Binding and activation of ethylene on tungsten carbide and platinum surfaces

Density functional calculations were used to evaluate the ability of cubic and hexagonal phases of tungsten carbide to bind ethylene, as a model compound of unsaturated hydrocarbons, since its adsorption is the first step in important catalytic processes. The calculations give the following trend in...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5777
Acceso en línea:
http://hdl.handle.net/11407/5777
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_7f13f28e3e34a429fc4e327cb2913a73
oai_identifier_str oai:repository.udem.edu.co:11407/5777
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Binding and activation of ethylene on tungsten carbide and platinum surfaces
title Binding and activation of ethylene on tungsten carbide and platinum surfaces
spellingShingle Binding and activation of ethylene on tungsten carbide and platinum surfaces
title_short Binding and activation of ethylene on tungsten carbide and platinum surfaces
title_full Binding and activation of ethylene on tungsten carbide and platinum surfaces
title_fullStr Binding and activation of ethylene on tungsten carbide and platinum surfaces
title_full_unstemmed Binding and activation of ethylene on tungsten carbide and platinum surfaces
title_sort Binding and activation of ethylene on tungsten carbide and platinum surfaces
description Density functional calculations were used to evaluate the ability of cubic and hexagonal phases of tungsten carbide to bind ethylene, as a model compound of unsaturated hydrocarbons, since its adsorption is the first step in important catalytic processes. The calculations give the following trend in stability: ?-WC(0001)-C > ?-WC(0001)-W > Pt(111) > ?-WC(001), with the binding energy varying in the range of -0.72 to -2.91 eV. The sub-surface layers play a crucial role in the binding, favoring a charge reorganization at extended ranges (above 6 Å) from bulk towards the surface, however, the electronic structure of the surface was modified only in the topmost layer. The surface sites for geometric C2H4 activation were identified, leading to a surface distortion due to an upwards shifting of surface atoms in the range 0.13-0.61 Å observed in Pt(111), ?-WC(0001)-C, and ?-WC(001), with distortion energies of 0.13, 0.15 and 0.61 eV, respectively. The activation of C2H4 on tungsten carbides was compared with other transition metal carbide surfaces, which leads to a general classification of the elongation of carbon-carbon bond into a set of only three groups. If the interest is to activate ethylene CC bond, the surface sites and the binding modes should be those of the groups II and III. The infrared spectra show mainly four useful signals as a fingerprint to support and complement future experiments. The results of this work indicate that the ?-WC-W surface could be directly responsible for the catalytic performance, while the binding of olefins on ?-WC-C could cause surface poisoning. The metastable ?-WC(001) surface could be a promising system as compared to the known ?-WC(0001) surface, but challenges arise regarding its synthesis, stability and catalytic performance. These results pave the way to address further experimental and theoretical studies focused on the hydrogenation of ethylene and more complex unsaturated hydrocarbons. © the Owner Societies.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:58Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:58Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 14639076
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5777
dc.identifier.doi.none.fl_str_mv 10.1039/c9cp03214b
identifier_str_mv 14639076
10.1039/c9cp03214b
url http://hdl.handle.net/11407/5777
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070704004&doi=10.1039%2fc9cp03214b&partnerID=40&md5=fccb6f20eea692c287be6d7332a7f168
dc.relation.citationvolume.none.fl_str_mv 21
dc.relation.citationissue.none.fl_str_mv 31
dc.relation.citationstartpage.none.fl_str_mv 17332
dc.relation.citationendpage.none.fl_str_mv 17342
dc.relation.references.none.fl_str_mv Levy, R., Boudart, M., (1973) Science, 181, pp. 547-549
Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., (1979) J. Catal., 59, pp. 472-474
Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., (1982) J. Catal., 73, pp. 128-135
Xu, W., Ramirez, P.J., Stacchiola, D., Rodriguez, J.A., (2014) Catal. Lett., 144, pp. 1418-1424
Liu, P., Rodriguez, J.A., (2006) J. Phys. Chem. B, 110, pp. 19418-19425
Ardakani, S.J., Smith, K.J., (2011) Appl. Catal., A, 403, pp. 36-47
Ardakani, S.J., Liu, X., Smith, K.J., (2007) Appl. Catal., A, 324, pp. 9-19
Dhandapani, B., Clair, T.St., Oyama, S.T., (1998) Appl. Catal., A, 168, pp. 219-228
Vitale, G., Guzmán, H., Frauwallner, M.L., Scott, C.E., Pereira-Almao, P., (2015) Catal. Today, 250, pp. 123-133
Liu, X., Tkalych, A., Zhou, B., Köster, A.M., Salahub, D.R., (2013) J. Phys. Chem. C, 117, pp. 7069-7080
Hwu, H.H., Chen, J.G., (2005) Chem. Rev., 105, pp. 185-212
Vértes, G., Horányi, G., Szakács, S., (1973) J. Chem. Soc., Perkin Trans. 2, pp. 1400-1402
Rocha, A.S., Rocha, A.B., Da Silva, V.T., (2010) Appl. Catal., A, 379, pp. 54-60
Brillo, J., Sur, R., Kuhlenbeck, H., Freund, H.-J., (1998) J. Electron Spectros. Relat. Phenomena, 88-91, pp. 809-815
Brillo, J., Hammoudeh, A., Kuhlenbeck, H., Panagiotides, N., Schwegmann, S., Over, H., Freund, H.-J., (1998) J. Electron Spectrosc. Relat. Phenom., 96, pp. 53-60
Moreno-Castilla, C., Alvarez-Merino, M.A., Carrasco-Marín, F., Fierro, J.L.G., (2001) Langmuir, 17, pp. 1752-1756
Lemaitre, J., Benoit, V., Leclercq, L., (1986) J. Catal., 99, pp. 415-427
Kurlov, A.S., Gusev, A.I., (2013) Tungsten Carbides. Structure, Properties and Application in Hardmetals, pp. 5-56. , Springer International Publishing, 1st edn
Liu, A.Y., Cohen, M.L., (1988) Solid State Commun., 67, pp. 907-910
Antoni-Zdziobek, A., Shen, J.Y., Durand-Charre, M., (2008) Int. J. Refract. Met. Hard Mater., 26, pp. 372-382
Viñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., (2005) J. Chem. Phys., 122, p. 174709
Tong, Y.-J., Wu, S.-Y., Chen, H.-T., (2018) Appl. Surf. Sci., 428, pp. 579-585
Zhang, X., Yang, Z., Wu, R., (2018) Nanoscale, 10, pp. 4753-4760
Zhang, X., Lu, Z., Yang, Z., (2016) Appl. Surf. Sci., 389, pp. 455-461
Liang, Y., Chen, L., Ma, C., (2017) Surf. Sci., 656, pp. 7-16
Xi, Y., Huang, L., Forrey, R.C., Cheng, H., (2014) RSC Adv., 4, p. 39912
Zheng, W., Chen, L., Ma, C., (2014) Comput. Theor. Chem., 1039, pp. 75-80
Vasi?, D.D., Pa ti, I.A., Mentus, S.V., (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018
Vasi? Ani?ijevi?, D.D., Nikoli?, V.M., Mar?eta-Kaninski, M.P., Pa ti, I.A., (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079
Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., (2016) J. Phys. Chem. C, 120, pp. 13531-13540
Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., (2017) J. Phys. Chem. C, 121, pp. 19786-19795
Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186
Kresse, G., Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775
Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B: Condens. Matter Mater. Phys., 13, pp. 5188-5192
Henkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360
Tang, W., Sanville, E., Henkelman, G., (2009) J. Phys.: Condens. Matter, 21, p. 084204
Sanville, E., Kenny, S.D., Smith, R., Henkelman, G., (2007) J. Comput. Chem., 28, pp. 899-908
Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C, 123, pp. 8871-8883
Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., (1996) J. Am. Chem. Soc., 118, pp. 2942-2949
Cremer, P.S., Somorjai, G.A., (1995) J. Chem. Soc., Faraday Trans., 91, p. 3671
Tillekaratne, A., Simonovis, J.P., Zaera, F., (2016) Surf. Sci., 652, pp. 134-141
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Royal Society of Chemistry
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv Physical Chemistry Chemical Physics
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159115355684864
spelling 20192020-04-29T14:53:58Z2020-04-29T14:53:58Z14639076http://hdl.handle.net/11407/577710.1039/c9cp03214bDensity functional calculations were used to evaluate the ability of cubic and hexagonal phases of tungsten carbide to bind ethylene, as a model compound of unsaturated hydrocarbons, since its adsorption is the first step in important catalytic processes. The calculations give the following trend in stability: ?-WC(0001)-C > ?-WC(0001)-W > Pt(111) > ?-WC(001), with the binding energy varying in the range of -0.72 to -2.91 eV. The sub-surface layers play a crucial role in the binding, favoring a charge reorganization at extended ranges (above 6 Å) from bulk towards the surface, however, the electronic structure of the surface was modified only in the topmost layer. The surface sites for geometric C2H4 activation were identified, leading to a surface distortion due to an upwards shifting of surface atoms in the range 0.13-0.61 Å observed in Pt(111), ?-WC(0001)-C, and ?-WC(001), with distortion energies of 0.13, 0.15 and 0.61 eV, respectively. The activation of C2H4 on tungsten carbides was compared with other transition metal carbide surfaces, which leads to a general classification of the elongation of carbon-carbon bond into a set of only three groups. If the interest is to activate ethylene CC bond, the surface sites and the binding modes should be those of the groups II and III. The infrared spectra show mainly four useful signals as a fingerprint to support and complement future experiments. The results of this work indicate that the ?-WC-W surface could be directly responsible for the catalytic performance, while the binding of olefins on ?-WC-C could cause surface poisoning. The metastable ?-WC(001) surface could be a promising system as compared to the known ?-WC(0001) surface, but challenges arise regarding its synthesis, stability and catalytic performance. These results pave the way to address further experimental and theoretical studies focused on the hydrogenation of ethylene and more complex unsaturated hydrocarbons. © the Owner Societies.engRoyal Society of ChemistryFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070704004&doi=10.1039%2fc9cp03214b&partnerID=40&md5=fccb6f20eea692c287be6d7332a7f16821311733217342Levy, R., Boudart, M., (1973) Science, 181, pp. 547-549Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., (1979) J. Catal., 59, pp. 472-474Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., (1982) J. Catal., 73, pp. 128-135Xu, W., Ramirez, P.J., Stacchiola, D., Rodriguez, J.A., (2014) Catal. Lett., 144, pp. 1418-1424Liu, P., Rodriguez, J.A., (2006) J. Phys. Chem. B, 110, pp. 19418-19425Ardakani, S.J., Smith, K.J., (2011) Appl. Catal., A, 403, pp. 36-47Ardakani, S.J., Liu, X., Smith, K.J., (2007) Appl. Catal., A, 324, pp. 9-19Dhandapani, B., Clair, T.St., Oyama, S.T., (1998) Appl. Catal., A, 168, pp. 219-228Vitale, G., Guzmán, H., Frauwallner, M.L., Scott, C.E., Pereira-Almao, P., (2015) Catal. Today, 250, pp. 123-133Liu, X., Tkalych, A., Zhou, B., Köster, A.M., Salahub, D.R., (2013) J. Phys. Chem. C, 117, pp. 7069-7080Hwu, H.H., Chen, J.G., (2005) Chem. Rev., 105, pp. 185-212Vértes, G., Horányi, G., Szakács, S., (1973) J. Chem. Soc., Perkin Trans. 2, pp. 1400-1402Rocha, A.S., Rocha, A.B., Da Silva, V.T., (2010) Appl. Catal., A, 379, pp. 54-60Brillo, J., Sur, R., Kuhlenbeck, H., Freund, H.-J., (1998) J. Electron Spectros. Relat. Phenomena, 88-91, pp. 809-815Brillo, J., Hammoudeh, A., Kuhlenbeck, H., Panagiotides, N., Schwegmann, S., Over, H., Freund, H.-J., (1998) J. Electron Spectrosc. Relat. Phenom., 96, pp. 53-60Moreno-Castilla, C., Alvarez-Merino, M.A., Carrasco-Marín, F., Fierro, J.L.G., (2001) Langmuir, 17, pp. 1752-1756Lemaitre, J., Benoit, V., Leclercq, L., (1986) J. Catal., 99, pp. 415-427Kurlov, A.S., Gusev, A.I., (2013) Tungsten Carbides. Structure, Properties and Application in Hardmetals, pp. 5-56. , Springer International Publishing, 1st ednLiu, A.Y., Cohen, M.L., (1988) Solid State Commun., 67, pp. 907-910Antoni-Zdziobek, A., Shen, J.Y., Durand-Charre, M., (2008) Int. J. Refract. Met. Hard Mater., 26, pp. 372-382Viñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., (2005) J. Chem. Phys., 122, p. 174709Tong, Y.-J., Wu, S.-Y., Chen, H.-T., (2018) Appl. Surf. Sci., 428, pp. 579-585Zhang, X., Yang, Z., Wu, R., (2018) Nanoscale, 10, pp. 4753-4760Zhang, X., Lu, Z., Yang, Z., (2016) Appl. Surf. Sci., 389, pp. 455-461Liang, Y., Chen, L., Ma, C., (2017) Surf. Sci., 656, pp. 7-16Xi, Y., Huang, L., Forrey, R.C., Cheng, H., (2014) RSC Adv., 4, p. 39912Zheng, W., Chen, L., Ma, C., (2014) Comput. Theor. Chem., 1039, pp. 75-80Vasi?, D.D., Pa ti, I.A., Mentus, S.V., (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018Vasi? Ani?ijevi?, D.D., Nikoli?, V.M., Mar?eta-Kaninski, M.P., Pa ti, I.A., (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., (2016) J. Phys. Chem. C, 120, pp. 13531-13540Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., (2017) J. Phys. Chem. C, 121, pp. 19786-19795Kresse, G., Furthmüller, J., (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186Kresse, G., Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B: Condens. Matter Mater. Phys., 13, pp. 5188-5192Henkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360Tang, W., Sanville, E., Henkelman, G., (2009) J. Phys.: Condens. Matter, 21, p. 084204Sanville, E., Kenny, S.D., Smith, R., Henkelman, G., (2007) J. Comput. Chem., 28, pp. 899-908Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C, 123, pp. 8871-8883Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., (1996) J. Am. Chem. Soc., 118, pp. 2942-2949Cremer, P.S., Somorjai, G.A., (1995) J. Chem. Soc., Faraday Trans., 91, p. 3671Tillekaratne, A., Simonovis, J.P., Zaera, F., (2016) Surf. Sci., 652, pp. 134-141Physical Chemistry Chemical PhysicsBinding and activation of ethylene on tungsten carbide and platinum surfacesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Jimenez-Orozco, C., Universidad de Medellín, Facultad de Ciencias Básicas, Carrera 87 No 30-65, Medellín, Colombia; Flórez, E., Universidad de Medellín, Facultad de Ciencias Básicas, Carrera 87 No 30-65, Medellín, Colombia; Montoya, A., University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia; Rodriguez, J.A., Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973, United Stateshttp://purl.org/coar/access_right/c_16ecJimenez-Orozco C.Flórez E.Montoya A.Rodriguez J.A.11407/5777oai:repository.udem.edu.co:11407/57772020-05-27 15:54:06.969Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co