Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations

Because of its acute toxicity and high mobility, the hexavalent chromium [Cr (VI)] found in wastewater is a risk to the environment. In this study, activated carbon was produced from teakwood sawdust, which was chemically modified using ZnCl2 (AT) as an efficient adsorbent for Cr (VI) removal from a...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6003
Acceso en línea:
http://hdl.handle.net/11407/6003
Palabra clave:
Adsorption
Biomass
Computational simulation
Hexavalent chromium
Kinetics
Activated carbon
Adsorption
Chemical analysis
Chlorine compounds
Computation theory
Computational chemistry
Density functional theory
Functional groups
Isotherms
Surface diffusion
Zinc chloride
Adsorption capacities
Adsorption mechanism
Chemically modified
Computer calculation
Equilibrium parameters
Hexavalent chromium
Intra-particle diffusion
Langmuir isotherm models
Chromium compounds
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_7b6b10586351aa1fadf1e4bbcddeb093
oai_identifier_str oai:repository.udem.edu.co:11407/6003
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations
title Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations
spellingShingle Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations
Adsorption
Biomass
Computational simulation
Hexavalent chromium
Kinetics
Activated carbon
Adsorption
Chemical analysis
Chlorine compounds
Computation theory
Computational chemistry
Density functional theory
Functional groups
Isotherms
Surface diffusion
Zinc chloride
Adsorption capacities
Adsorption mechanism
Chemically modified
Computer calculation
Equilibrium parameters
Hexavalent chromium
Intra-particle diffusion
Langmuir isotherm models
Chromium compounds
title_short Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations
title_full Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations
title_fullStr Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations
title_full_unstemmed Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations
title_sort Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations
dc.subject.spa.fl_str_mv Adsorption
Biomass
Computational simulation
Hexavalent chromium
Kinetics
topic Adsorption
Biomass
Computational simulation
Hexavalent chromium
Kinetics
Activated carbon
Adsorption
Chemical analysis
Chlorine compounds
Computation theory
Computational chemistry
Density functional theory
Functional groups
Isotherms
Surface diffusion
Zinc chloride
Adsorption capacities
Adsorption mechanism
Chemically modified
Computer calculation
Equilibrium parameters
Hexavalent chromium
Intra-particle diffusion
Langmuir isotherm models
Chromium compounds
dc.subject.keyword.eng.fl_str_mv Activated carbon
Adsorption
Chemical analysis
Chlorine compounds
Computation theory
Computational chemistry
Density functional theory
Functional groups
Isotherms
Surface diffusion
Zinc chloride
Adsorption capacities
Adsorption mechanism
Chemically modified
Computer calculation
Equilibrium parameters
Hexavalent chromium
Intra-particle diffusion
Langmuir isotherm models
Chromium compounds
description Because of its acute toxicity and high mobility, the hexavalent chromium [Cr (VI)] found in wastewater is a risk to the environment. In this study, activated carbon was produced from teakwood sawdust, which was chemically modified using ZnCl2 (AT) as an efficient adsorbent for Cr (VI) removal from aqueous systems. Batch experiments were conducted to identify kinetic, diffusional, and equilibrium parameters. In addition, to better understand the adsorption process, computer calculations were conducted based on the density functional theory (DFT). A maximum adsorption capacity of 72.46 mg g-1 was achieved by adapting experimental data to the Langmuir isotherm model. Intraparticle diffusion was further identified through a three-dimensional diffusion model, which revealed that it was ruled by intraparticular diffusion based on surface diffusion, with surface diffusion coefficient (Ds) values ranging from 1.29 × 10-10 to 0.78 × 10-10 cm2 s-1. Finally, computational chemistry calculations and an FTIR analysis determined that oxygenated functional groups, lactone, semiquinone, phenols, and carboxylic acids were involved in the process of Cr (VI) adsorption on AT. Moreover, the main adsorption mechanisms were found to be complexation, electrostatic interaction, and reduction of Cr (VI) to Cr (III). © 2020 Elsevier Ltd.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:39Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:39Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 22133437
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6003
dc.identifier.doi.none.fl_str_mv 10.1016/j.jece.2020.103702
identifier_str_mv 22133437
10.1016/j.jece.2020.103702
url http://hdl.handle.net/11407/6003
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079893939&doi=10.1016%2fj.jece.2020.103702&partnerID=40&md5=7cefb299e9fc676914e82d9ab836e1c3
dc.relation.citationvolume.none.fl_str_mv 8
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.references.none.fl_str_mv Mohan, D., Pittman, C.U., Activated carbons and low cost adsorbents for remediation of tri- And hexavalent chromium from water (2006) J. Hazard. Mater., 137, pp. 762-811
Barrera-Díaz, C.E., Lugo-Lugo, V., Bilyeu, B., A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction (2012) J. Hazard. Mater., 223-224, pp. 1-12
(2007) Resolución 2115 de 2007, , http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislación_del_agua/Resolución_2115.pdf, Ministerio de la Protección Social, and Ministerio de Ambiente Vivienda y Desarrollo Territorial
Ministerio De Ambiente, Y., Sostenible, D., (2015) Resolución 631 de 2015, , https://docs.supersalud.gov.co/PortalWeb/Juridica/OtraNormativa/R_MADS_0631_2015.pdf
Chen, S.-S., Cheng, C.-Y., Li, C.-W., Chai, P.-H., Chang, Y.-M., Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process (2007) J. Hazard. Mater., 142, pp. 362-367
Gheju, M., Iovi, A., Balcu, I., Hexavalent chromium reduction with scrap iron in continuous-flow system: Part 1: Effect of feed solution pH (2008) J. Hazard. Mater., 153, pp. 655-662
Chen, G., Electrochemical technologies in wastewater treatment (2004) Sep. Purif. Technol., 38, pp. 11-41
Golder, A.K., Chanda, A.K., Samanta, A.N., Ray, S., Removal of Cr (VI) from aqueous solution: Electrocoagulation vs chemical coagulation (2007) Sep. Sci. Technol., 42, pp. 2177-2193
Agrawal, S.G., Fimmen, R.L., Chin, Y.-P., Reduction of Cr (VI) to Cr (III) by Fe (II) in the presence of fulvic acids and in lacustrine pore water (2009) Chem. Geol., 262, pp. 328-335
Ku, Y., Huang, Y.-H., Chou, Y.-C., Preparation and characterization of ZnO/TiO2 for the photocatalytic reduction of Cr (VI) in aqueous solution (2011) J. Mol. Catal. A: Chem., 342, pp. 18-22
Singh, R., Kumar, A., Kirrolia, A., Kumar, R., Yadav, N., Bishnoi, N.R., Lohchab, R.K., Removal of sulphate, COD and Cr (VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study (2011) Bioresour. Technol., 102, pp. 677-682
Sharma, S., Adholeya, A., Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi (2011) Int. Biodeterior. Biodegradation, 65, pp. 309-317
Enniya, I., Rghioui, L., Jourani, A., Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels (2018) Sustain. Chem. Pharm., 7, pp. 9-16
Yang, J., Yu, M., Chen, W., Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics (2015) J. Ind. Eng. Chem., 21, pp. 414-422
Zhang, X., Fu, W., Yin, Y., Chen, Z., Qiu, R., Simonnot, M.-O., Wang, X., Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies (2018) Bioresour. Technol., 268, pp. 149-157
Valentín-Reyes, J., García-Reyes, R., García-González, A., Soto-Regalado, E., Cerino-Córdova, F., Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons (2019) J. Environ. Manage., 236, pp. 815-822
Saleh, T.A., Gupta, V.K., Al-Saadi, A.A., Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study (2013) J. Colloid Interface Sci., 396, pp. 264-269
Al-Saadi, A.A., Saleh, T.A., Gupta, V.K., Spectroscopic and computational evaluation of cadmium adsorption using activated carbon produced from rubber tires (2013) J. Mol. Liq., 188, pp. 136-142
Huang, Y., Hu, H., The interaction of perrhenate and acidic/basic oxygen-containing groups on biochar surface: A DFT study (2020) Chem. Eng. J., 381
(1990) The Potential Use of Wood Residues for Energy Generation, , Rome
Ramirez, A.P., Giraldo, S., Ulloa, M., Flórez, E., Acelas, N.Y., Production and characterization of activated carbon from wood wastes (2017) J. Phys. Conf. Ser., 935
Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V., Bui, X.T., Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study (2015) Sci. Total Environ., 523, pp. 40-49
Banerjee, M., Basu, R.K., Das, S.K., Cr(VI) adsorption by a green adsorbent walnut shell: Adsorption studies, regeneration studies, scale-up design and economic feasibility (2018) Process Saf. Environ. Prot., 116, pp. 693-702
Goertzen, S.L., Thériault, K.D., Oickle, A.M., Tarasuk, A.C., Andreas, H.A., Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination (2010) Carbon, 48, pp. 1252-1261
(1992) METHOD 7196A - Chromium, Hexavalent (Colorimetric), pp. 1-6
Lagergren, S., Zur theorie der sogenannten adsorption geloster stoffe, K. Sven (1898) Vetenskapsakademiens Handl., 24, pp. 1-39
Blanchard, G., Maunaye, M., Martin, G., Removal of heavy metals from waters by means of natural zeolites (1984) Water Res., 18, pp. 1501-1507
Zakaria, Z.A., Suratman, M., Mohammed, N., Ahmad, W.A., Chromium (VI) removal from aqueous solution by untreated rubber wood sawdust (2009) Desalination, 244, pp. 109-121
Karthikeyan, T., Rajgopal, S., Miranda, L.R., Chromium (VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon (2005) J. Hazard. Mater., 124 B, pp. 192-199
Kumar, A., Jena, H.M., Adsorption of Cr (VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with ZnCl2 (2017) Process Saf. Environ. Prot., 109, pp. 63-71
Frisch, M.J., (2016) Gaussian 09. Revision A.02, , Wallingford CT
Keith, T.A., Frisch, M.J., Inclusion of explicit solvent molecules in a self-consistent-reaction field model of solvation (1994) Model. Hydrog. Bond, pp. 22-35. , ACS Publications Washington, DC
Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., Adsorption of nitrate and bicarbonate on Fe-(hydr) oxide (2017) Inorg. Chem., 56, pp. 5455-5464
Reed, A.E., Weinstock, R.B., Weinhold, F., Natural population analysis (1985) J. Chem. Phys., 83, pp. 735-746
Liu, J., Cheney, M.A., Wu, F., Li, M., Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces (2011) J. Hazard. Mater., 186, pp. 108-113
Mor, S., Adsorption of chromium from aqueous solution by activated alumina and activated charcoal (2007) Bioresour. Technol., 98, pp. 954-957
Chwastowski, J., Staroń, P., Kołoczek, H., Banach, M., Adsorption of hexavalent chromium from aqueous solutions using Canadian peat and coconut fiber (2017) J. Mol. Liq., 248, pp. 981-989
Anandkumar, J., Mandal, B., Removal of Cr (VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent (2009) J. Hazard. Mater., 168, pp. 633-640
He, Z., Qu, L., Wang, Z., Qian, J., Yi, S., Effects of zinc chloride - Silicone oil treatment on wood dimensional stability, chemical components, thermal decomposition and its mechanism (2019) Sci. Rep., 9, pp. 1-7
Zhang, X., Lv, L., Qin, Y., Xu, M., Jia, X., Chen, Z., Removal of aqueous Cr (VI) by a magnetic biochar derived from Melia azedarach wood (2018) Bioresour. Technol., 256, pp. 1-10
Zhou, L., Liu, Y., Liu, S., Yin, Y., Zeng, G., Tan, X., Hu, X., Huang, X., Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures (2016) Bioresour. Technol., 218, pp. 351-359
(1996) Determination of Cr (VI) in Water, Waste Water, and Solid Waste Extracts, pp. 1-6. , http://www.dionex-france.com/library/literature/technical_notes/TN26_LPN034398-02.pdf, Tech. Note 26 LPN 034398-02 1M 1/98
Furusawa, T., Smith, J.M., Fluid-particle and lntraparticle mass transport rates in slurries (1973) Ind. Eng. Chem. Fundam., 12, pp. 197-203
Bautista-Toledo, M.I., Rivera-Utrilla, J., Ocampo-Pérez, R., Carrasco-Marín, F., Sánchez-Polo, M., Cooperative adsorption of bisphenol-A and chromium (III) ions from water on activated carbons prepared from olive-mill waste (2014) Carbon, 73, pp. 338-350
Ocampo-Pérez, R., Aguilar-Madera, C.G., Díaz-Blancas, V., 3D modeling of overall adsorption rate of acetaminophen on activated carbon pellets (2017) Chem. Eng. J., 321, pp. 510-520
Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) J. Am. Chem. Soc., 40, pp. 1361-1403
Freundlich, H., Über die adsorption in lösungen (1907) Z. Phys. Chem., 57, pp. 385-470
Temkin, M.J., Pyzhev, V., Recent modifications to Langmuir isotherms (1940) Acta Physicochim. USSR, 12, pp. 217-222
Nguyen, H., You, S., Hosseini-Bandegharaei, A., Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review (2017) Water Res., 120, pp. 88-116
Hall, K., Eagleton, L., Acrivos, A., Vermeulen, T., Pore- And solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions (1966) Ind. Eng. Chem. Fundam., 5, pp. 212-223
Cherdchoo, W., Nithettham, S., Charoenpanich, J., Removal of Cr (VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea (2019) Chemosphere, 221, pp. 758-767
Choudhary, B., Paul, D., Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar (2018) J. Environ. Chem. Eng., 6, pp. 2335-2343
Rangabhashiyam, S., Selvaraju, N., Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell (2015) J. Mol. Liq., 207, pp. 39-49
Zhao, N., Zhao, C., Lv, Y., Zhang, W., Du, Y., Hao, Z., Zhang, J., Adsorption and coadsorption mechanisms of Cr (VI) and organic contaminants on H3PO4 treated biochar (2017) Chemosphere, 186, pp. 422-429
Acelas, N.Y., Flórez, E., Chloride adsorption on Fe-and Al-(hydr) oxide: Estimation of Gibbs free energies (2018) Adsorption, 24, pp. 243-248
Florez, E., Tiznado, W., Mondragón, F., Fuentealba, P., Theoretical study of the interaction of molecular oxygen with copper clusters (2005) J. Phys. Chem. A, 109, pp. 7815-7821
Khaloo, S.S., Matin, A.H., Sharifi, S., Fadaeinia, M., Kazempour, N., Mirzadeh, S., Equilibrium, kinetic and thermodynamic studies of mercury adsorption on almond shell (2012) Water Sci. Technol., 65, pp. 1341-1349
Li, H., Dong, X., Da Silva, E.B., De Oliveira, L.M., Chen, Y., Ma, L.Q., Mechanisms of metal sorption by biochars: Biochar characteristics and modifications (2017) Chemosphere, 178, pp. 466-478
Scott, A.P., Radom, L., Harmonic vibrational frequencies: An evaluation of Hartree- Fock, Møller- Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors (1996) J. Phys. Chem., 100, pp. 16502-16513
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv Journal of Environmental Chemical Engineering
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481160963031040
spelling 20202021-02-05T14:58:39Z2021-02-05T14:58:39Z22133437http://hdl.handle.net/11407/600310.1016/j.jece.2020.103702Because of its acute toxicity and high mobility, the hexavalent chromium [Cr (VI)] found in wastewater is a risk to the environment. In this study, activated carbon was produced from teakwood sawdust, which was chemically modified using ZnCl2 (AT) as an efficient adsorbent for Cr (VI) removal from aqueous systems. Batch experiments were conducted to identify kinetic, diffusional, and equilibrium parameters. In addition, to better understand the adsorption process, computer calculations were conducted based on the density functional theory (DFT). A maximum adsorption capacity of 72.46 mg g-1 was achieved by adapting experimental data to the Langmuir isotherm model. Intraparticle diffusion was further identified through a three-dimensional diffusion model, which revealed that it was ruled by intraparticular diffusion based on surface diffusion, with surface diffusion coefficient (Ds) values ranging from 1.29 × 10-10 to 0.78 × 10-10 cm2 s-1. Finally, computational chemistry calculations and an FTIR analysis determined that oxygenated functional groups, lactone, semiquinone, phenols, and carboxylic acids were involved in the process of Cr (VI) adsorption on AT. Moreover, the main adsorption mechanisms were found to be complexation, electrostatic interaction, and reduction of Cr (VI) to Cr (III). © 2020 Elsevier Ltd.engElsevier LtdFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85079893939&doi=10.1016%2fj.jece.2020.103702&partnerID=40&md5=7cefb299e9fc676914e82d9ab836e1c382Mohan, D., Pittman, C.U., Activated carbons and low cost adsorbents for remediation of tri- And hexavalent chromium from water (2006) J. Hazard. Mater., 137, pp. 762-811Barrera-Díaz, C.E., Lugo-Lugo, V., Bilyeu, B., A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction (2012) J. Hazard. Mater., 223-224, pp. 1-12(2007) Resolución 2115 de 2007, , http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislación_del_agua/Resolución_2115.pdf, Ministerio de la Protección Social, and Ministerio de Ambiente Vivienda y Desarrollo TerritorialMinisterio De Ambiente, Y., Sostenible, D., (2015) Resolución 631 de 2015, , https://docs.supersalud.gov.co/PortalWeb/Juridica/OtraNormativa/R_MADS_0631_2015.pdfChen, S.-S., Cheng, C.-Y., Li, C.-W., Chai, P.-H., Chang, Y.-M., Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process (2007) J. Hazard. Mater., 142, pp. 362-367Gheju, M., Iovi, A., Balcu, I., Hexavalent chromium reduction with scrap iron in continuous-flow system: Part 1: Effect of feed solution pH (2008) J. Hazard. Mater., 153, pp. 655-662Chen, G., Electrochemical technologies in wastewater treatment (2004) Sep. Purif. Technol., 38, pp. 11-41Golder, A.K., Chanda, A.K., Samanta, A.N., Ray, S., Removal of Cr (VI) from aqueous solution: Electrocoagulation vs chemical coagulation (2007) Sep. Sci. Technol., 42, pp. 2177-2193Agrawal, S.G., Fimmen, R.L., Chin, Y.-P., Reduction of Cr (VI) to Cr (III) by Fe (II) in the presence of fulvic acids and in lacustrine pore water (2009) Chem. Geol., 262, pp. 328-335Ku, Y., Huang, Y.-H., Chou, Y.-C., Preparation and characterization of ZnO/TiO2 for the photocatalytic reduction of Cr (VI) in aqueous solution (2011) J. Mol. Catal. A: Chem., 342, pp. 18-22Singh, R., Kumar, A., Kirrolia, A., Kumar, R., Yadav, N., Bishnoi, N.R., Lohchab, R.K., Removal of sulphate, COD and Cr (VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study (2011) Bioresour. Technol., 102, pp. 677-682Sharma, S., Adholeya, A., Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi (2011) Int. Biodeterior. Biodegradation, 65, pp. 309-317Enniya, I., Rghioui, L., Jourani, A., Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels (2018) Sustain. Chem. Pharm., 7, pp. 9-16Yang, J., Yu, M., Chen, W., Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics (2015) J. Ind. Eng. Chem., 21, pp. 414-422Zhang, X., Fu, W., Yin, Y., Chen, Z., Qiu, R., Simonnot, M.-O., Wang, X., Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies (2018) Bioresour. Technol., 268, pp. 149-157Valentín-Reyes, J., García-Reyes, R., García-González, A., Soto-Regalado, E., Cerino-Córdova, F., Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons (2019) J. Environ. Manage., 236, pp. 815-822Saleh, T.A., Gupta, V.K., Al-Saadi, A.A., Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study (2013) J. Colloid Interface Sci., 396, pp. 264-269Al-Saadi, A.A., Saleh, T.A., Gupta, V.K., Spectroscopic and computational evaluation of cadmium adsorption using activated carbon produced from rubber tires (2013) J. Mol. Liq., 188, pp. 136-142Huang, Y., Hu, H., The interaction of perrhenate and acidic/basic oxygen-containing groups on biochar surface: A DFT study (2020) Chem. Eng. J., 381(1990) The Potential Use of Wood Residues for Energy Generation, , RomeRamirez, A.P., Giraldo, S., Ulloa, M., Flórez, E., Acelas, N.Y., Production and characterization of activated carbon from wood wastes (2017) J. Phys. Conf. Ser., 935Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V., Bui, X.T., Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study (2015) Sci. Total Environ., 523, pp. 40-49Banerjee, M., Basu, R.K., Das, S.K., Cr(VI) adsorption by a green adsorbent walnut shell: Adsorption studies, regeneration studies, scale-up design and economic feasibility (2018) Process Saf. Environ. Prot., 116, pp. 693-702Goertzen, S.L., Thériault, K.D., Oickle, A.M., Tarasuk, A.C., Andreas, H.A., Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination (2010) Carbon, 48, pp. 1252-1261(1992) METHOD 7196A - Chromium, Hexavalent (Colorimetric), pp. 1-6Lagergren, S., Zur theorie der sogenannten adsorption geloster stoffe, K. Sven (1898) Vetenskapsakademiens Handl., 24, pp. 1-39Blanchard, G., Maunaye, M., Martin, G., Removal of heavy metals from waters by means of natural zeolites (1984) Water Res., 18, pp. 1501-1507Zakaria, Z.A., Suratman, M., Mohammed, N., Ahmad, W.A., Chromium (VI) removal from aqueous solution by untreated rubber wood sawdust (2009) Desalination, 244, pp. 109-121Karthikeyan, T., Rajgopal, S., Miranda, L.R., Chromium (VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon (2005) J. Hazard. Mater., 124 B, pp. 192-199Kumar, A., Jena, H.M., Adsorption of Cr (VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with ZnCl2 (2017) Process Saf. Environ. Prot., 109, pp. 63-71Frisch, M.J., (2016) Gaussian 09. Revision A.02, , Wallingford CTKeith, T.A., Frisch, M.J., Inclusion of explicit solvent molecules in a self-consistent-reaction field model of solvation (1994) Model. Hydrog. Bond, pp. 22-35. , ACS Publications Washington, DCAcelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., Adsorption of nitrate and bicarbonate on Fe-(hydr) oxide (2017) Inorg. Chem., 56, pp. 5455-5464Reed, A.E., Weinstock, R.B., Weinhold, F., Natural population analysis (1985) J. Chem. Phys., 83, pp. 735-746Liu, J., Cheney, M.A., Wu, F., Li, M., Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces (2011) J. Hazard. Mater., 186, pp. 108-113Mor, S., Adsorption of chromium from aqueous solution by activated alumina and activated charcoal (2007) Bioresour. Technol., 98, pp. 954-957Chwastowski, J., Staroń, P., Kołoczek, H., Banach, M., Adsorption of hexavalent chromium from aqueous solutions using Canadian peat and coconut fiber (2017) J. Mol. Liq., 248, pp. 981-989Anandkumar, J., Mandal, B., Removal of Cr (VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent (2009) J. Hazard. Mater., 168, pp. 633-640He, Z., Qu, L., Wang, Z., Qian, J., Yi, S., Effects of zinc chloride - Silicone oil treatment on wood dimensional stability, chemical components, thermal decomposition and its mechanism (2019) Sci. Rep., 9, pp. 1-7Zhang, X., Lv, L., Qin, Y., Xu, M., Jia, X., Chen, Z., Removal of aqueous Cr (VI) by a magnetic biochar derived from Melia azedarach wood (2018) Bioresour. Technol., 256, pp. 1-10Zhou, L., Liu, Y., Liu, S., Yin, Y., Zeng, G., Tan, X., Hu, X., Huang, X., Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures (2016) Bioresour. Technol., 218, pp. 351-359(1996) Determination of Cr (VI) in Water, Waste Water, and Solid Waste Extracts, pp. 1-6. , http://www.dionex-france.com/library/literature/technical_notes/TN26_LPN034398-02.pdf, Tech. Note 26 LPN 034398-02 1M 1/98Furusawa, T., Smith, J.M., Fluid-particle and lntraparticle mass transport rates in slurries (1973) Ind. Eng. Chem. Fundam., 12, pp. 197-203Bautista-Toledo, M.I., Rivera-Utrilla, J., Ocampo-Pérez, R., Carrasco-Marín, F., Sánchez-Polo, M., Cooperative adsorption of bisphenol-A and chromium (III) ions from water on activated carbons prepared from olive-mill waste (2014) Carbon, 73, pp. 338-350Ocampo-Pérez, R., Aguilar-Madera, C.G., Díaz-Blancas, V., 3D modeling of overall adsorption rate of acetaminophen on activated carbon pellets (2017) Chem. Eng. J., 321, pp. 510-520Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) J. Am. Chem. Soc., 40, pp. 1361-1403Freundlich, H., Über die adsorption in lösungen (1907) Z. Phys. Chem., 57, pp. 385-470Temkin, M.J., Pyzhev, V., Recent modifications to Langmuir isotherms (1940) Acta Physicochim. USSR, 12, pp. 217-222Nguyen, H., You, S., Hosseini-Bandegharaei, A., Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review (2017) Water Res., 120, pp. 88-116Hall, K., Eagleton, L., Acrivos, A., Vermeulen, T., Pore- And solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions (1966) Ind. Eng. Chem. Fundam., 5, pp. 212-223Cherdchoo, W., Nithettham, S., Charoenpanich, J., Removal of Cr (VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea (2019) Chemosphere, 221, pp. 758-767Choudhary, B., Paul, D., Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar (2018) J. Environ. Chem. Eng., 6, pp. 2335-2343Rangabhashiyam, S., Selvaraju, N., Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell (2015) J. Mol. Liq., 207, pp. 39-49Zhao, N., Zhao, C., Lv, Y., Zhang, W., Du, Y., Hao, Z., Zhang, J., Adsorption and coadsorption mechanisms of Cr (VI) and organic contaminants on H3PO4 treated biochar (2017) Chemosphere, 186, pp. 422-429Acelas, N.Y., Flórez, E., Chloride adsorption on Fe-and Al-(hydr) oxide: Estimation of Gibbs free energies (2018) Adsorption, 24, pp. 243-248Florez, E., Tiznado, W., Mondragón, F., Fuentealba, P., Theoretical study of the interaction of molecular oxygen with copper clusters (2005) J. Phys. Chem. A, 109, pp. 7815-7821Khaloo, S.S., Matin, A.H., Sharifi, S., Fadaeinia, M., Kazempour, N., Mirzadeh, S., Equilibrium, kinetic and thermodynamic studies of mercury adsorption on almond shell (2012) Water Sci. Technol., 65, pp. 1341-1349Li, H., Dong, X., Da Silva, E.B., De Oliveira, L.M., Chen, Y., Ma, L.Q., Mechanisms of metal sorption by biochars: Biochar characteristics and modifications (2017) Chemosphere, 178, pp. 466-478Scott, A.P., Radom, L., Harmonic vibrational frequencies: An evaluation of Hartree- Fock, Møller- Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors (1996) J. Phys. Chem., 100, pp. 16502-16513Journal of Environmental Chemical EngineeringAdsorptionBiomassComputational simulationHexavalent chromiumKineticsActivated carbonAdsorptionChemical analysisChlorine compoundsComputation theoryComputational chemistryDensity functional theoryFunctional groupsIsothermsSurface diffusionZinc chlorideAdsorption capacitiesAdsorption mechanismChemically modifiedComputer calculationEquilibrium parametersHexavalent chromiumIntra-particle diffusionLangmuir isotherm modelsChromium compoundsRemoval of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculationsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Ramirez, A., Group of Materials with Impact (Matandmpac), Department of Basic Sciences, University of Medellín, Medellín, ColombiaOcampo, R., Department of Chemical Sciences, Autonomous University San Luis Potosí (UASLP), San Luis Potosí, MexicoGiraldo, S., Group of Materials with Impact (Matandmpac), Department of Basic Sciences, University of Medellín, Medellín, ColombiaPadilla, E., Department of Chemical Sciences, Autonomous University San Luis Potosí (UASLP), San Luis Potosí, MexicoFlórez, E., Group of Materials with Impact (Matandmpac), Department of Basic Sciences, University of Medellín, Medellín, ColombiaAcelas, N., Group of Materials with Impact (Matandmpac), Department of Basic Sciences, University of Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecRamirez A.Ocampo R.Giraldo S.Padilla E.Flórez E.Acelas N.11407/6003oai:repository.udem.edu.co:11407/60032021-02-05 09:58:39.232Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co