Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation
Nonadiabatic effects in the nuclear dynamics of the H 2 + molecular ion, initiated by ionization of the H 2 molecule, is studied by means of the probability and flux distribution functions arising from the space fractional Schrödinger equation. In order to solve the fractional Schrödinger eigenvalue...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6096
- Acceso en línea:
- http://hdl.handle.net/11407/6096
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_77741301b18ec689cb812dae25a2f766 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6096 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation |
title |
Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation |
spellingShingle |
Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation |
title_short |
Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation |
title_full |
Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation |
title_fullStr |
Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation |
title_full_unstemmed |
Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation |
title_sort |
Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation |
description |
Nonadiabatic effects in the nuclear dynamics of the H 2 + molecular ion, initiated by ionization of the H 2 molecule, is studied by means of the probability and flux distribution functions arising from the space fractional Schrödinger equation. In order to solve the fractional Schrödinger eigenvalue equation, it is shown that the quantum Riesz fractional derivative operator fulfills the usual properties of the quantum momentum operator acting on the bra and ket vectors of the abstract Hilbert space. Then, the fractional Fourier grid Hamiltonian method is implemented and applied to molecular vibrations. The eigenenergies and eigenfunctions of the fractional Schrödinger equation describing the vibrational motion of the H 2 + and D 2 + molecules are analyzed. In particular, it is shown that the position-momentum Heisenberg's uncertainty relationship holds independently of the fractional Schrödinger equation. Finally, the probability and flux distributions are presented, demonstrating the applicability of the fractional Schrödinger equation for taking into account nonadiabatic effects. © 2019 Wiley Periodicals, Inc. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:35Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:35Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
207608 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6096 |
dc.identifier.doi.none.fl_str_mv |
10.1002/qua.25952 |
identifier_str_mv |
207608 10.1002/qua.25952 |
url |
http://hdl.handle.net/11407/6096 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064484900&doi=10.1002%2fqua.25952&partnerID=40&md5=5de1c1ba9780c5a24817aa5427682249 |
dc.relation.references.none.fl_str_mv |
Landau, L.D., (1932) Phys Z Sowjetunion, 2, p. 46 Zener, C., (1932) Proc R Soc London A, 137, p. 696 Tully, J.C., (2012) J Chem Phys, 137, p. 22A301 Diestler, D.J., Manz, J., Pérez-Torres, J.F., (2018) Chem Phys, 514, p. 67 Pérez-Torres, J.F., (2013) Phys Rev A, 87, p. 062512 Hermann, G., PAulus, B., Pérez-Torres, J.F., Pohl, V., (2014) Phys Rev A, 89, p. 052504 Laskin, N., (2000) Phys Rev E, 62, p. 3135 Riesz, M., (1949) Acta Math, 81, p. 1 Laskin, N., (2002) Phys Rev E, 66. , 056108 Lenzi, E.K., Oliveira, B.F., Astrath, N.G.C., Malacarne, L.C., Mendes, R.S., Baesso, M.L., (2008) Eur Phys J B, 62, p. 155 Stickler, B.A., (2013) Phys Rev E, 88. , 012120 Longhi, S., (2015) Opt Lett, 40, p. 1117 Zhang, Y., Liu, X., Belić, M.R., Zhong, W., Zhang, Y., Xiao, M., (2015) Phys Rev Lett, 115. , 180403 Hermann, R., (2013) Int J Mod Phys B, 27. , 1350019 Dong, J., Xu, M., (2007) J Math Phys, 48. , 072105 Amore, P., Fernández, F.M., Hofmann, C.P., Sáenz, R., (2010) J Math Phys, 51. , 122101 Bhrawy, A.H., Abdelkawy, M.A., (2015) J Comput Phys, 294, p. 462 Bhrawy, A.H., Zaky, M.A., (2017) Appl Num Math, 111, p. 197 Marston, C.C., Balint-Kurti, G.G., (1989) J Chem Phys, 91, p. 3571 Tannor, D.J., (2007) Introduction to Quantum Mechanics, A Time-Dependent Perspective, , University Science Books, Sausalito, California Layton, E., Chu, S.I., (1991) Chem Phys Lett, 186, p. 100 Yao, G., Chu, S.I., (1992) Phys Rev A, 45, p. 6735 Brau, F., Semay, C., (1998) J of Comp Phys, 139, p. 127 Stare, J., Balint-Kurti, G.G., (2003) J Phys Chem A, 107, p. 7204 Sarkar, P., Ahamed, B., (2011) Int J Quantum Chem, 111, p. 2268 Wei, Y., (2015) Int J Theor Math Phys, 5. , 58 Dirac, P.A.M., (1939) Math Proc Cambridge Philos Soc, 35, p. 416 Dirac, P.A.M., (1958) The Principles of Quantum Mechanics, , 4th, ed.,, Clareondon, Oxford Karr, J.P., Hilico, L., (2006) J Phys B: At Mol Opt Phys, 39, p. 2095 Epstein, S.T., (1966) J Chem Phys, 44, p. 836 http:physics.nist.gov/cuu/Constants, CODATA international recommended values of the fundamental physical constants;, (accessed March 2019) Wei, Y., (2016) Phys Rev E, 93, p. 066103 Schrödinger, E., (1926) Ann Phys (Leipzig), 81, p. 109 Manz, J., Pérez-Torres, J.F., Yang, Y., (2013) Phys Rev Lett, 111. , 153004 Albert, J., Hader, K., Engel, V., (2017) J Chem Phys, 147. , 241101 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
John Wiley and Sons Inc. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
John Wiley and Sons Inc. |
dc.source.none.fl_str_mv |
International Journal of Quantum Chemistry |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159182721449984 |
spelling |
20192021-02-05T14:59:35Z2021-02-05T14:59:35Z207608http://hdl.handle.net/11407/609610.1002/qua.25952Nonadiabatic effects in the nuclear dynamics of the H 2 + molecular ion, initiated by ionization of the H 2 molecule, is studied by means of the probability and flux distribution functions arising from the space fractional Schrödinger equation. In order to solve the fractional Schrödinger eigenvalue equation, it is shown that the quantum Riesz fractional derivative operator fulfills the usual properties of the quantum momentum operator acting on the bra and ket vectors of the abstract Hilbert space. Then, the fractional Fourier grid Hamiltonian method is implemented and applied to molecular vibrations. The eigenenergies and eigenfunctions of the fractional Schrödinger equation describing the vibrational motion of the H 2 + and D 2 + molecules are analyzed. In particular, it is shown that the position-momentum Heisenberg's uncertainty relationship holds independently of the fractional Schrödinger equation. Finally, the probability and flux distributions are presented, demonstrating the applicability of the fractional Schrödinger equation for taking into account nonadiabatic effects. © 2019 Wiley Periodicals, Inc.engJohn Wiley and Sons Inc.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85064484900&doi=10.1002%2fqua.25952&partnerID=40&md5=5de1c1ba9780c5a24817aa5427682249Landau, L.D., (1932) Phys Z Sowjetunion, 2, p. 46Zener, C., (1932) Proc R Soc London A, 137, p. 696Tully, J.C., (2012) J Chem Phys, 137, p. 22A301Diestler, D.J., Manz, J., Pérez-Torres, J.F., (2018) Chem Phys, 514, p. 67Pérez-Torres, J.F., (2013) Phys Rev A, 87, p. 062512Hermann, G., PAulus, B., Pérez-Torres, J.F., Pohl, V., (2014) Phys Rev A, 89, p. 052504Laskin, N., (2000) Phys Rev E, 62, p. 3135Riesz, M., (1949) Acta Math, 81, p. 1Laskin, N., (2002) Phys Rev E, 66. , 056108Lenzi, E.K., Oliveira, B.F., Astrath, N.G.C., Malacarne, L.C., Mendes, R.S., Baesso, M.L., (2008) Eur Phys J B, 62, p. 155Stickler, B.A., (2013) Phys Rev E, 88. , 012120Longhi, S., (2015) Opt Lett, 40, p. 1117Zhang, Y., Liu, X., Belić, M.R., Zhong, W., Zhang, Y., Xiao, M., (2015) Phys Rev Lett, 115. , 180403Hermann, R., (2013) Int J Mod Phys B, 27. , 1350019Dong, J., Xu, M., (2007) J Math Phys, 48. , 072105Amore, P., Fernández, F.M., Hofmann, C.P., Sáenz, R., (2010) J Math Phys, 51. , 122101Bhrawy, A.H., Abdelkawy, M.A., (2015) J Comput Phys, 294, p. 462Bhrawy, A.H., Zaky, M.A., (2017) Appl Num Math, 111, p. 197Marston, C.C., Balint-Kurti, G.G., (1989) J Chem Phys, 91, p. 3571Tannor, D.J., (2007) Introduction to Quantum Mechanics, A Time-Dependent Perspective, , University Science Books, Sausalito, CaliforniaLayton, E., Chu, S.I., (1991) Chem Phys Lett, 186, p. 100Yao, G., Chu, S.I., (1992) Phys Rev A, 45, p. 6735Brau, F., Semay, C., (1998) J of Comp Phys, 139, p. 127Stare, J., Balint-Kurti, G.G., (2003) J Phys Chem A, 107, p. 7204Sarkar, P., Ahamed, B., (2011) Int J Quantum Chem, 111, p. 2268Wei, Y., (2015) Int J Theor Math Phys, 5. , 58Dirac, P.A.M., (1939) Math Proc Cambridge Philos Soc, 35, p. 416Dirac, P.A.M., (1958) The Principles of Quantum Mechanics, , 4th, ed.,, Clareondon, OxfordKarr, J.P., Hilico, L., (2006) J Phys B: At Mol Opt Phys, 39, p. 2095Epstein, S.T., (1966) J Chem Phys, 44, p. 836http:physics.nist.gov/cuu/Constants, CODATA international recommended values of the fundamental physical constants;, (accessed March 2019)Wei, Y., (2016) Phys Rev E, 93, p. 066103Schrödinger, E., (1926) Ann Phys (Leipzig), 81, p. 109Manz, J., Pérez-Torres, J.F., Yang, Y., (2013) Phys Rev Lett, 111. , 153004Albert, J., Hader, K., Engel, V., (2017) J Chem Phys, 147. , 241101International Journal of Quantum ChemistryNonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equationArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Medina, L.Y., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaPérez-Torres, J.F., Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombiahttp://purl.org/coar/access_right/c_16ecMedina L.Y.Núñez-Zarur F.Pérez-Torres J.F.11407/6096oai:repository.udem.edu.co:11407/60962021-02-05 09:59:35.451Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |