp. 4048-4058Berman, O.L., Boyko, V.S., Ya. Kezerashvili, R., Kolesnikov, A.A., Yu. E. Lozovik, C., Graphene-based photonic crystal (2018) Phys. Lett. A, 374, pp. 4784-4786Berman, O.L., Boyko, V.S., Ya. Kezerashvili, R., Kolesnikov, A.A., Lozovik, Y.E., On transmittance and localization of the electromagnetic wave in two-dimensional graphene-based photonic crystals (2018) Phys. Lett. A, 382, p. 429Taflove, A., Hagness, S.G., Computational Electrodynamics: The Finite-Difference Time Domain Method (2005), third ed. Artech House BostonSözüer, H.S., Haus, J.W., Inguva, R., Photonic bands: Convergence problems with the plane-wave method (1992) Phys. Rev. B., 45, pp. 13962-13972Sukhoivanov, I.A., Guryev, I.V., Photonic Crystals, Physics and Practical Modeling (2009), first ed. Springer-Verlag Berlin HeidelbergUng, B., Study of the interaction of surface waves with a metallic nano-slit via the finite-difference time-domain method (2007), (M.Sc. thesis)https://refractiveindex.info/Optics Communications2D photonic crystalsBravais Moiré latticeTunable band gapCrystal latticesEnergy gapPermittivity2-D photonic crystalsBravaisDielectric structurePermittivity constantSquare latticesTunable band structuresTunable Band-gapTwo-dimensional photonic crystalsPhotonic band gapTunable band structure in 2D Bravais–Moiré photonic crystal latticesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Gómez-Urrea, H.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Ospina-Medina, M.C., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Correa-Abad, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Morelos, Cuernavaca CP 62209, Mexico; Caro-Lopera, F.J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecGómez-Urrea H.A.Ospina-Medina M.C.Correa-Abad J.D.Mora-Ramos M.E.Caro-Lopera F.J.11407/5748oai:repository.udem.edu.co:11407/57482021-02-02 14:53:08.996Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |