Binding and activation of ethylene on tungsten carbide and platinum surfaces
Density functional calculations were used to evaluate the ability of cubic and hexagonal phases of tungsten carbide to bind ethylene, as a model compound of unsaturated hydrocarbons, since its adsorption is the first step in important catalytic processes. The calculations give the following trend in...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5777
- Acceso en línea:
- http://hdl.handle.net/11407/5777
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_7f13f28e3e34a429fc4e327cb2913a73 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5777 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Binding and activation of ethylene on tungsten carbide and platinum surfaces |
title |
Binding and activation of ethylene on tungsten carbide and platinum surfaces |
spellingShingle |
Binding and activation of ethylene on tungsten carbide and platinum surfaces |
title_short |
Binding and activation of ethylene on tungsten carbide and platinum surfaces |
title_full |
Binding and activation of ethylene on tungsten carbide and platinum surfaces |
title_fullStr |
Binding and activation of ethylene on tungsten carbide and platinum surfaces |
title_full_unstemmed |
Binding and activation of ethylene on tungsten carbide and platinum surfaces |
title_sort |
Binding and activation of ethylene on tungsten carbide and platinum surfaces |
description |
Density functional calculations were used to evaluate the ability of cubic and hexagonal phases of tungsten carbide to bind ethylene, as a model compound of unsaturated hydrocarbons, since its adsorption is the first step in important catalytic processes. The calculations give the following trend in stability: ?-WC(0001)-C > ?-WC(0001)-W > Pt(111) > ?-WC(001), with the binding energy varying in the range of -0.72 to -2.91 eV. The sub-surface layers play a crucial role in the binding, favoring a charge reorganization at extended ranges (above 6 Å) from bulk towards the surface, however, the electronic structure of the surface was modified only in the topmost layer. The surface sites for geometric C2H4 activation were identified, leading to a surface distortion due to an upwards shifting of surface atoms in the range 0.13-0.61 Å observed in Pt(111), ?-WC(0001)-C, and ?-WC(001), with distortion energies of 0.13, 0.15 and 0.61 eV, respectively. The activation of C2H4 on tungsten carbides was compared with other transition metal carbide surfaces, which leads to a general classification of the elongation of carbon-carbon bond into a set of only three groups. If the interest is to activate ethylene CC bond, the surface sites and the binding modes should be those of the groups II and III. The infrared spectra show mainly four useful signals as a fingerprint to support and complement future experiments. The results of this work indicate that the ?-WC-W surface could be directly responsible for the catalytic performance, while the binding of olefins on ?-WC-C could cause surface poisoning. The metastable ?-WC(001) surface could be a promising system as compared to the known ?-WC(0001) surface, but challenges arise regarding its synthesis, stability and catalytic performance. These results pave the way to address further experimental and theoretical studies focused on the hydrogenation of ethylene and more complex unsaturated hydrocarbons. © the Owner Societies. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:58Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:58Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
14639076 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5777 |
dc.identifier.doi.none.fl_str_mv |
10.1039/c9cp03214b |
identifier_str_mv |
14639076 10.1039/c9cp03214b |
url |
http://hdl.handle.net/11407/5777 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070704004&doi=10.1039%2fc9cp03214b&partnerID=40&md5=fccb6f20eea692c287be6d7332a7f168 |
dc.relation.citationvolume.none.fl_str_mv |
21 |
dc.relation.citationissue.none.fl_str_mv |
31 |
dc.relation.citationstartpage.none.fl_str_mv |
17332 |
dc.relation.citationendpage.none.fl_str_mv |
17342 |
dc.relation.references.none.fl_str_mv |
Levy, R., Boudart, M., (1973) Science, 181, pp. 547-549 Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., (1979) J. Catal., 59, pp. 472-474 Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., (1982) J. Catal., 73, pp. 128-135 Xu, W., Ramirez, P.J., Stacchiola, D., Rodriguez, J.A., (2014) Catal. Lett., 144, pp. 1418-1424 Liu, P., Rodriguez, J.A., (2006) J. Phys. Chem. B, 110, pp. 19418-19425 Ardakani, S.J., Smith, K.J., (2011) Appl. Catal., A, 403, pp. 36-47 Ardakani, S.J., Liu, X., Smith, K.J., (2007) Appl. Catal., A, 324, pp. 9-19 Dhandapani, B., Clair, T.St., Oyama, S.T., (1998) Appl. Catal., A, 168, pp. 219-228 Vitale, G., Guzmán, H., Frauwallner, M.L., Scott, C.E., Pereira-Almao, P., (2015) Catal. Today, 250, pp. 123-133 Liu, X., Tkalych, A., Zhou, B., Köster, A.M., Salahub, D.R., (2013) J. Phys. Chem. C, 117, pp. 7069-7080 Hwu, H.H., Chen, J.G., (2005) Chem. Rev., 105, pp. 185-212 Vértes, G., Horányi, G., Szakács, S., (1973) J. Chem. Soc., Perkin Trans. 2, pp. 1400-1402 Rocha, A.S., Rocha, A.B., Da Silva, V.T., (2010) Appl. Catal., A, 379, pp. 54-60 Brillo, J., Sur, R., Kuhlenbeck, H., Freund, H.-J., (1998) J. Electron Spectros. Relat. Phenomena, 88-91, pp. 809-815 Brillo, J., Hammoudeh, A., Kuhlenbeck, H., Panagiotides, N., Schwegmann, S., Over, H., Freund, H.-J., (1998) J. Electron Spectrosc. Relat. Phenom., 96, pp. 53-60 Moreno-Castilla, C., Alvarez-Merino, M.A., Carrasco-Marín, F., Fierro, J.L.G., (2001) Langmuir, 17, pp. 1752-1756 Lemaitre, J., Benoit, V., Leclercq, L., (1986) J. Catal., 99, pp. 415-427 Kurlov, A.S., Gusev, A.I., (2013) Tungsten Carbides. Structure, Properties and Application in Hardmetals, pp. 5-56. , Springer International Publishing, 1st edn Liu, A.Y., Cohen, M.L., (1988) Solid State Commun., 67, pp. 907-910 Antoni-Zdziobek, A., Shen, J.Y., Durand-Charre, M., (2008) Int. J. Refract. Met. Hard Mater., 26, pp. 372-382 Viñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., (2005) J. Chem. Phys., 122, p. 174709 Tong, Y.-J., Wu, S.-Y., Chen, H.-T., (2018) Appl. Surf. Sci., 428, pp. 579-585 Zhang, X., Yang, Z., Wu, R., (2018) Nanoscale, 10, pp. 4753-4760 Zhang, X., Lu, Z., Yang, Z., (2016) Appl. Surf. Sci., 389, pp. 455-461 Liang, Y., Chen, L., Ma, C., (2017) Surf. Sci., 656, pp. 7-16 Xi, Y., Huang, L., Forrey, R.C., Cheng, H., (2014) RSC Adv., 4, p. 39912 Zheng, W., Chen, L., Ma, C., (2014) Comput. Theor. Chem., 1039, pp. 75-80 Vasi?, D.D., Pa ti, I.A., Mentus, S.V., (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018 Vasi? Ani?ijevi?, D.D., Nikoli?, V.M., Mar?eta-Kaninski, M.P., Pa ti, I.A., (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079 Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., (2016) J. Phys. Chem. C, 120, pp. 13531-13540 Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., (2017) J. Phys. Chem. C, 121, pp. 19786-19795 Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186 Kresse, G., Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775 Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B: Condens. Matter Mater. Phys., 13, pp. 5188-5192 Henkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360 Tang, W., Sanville, E., Henkelman, G., (2009) J. Phys.: Condens. Matter, 21, p. 084204 Sanville, E., Kenny, S.D., Smith, R., Henkelman, G., (2007) J. Comput. Chem., 28, pp. 899-908 Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C, 123, pp. 8871-8883 Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., (1996) J. Am. Chem. Soc., 118, pp. 2942-2949 Cremer, P.S., Somorjai, G.A., (1995) J. Chem. Soc., Faraday Trans., 91, p. 3671 Tillekaratne, A., Simonovis, J.P., Zaera, F., (2016) Surf. Sci., 652, pp. 134-141 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
Physical Chemistry Chemical Physics |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159115355684864 |
spelling |
20192020-04-29T14:53:58Z2020-04-29T14:53:58Z14639076http://hdl.handle.net/11407/577710.1039/c9cp03214bDensity functional calculations were used to evaluate the ability of cubic and hexagonal phases of tungsten carbide to bind ethylene, as a model compound of unsaturated hydrocarbons, since its adsorption is the first step in important catalytic processes. The calculations give the following trend in stability: ?-WC(0001)-C > ?-WC(0001)-W > Pt(111) > ?-WC(001), with the binding energy varying in the range of -0.72 to -2.91 eV. The sub-surface layers play a crucial role in the binding, favoring a charge reorganization at extended ranges (above 6 Å) from bulk towards the surface, however, the electronic structure of the surface was modified only in the topmost layer. The surface sites for geometric C2H4 activation were identified, leading to a surface distortion due to an upwards shifting of surface atoms in the range 0.13-0.61 Å observed in Pt(111), ?-WC(0001)-C, and ?-WC(001), with distortion energies of 0.13, 0.15 and 0.61 eV, respectively. The activation of C2H4 on tungsten carbides was compared with other transition metal carbide surfaces, which leads to a general classification of the elongation of carbon-carbon bond into a set of only three groups. If the interest is to activate ethylene CC bond, the surface sites and the binding modes should be those of the groups II and III. The infrared spectra show mainly four useful signals as a fingerprint to support and complement future experiments. The results of this work indicate that the ?-WC-W surface could be directly responsible for the catalytic performance, while the binding of olefins on ?-WC-C could cause surface poisoning. The metastable ?-WC(001) surface could be a promising system as compared to the known ?-WC(0001) surface, but challenges arise regarding its synthesis, stability and catalytic performance. These results pave the way to address further experimental and theoretical studies focused on the hydrogenation of ethylene and more complex unsaturated hydrocarbons. © the Owner Societies.engRoyal Society of ChemistryFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070704004&doi=10.1039%2fc9cp03214b&partnerID=40&md5=fccb6f20eea692c287be6d7332a7f16821311733217342Levy, R., Boudart, M., (1973) Science, 181, pp. 547-549Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., (1979) J. Catal., 59, pp. 472-474Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., (1982) J. Catal., 73, pp. 128-135Xu, W., Ramirez, P.J., Stacchiola, D., Rodriguez, J.A., (2014) Catal. Lett., 144, pp. 1418-1424Liu, P., Rodriguez, J.A., (2006) J. Phys. Chem. B, 110, pp. 19418-19425Ardakani, S.J., Smith, K.J., (2011) Appl. Catal., A, 403, pp. 36-47Ardakani, S.J., Liu, X., Smith, K.J., (2007) Appl. Catal., A, 324, pp. 9-19Dhandapani, B., Clair, T.St., Oyama, S.T., (1998) Appl. Catal., A, 168, pp. 219-228Vitale, G., Guzmán, H., Frauwallner, M.L., Scott, C.E., Pereira-Almao, P., (2015) Catal. Today, 250, pp. 123-133Liu, X., Tkalych, A., Zhou, B., Köster, A.M., Salahub, D.R., (2013) J. Phys. Chem. C, 117, pp. 7069-7080Hwu, H.H., Chen, J.G., (2005) Chem. Rev., 105, pp. 185-212Vértes, G., Horányi, G., Szakács, S., (1973) J. Chem. Soc., Perkin Trans. 