Tunable band structure in 2D Bravais–Moiré photonic crystal lattices

This work introduces the recent so called Bravais Moiré theory in the context of two dimensional photonic crystals. In particular, new periodic cells involving commensurable bilayer rotated square alignments of photonic crystals with different permittivity constants are considered. The corresponding...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5748
Acceso en línea:
http://hdl.handle.net/11407/5748
Palabra clave:
2D photonic crystals
Bravais Moiré lattice
Tunable band gap
Crystal lattices
Energy gap
Permittivity
2-D photonic crystals
Bravais
Dielectric structure
Permittivity constant
Square lattices
Tunable band structures
Tunable Band-gap
Two-dimensional photonic crystals
Photonic band gap
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_8072aa435311f7aad00139bbf1e4b29a
oai_identifier_str oai:repository.udem.edu.co:11407/5748
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Tunable band structure in 2D Bravais–Moiré photonic crystal lattices
title Tunable band structure in 2D Bravais–Moiré photonic crystal lattices
spellingShingle Tunable band structure in 2D Bravais–Moiré photonic crystal lattices
2D photonic crystals
Bravais Moiré lattice
Tunable band gap
Crystal lattices
Energy gap
Permittivity
2-D photonic crystals
Bravais
Dielectric structure
Permittivity constant
Square lattices
Tunable band structures
Tunable Band-gap
Two-dimensional photonic crystals
Photonic band gap
title_short Tunable band structure in 2D Bravais–Moiré photonic crystal lattices
title_full Tunable band structure in 2D Bravais–Moiré photonic crystal lattices
title_fullStr Tunable band structure in 2D Bravais–Moiré photonic crystal lattices
title_full_unstemmed Tunable band structure in 2D Bravais–Moiré photonic crystal lattices
title_sort Tunable band structure in 2D Bravais–Moiré photonic crystal lattices
dc.subject.none.fl_str_mv 2D photonic crystals
Bravais Moiré lattice
Tunable band gap
Crystal lattices
Energy gap
Permittivity
2-D photonic crystals
Bravais
Dielectric structure
Permittivity constant
Square lattices
Tunable band structures
Tunable Band-gap
Two-dimensional photonic crystals
Photonic band gap
topic 2D photonic crystals
Bravais Moiré lattice
Tunable band gap
Crystal lattices
Energy gap
Permittivity
2-D photonic crystals
Bravais
Dielectric structure
Permittivity constant
Square lattices
Tunable band structures
Tunable Band-gap
Two-dimensional photonic crystals
Photonic band gap
description This work introduces the recent so called Bravais Moiré theory in the context of two dimensional photonic crystals. In particular, new periodic cells involving commensurable bilayer rotated square alignments of photonic crystals with different permittivity constants are considered. The corresponding band gaps are wider than those usually reported in literature for square lattice dielectric structures, and a practical comparison is carried out in the calculation in order to verify such assert. These photonic gaps can be adjusted by changing different lattice parameters, such as the commensurable angle, and the permittivities involved. © 2019 Elsevier B.V.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:52Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:52Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 304018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5748
dc.identifier.doi.none.fl_str_mv 10.1016/j.optcom.2019.125081
identifier_str_mv 304018
10.1016/j.optcom.2019.125081
url http://hdl.handle.net/11407/5748
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076262194&doi=10.1016%2fj.optcom.2019.125081&partnerID=40&md5=c22cc1905eb402db914a7de7549e5fda
dc.relation.citationvolume.none.fl_str_mv 459
dc.relation.references.none.fl_str_mv Joannopoulos, J.D., Photonic Crystals, Molding the Flow of Light (2007), Princeton University Press
Anderson, C.M., Giapis, K.P., Larger two-dimensional photonic band gaps (1996) Phys. Rev. Lett., 77, pp. 2949-2952
Kushwaha, M.S., Djafari-Rouhani, B., Band-gap engineering in two-dimensional periodic photonic crystals (2000) J. Appl. Phys., 88, pp. 2877-2884
Qiu, M., He, S., Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap (2000) J. Opt. Soc. Amer. B, 17, pp. 1027-1030
David, S., Chelnokov, A., Lourtioz, J.-M., Wide angularly isotropic photonic bandgaps obtained from the two-dimensional photonic crystals with archimedean-like tilings (2000) Opt. Lett., 25, pp. 1001-1003
David, S., Chelnokov, A., Lourtioz, J.-M., Isotropic photonic structures: Archimedean-like tilings an quasi-crystals (2001) Opt. Quantum. Electron., 37, pp. 1427-1434
Ye, Z., Shen, L., He, S., Design for 2D anisotropic photonic crystal with large absolute band gaps by using a genetic algorithm (2004) Eur. Phys. J. B, 37, pp. 417-419
Preble, S., Lipson, M., Lipson, H., Two-dimensional photonic crystals designed by evolutionary algorithms (2005) Appl. Phys. Lett., 86
Zarei, S., Shahabadi, M., Mohajerzadeh, S., Symmetry reduction for maximization of higher-order stop-bands in two-dimensional photonic crystals (2008) J. Modern Opt., 55, pp. 2971-2980
Sigmund, O., Hougaard, K., Geometric properties of optimal photonic crystals (2008) Phys. Rev. Lett., 100
Dyogtyev, A.V., Sukhoivanov, I.A., De La Rue, R.M., Photonic band-gap maps for different two dimensionally periodic photonic crystal structures (2010) J. Appl. Phys., 107
Men, H., Nguyen, N.C., Freund, R.M., Lim, K.M., Parrilo, P.A., Peraire, J., Design of photonic crystals with multiple and combined band gaps (2011) Phys. Rev. E, 83
Men, H., Nguyen, N.C., Freund, R.M., Lim, K.M., Parrilo, P.A., Peraire, J., (2012) Phys. Rev. E, 85, p. 049909. , (erratum)
Shi, P., Huang, K., Li, Y.-P., Photonic crystal with complex unit cell for large complete band gap (2012) Opt. Commun., 285, pp. 3128-3132
Cheng, X.-L., Yang, J., Maximizing band gaps in two-dimensional photonic crystals in square lattices (2013) J. Opt. Soc. Amer. A, 30, pp. 2314-2319
Meng, F., Li, Y., Li, S., Lin, H., Jia, B., Huang, X., Achieving large band gaps in 2D symmetric and asymmetric photonic crystals (2017) J. Lightwave Technol., 35, p. 1670
Cerjan, A., Fan, S., Complete photonic band gaps in supercell photonic crystals (2017) Phys. Rev. A, 96
Li, S., Lin, H., Meng, F., Moss, D., Huang, X., Jia, B., On-demand design of tunable complete photonic band gaps based on bloch mode analysis (2018) Sci. Rep., 8, p. 14283
Li, W., Meng, F., Chen, Y., Li, Y., Huang, X., Topology optimization of photonic and phononic crystals and metamaterials: A review (2019) Adv. Theory Simul., 2, p. 1900017
Bravais, A., Mémoire sur les systèmes formés par les points distribués régulièrement sur un plan ou dans l'espace (1850) J. Ecole Polytech., 33 (19), pp. 1-128
Balci, S., Karabiyik, M., Kosabas, A., Kosabas, C., Aydinli, A., Coupled plasmonic cavities on Moiré surfaces (2010) Plasmonics, 5, p. 429
Balci, S., Kocabas, A., Kocabas, C., Aydinli, A., Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities (2011) Appl. Phys. Lett., 98
Lubin, S.M., Hryn, A.J., Huntington, M.D., Engel, C.J., Odom, T.W., Quasiperiodic Moiré plasmonic crystals (2011) ACS Nano, 98
Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P., Unconventional superconductivity in magic-angle graphene superlattices (2018) Nature, 556, pp. 43-50
Shallcross, S., Sharma, S., Pankratov, O.A., Document quantum interference at the twist boundary in graphene (2008) Phys. Rev. Lett., 101
Shallcross, S., Sharma, S., Kandelaki, E., Pankratov, O.A., Electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81 (16)
Shallcross, S., Sharma, S., Pankratov, O.A., Erratum: Electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81
Caro-Lopera, F.J., Bravais-Moiré Theory: Technical Report (2017), University of Medellin
Tiutiunnyk, A., Duque, C.A., Caro-Lopera, F.J., Mora-Ramos, M.E., Correa, J.D., Opto-electronic properties of twisted bilayer graphene quantum dots (2019) Physica E, 112, pp. 36-43
Yokota, M., Sesay, M., Two-dimensional scattering of a plane wave from a periodic array of dielectric cylinders with arbitrary shape (2008) J. Opt. Soc. Amer. A, 25, pp. 1691-1696
Zhu, N., Liu, W., Zhang, N., Wang, J., Cheng, C., Photonic band gap failure in photonic crystal devices (2011) Optik, 122, pp. 1625-1627
Solli, D.R., Hickmann, J.M., Study of the properties of 2d photonic crystal structures as a function of the air-filling fraction and refractive index contrast (2011) Opt. Mater., 33, pp. 523-526
Gaji?, R., Jovanovi?, D., Hingerl, K., R, J., Meisels, C., Kuchar, F., 2D photonic crystals on the Archimedean lattices (tribute to Johannes Kepler (1571-1630)) (2008) Opt. Mater., 30, pp. 1065-1069
Jovanovi?, D., Gaji?, R., Hingerl, K., Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices (2008) Opt. Express, 16, pp. 4048-4058
Berman, O.L., Boyko, V.S., Ya. Kezerashvili, R., Kolesnikov, A.A., Yu. E. Lozovik, C., Graphene-based photonic crystal (2018) Phys. Lett. A, 374, pp. 4784-4786
Berman, O.L., Boyko, V.S., Ya. Kezerashvili, R., Kolesnikov, A.A., Lozovik, Y.E., On transmittance and localization of the electromagnetic wave in two-dimensional graphene-based photonic crystals (2018) Phys. Lett. A, 382, p. 429
Taflove, A., Hagness, S.G., Computational Electrodynamics: The Finite-Difference Time Domain Method (2005), third ed. Artech House Boston
Sözüer, H.S., Haus, J.W., Inguva, R., Photonic bands: Convergence problems with the plane-wave method (1992) Phys. Rev. B., 45, pp. 13962-13972
Sukhoivanov, I.A., Guryev, I.V., Photonic Crystals, Physics and Practical Modeling (2009), first ed. Springer-Verlag Berlin Heidelberg
Ung, B., Study of the interaction of surface waves with a metallic nano-slit via the finite-difference time-domain method (2007), (M.Sc. thesis)
https://refractiveindex.info/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Optics Communications
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159105822031872
spelling 20202020-04-29T14:53:52Z2020-04-29T14:53:52Z304018http://hdl.handle.net/11407/574810.1016/j.optcom.2019.125081This work introduces the recent so called Bravais Moiré theory in the context of two dimensional photonic crystals. In particular, new periodic cells involving commensurable bilayer rotated square alignments of photonic crystals with different permittivity constants are considered. The corresponding band gaps are wider than those usually reported in literature for square lattice dielectric structures, and a practical comparison is carried out in the calculation in order to verify such assert. These photonic gaps can be adjusted by changing different lattice parameters, such as the commensurable angle, and the permittivities involved. © 2019 Elsevier B.V.engElsevier B.V.Facultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076262194&doi=10.1016%2fj.optcom.2019.125081&partnerID=40&md5=c22cc1905eb402db914a7de7549e5fda459Joannopoulos, J.D., Photonic Crystals, Molding the Flow of Light (2007), Princeton University PressAnderson, C.M., Giapis, K.P., Larger two-dimensional photonic band gaps (1996) Phys. Rev. Lett., 77, pp. 2949-2952Kushwaha, M.S., Djafari-Rouhani, B., Band-gap engineering in two-dimensional periodic photonic crystals (2000) J. Appl. Phys., 88, pp. 2877-2884Qiu, M., He, S., Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap (2000) J. Opt. Soc. Amer. B, 17, pp. 1027-1030David, S., Chelnokov, A., Lourtioz, J.-M., Wide angularly isotropic photonic bandgaps obtained from the two-dimensional photonic crystals with archimedean-like tilings (2000) Opt. Lett., 25, pp. 1001-1003David, S., Chelnokov, A., Lourtioz, J.-M., Isotropic photonic structures: Archimedean-like tilings an quasi-crystals (2001) Opt. Quantum. Electron., 37, pp. 1427-1434Ye, Z., Shen, L., He, S., Design for 2D anisotropic photonic crystal with large absolute band gaps by using a genetic algorithm (2004) Eur. Phys. J. B, 37, pp. 417-419Preble, S., Lipson, M., Lipson, H., Two-dimensional photonic crystals designed by evolutionary algorithms (2005) Appl. Phys. Lett., 86Zarei, S., Shahabadi, M., Mohajerzadeh, S., Symmetry reduction for maximization of higher-order stop-bands in two-dimensional photonic crystals (2008) J. Modern Opt., 55, pp. 2971-2980Sigmund, O., Hougaard, K., Geometric properties of optimal photonic crystals (2008) Phys. Rev. Lett., 100Dyogtyev, A.V., Sukhoivanov, I.A., De La Rue, R.M., Photonic band-gap maps for different two dimensionally periodic photonic crystal structures (2010) J. Appl. Phys., 107Men, H., Nguyen, N.C., Freund, R.M., Lim, K.M., Parrilo, P.A., Peraire, J., Design of photonic crystals with multiple and combined band gaps (2011) Phys. Rev. E, 83Men, H., Nguyen, N.C., Freund, R.M., Lim, K.M., Parrilo, P.A., Peraire, J., (2012) Phys. Rev. E, 85, p. 049909. , (erratum)Shi, P., Huang, K., Li, Y.-P., Photonic crystal with complex unit cell for large complete band gap (2012) Opt. Commun., 285, pp. 3128-3132Cheng, X.-L., Yang, J., Maximizing band gaps in two-dimensional photonic crystals in square lattices (2013) J. Opt. Soc. Amer. A, 30, pp. 2314-2319Meng, F., Li, Y., Li, S., Lin, H., Jia, B., Huang, X., Achieving large band gaps in 2D symmetric and asymmetric photonic crystals (2017) J. Lightwave Technol., 35, p. 1670Cerjan, A., Fan, S., Complete photonic band gaps in supercell photonic crystals (2017) Phys. Rev. A, 96Li, S., Lin, H., Meng, F., Moss, D., Huang, X., Jia, B., On-demand design of tunable complete photonic band gaps based on bloch mode analysis (2018) Sci. Rep., 8, p. 14283Li, W., Meng, F., Chen, Y., Li, Y., Huang, X., Topology optimization of photonic and phononic crystals and metamaterials: A review (2019) Adv. Theory Simul., 2, p. 1900017Bravais, A., Mémoire sur les systèmes formés par les points distribués régulièrement sur un plan ou dans l'espace (1850) J. Ecole Polytech., 33 (19), pp. 1-128Balci, S., Karabiyik, M., Kosabas, A., Kosabas, C., Aydinli, A., Coupled plasmonic cavities on Moiré surfaces (2010) Plasmonics, 5, p. 429Balci, S., Kocabas, A., Kocabas, C., Aydinli, A., Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities (2011) Appl. Phys. Lett., 98Lubin, S.M., Hryn, A.J., Huntington, M.D., Engel, C.J., Odom, T.W., Quasiperiodic Moiré plasmonic crystals (2011) ACS Nano, 98Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P., Unconventional superconductivity in magic-angle graphene superlattices (2018) Nature, 556, pp. 43-50Shallcross, S., Sharma, S., Pankratov, O.A., Document quantum interference at the twist boundary in graphene (2008) Phys. Rev. Lett., 101Shallcross, S., Sharma, S., Kandelaki, E., Pankratov, O.A., Electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81 (16)Shallcross, S., Sharma, S., Pankratov, O.A., Erratum: Electronic structure of turbostratic graphene (2010) Phys. Rev. B, 81Caro-Lopera, F.J., Bravais-Moiré Theory: Technical Report (2017), University of MedellinTiutiunnyk, A., Duque, C.A., Caro-Lopera, F.J., Mora-Ramos, M.E., Correa, J.D., Opto-electronic properties of twisted bilayer graphene quantum dots (2019) Physica E, 112, pp. 36-43Yokota, M., Sesay, M., Two-dimensional scattering of a plane wave from a periodic array of dielectric cylinders with arbitrary shape (2008) J. Opt. Soc. Amer. A, 25, pp. 1691-1696Zhu, N., Liu, W., Zhang, N., Wang, J., Cheng, C., Photonic band gap failure in photonic crystal devices (2011) Optik, 122, pp. 1625-1627Solli, D.R., Hickmann, J.M., Study of the properties of 2d photonic crystal structures as a function of the air-filling fraction and refractive index contrast (2011) Opt. Mater., 33, pp. 523-526Gaji?, R., Jovanovi?, D., Hingerl, K., R, J., Meisels, C., Kuchar, F., 2D photonic crystals on the Archimedean lattices (tribute to Johannes Kepler (1571-1630)) (2008) Opt. Mater., 30, pp. 1065-1069Jovanovi?, D., Gaji?, R., Hingerl, K., Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices (2008) Opt. Express, 16, pp. 4048-4058Berman, O.L., Boyko, V.S., Ya. Kezerashvili, R., Kolesnikov, A.A., Yu. E. Lozovik, C., Graphene-based photonic crystal (2018) Phys. Lett. A, 374, pp. 4784-4786Berman, O.L., Boyko, V.S., Ya. Kezerashvili, R., Kolesnikov, A.A., Lozovik, Y.E., On transmittance and localization of the electromagnetic wave in two-dimensional graphene-based photonic crystals (2018) Phys. Lett. A, 382, p. 429Taflove, A., Hagness, S.G., Computational Electrodynamics: The Finite-Difference Time Domain Method (2005), third ed. Artech House BostonSözüer, H.S., Haus, J.W., Inguva, R., Photonic bands: Convergence problems with the plane-wave method (1992) Phys. Rev. B., 45, pp. 13962-13972Sukhoivanov, I.A., Guryev, I.V., Photonic Crystals, Physics and Practical Modeling (2009), first ed. Springer-Verlag Berlin HeidelbergUng, B., Study of the interaction of surface waves with a metallic nano-slit via the finite-difference time-domain method (2007), (M.Sc. thesis)https://refractiveindex.info/Optics Communications2D photonic crystalsBravais Moiré latticeTunable band gapCrystal latticesEnergy gapPermittivity2-D photonic crystalsBravaisDielectric structurePermittivity constantSquare latticesTunable band structuresTunable Band-gapTwo-dimensional photonic crystalsPhotonic band gapTunable band structure in 2D Bravais–Moiré photonic crystal latticesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Gómez-Urrea, H.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Ospina-Medina, M.C., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Correa-Abad, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Morelos, Cuernavaca CP 62209, Mexico; Caro-Lopera, F.J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecGómez-Urrea H.A.Ospina-Medina M.C.Correa-Abad J.D.Mora-Ramos M.E.Caro-Lopera F.J.11407/5748oai:repository.udem.edu.co:11407/57482021-02-02 14:53:08.996Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co