2, pp. 1400-1402Rocha, A.S., Rocha, A.B., Da Silva, V.T., (2010) Appl. Catal., A, 379, pp. 54-60Brillo, J., Sur, R., Kuhlenbeck, H., Freund, H.-J., (1998) J. Electron Spectros. Relat. Phenomena, 88-91, pp. 809-815Brillo, J., Hammoudeh, A., Kuhlenbeck, H., Panagiotides, N., Schwegmann, S., Over, H., Freund, H.-J., (1998) J. Electron Spectrosc. Relat. Phenom., 96, pp. 53-60Moreno-Castilla, C., Alvarez-Merino, M.A., Carrasco-Marín, F., Fierro, J.L.G., (2001) Langmuir, 17, pp. 1752-1756Lemaitre, J., Benoit, V., Leclercq, L., (1986) J. Catal., 99, pp. 415-427Kurlov, A.S., Gusev, A.I., (2013) Tungsten Carbides. Structure, Properties and Application in Hardmetals, pp. 5-56. , Springer International Publishing, 1st ednLiu, A.Y., Cohen, M.L., (1988) Solid State Commun., 67, pp. 907-910Antoni-Zdziobek, A., Shen, J.Y., Durand-Charre, M., (2008) Int. J. Refract. Met. Hard Mater., 26, pp. 372-382Viñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., (2005) J. Chem. Phys., 122, p. 174709Tong, Y.-J., Wu, S.-Y., Chen, H.-T., (2018) Appl. Surf. Sci., 428, pp. 579-585Zhang, X., Yang, Z., Wu, R., (2018) Nanoscale, 10, pp. 4753-4760Zhang, X., Lu, Z., Yang, Z., (2016) Appl. Surf. Sci., 389, pp. 455-461Liang, Y., Chen, L., Ma, C., (2017) Surf. Sci., 656, pp. 7-16Xi, Y., Huang, L., Forrey, R.C., Cheng, H., (2014) RSC Adv., 4, p. 39912Zheng, W., Chen, L., Ma, C., (2014) Comput. Theor. Chem., 1039, pp. 75-80Vasi?, D.D., Pa ti, I.A., Mentus, S.V., (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018Vasi? Ani?ijevi?, D.D., Nikoli?, V.M., Mar?eta-Kaninski, M.P., Pa ti, I.A., (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., (2016) J. Phys. Chem. C, 120, pp. 13531-13540Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., (2017) J. Phys. Chem. C, 121, pp. 19786-19795Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186Kresse, G., Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B: Condens. Matter Mater. Phys., 13, pp. 5188-5192Henkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360Tang, W., Sanville, E., Henkelman, G., (2009) J. Phys.: Condens. Matter, 21, p. 084204Sanville, E., Kenny, S.D., Smith, R., Henkelman, G., (2007) J. Comput. Chem., 28, pp. 899-908Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C, 123, pp. 8871-8883Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., (1996) J. Am. Chem. Soc., 118, pp. 2942-2949Cremer, P.S., Somorjai, G.A., (1995) J. Chem. Soc., Faraday Trans., 91, p. 3671Tillekaratne, A., Simonovis, J.P., Zaera, F., (2016) Surf. Sci., 652, pp. 134-141Physical Chemistry Chemical PhysicsBinding and activation of ethylene on tungsten carbide and platinum surfacesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Jimenez-Orozco, C., Universidad de Medellín, Facultad de Ciencias Básicas, Carrera 87 No 30-65, Medellín, Colombia; Flórez, E., Universidad de Medellín, Facultad de Ciencias Básicas, Carrera 87 No 30-65, Medellín, Colombia; Montoya, A., University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia; Rodriguez, J.A., Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973, United Stateshttp://purl.org/coar/access_right/c_16ecJimenez-Orozco C.Flórez E.Montoya A.Rodriguez J.A.11407/5777oai:repository.udem.edu.co:11407/57772020-05-27 15:54:06.969Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |