Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model
In this research article a dynamic estimation of neuronal activity and brain dynamics from electroencephalographic (EEG) signals is presented using a dual Kalman filter. The dynamic model for brain behavior is evaluated using physiological-based linear models. Filter performance is analyzed for simu...
- Autores:
-
Giraldo, Eduardo
Castellanos, César G.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udem.edu.co:11407/768
- Acceso en línea:
- http://hdl.handle.net/11407/768
- Palabra clave:
- Inverse problem
Kalman filter
estimation
physiological model
brain model
cerebro
investigaciones
filtro de Kalman
modelo fisiológico
- Rights
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
REPOUDEM2_76683e385e7386dd7f0523048a4e032f |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/768 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
spelling |
Giraldo, EduardoCastellanos, César G.2014-10-22T23:25:51Z2014-10-22T23:25:51Z2013-06-301692-3324http://hdl.handle.net/11407/7682248-4094reponame:Repositorio Institucional Universidad de Medellínrepourl:https://repository.udem.edu.co/instname:Universidad de MedellínIn this research article a dynamic estimation of neuronal activity and brain dynamics from electroencephalographic (EEG) signals is presented using a dual Kalman filter. The dynamic model for brain behavior is evaluated using physiological-based linear models. Filter performance is analyzed for simulated and clinical EEG data, over several noise conditions. As a result a better performance on the solution of the dynamic inverse problem is achieved, in case of time varying parameters compared with the system with fixed parameters and the static case. An evaluation of computational load is performed when predicted dynamic cases, estimated using the Kalman filter, are up to ten times faster than the static case.Electrónicoapplication/pdfspaUniversidad de MedellínFacultad de IngenieríasMedellínhttp://revistas.udem.edu.co/index.php/ingenierias/article/view/643Revista Ingenierías Universidad de Medellínhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Ingenierías Universidad de Medellín; Vol. 12, núm. 22 (2013)2248-40941692-3324Inverse problemKalman filterestimationphysiological modelbrain modelcerebroinvestigacionesfiltro de Kalmanmodelo fisiológicoEstimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear modelArticlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad de MedellínTHUMBNAILEstimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model.pdf.jpgEstimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model.pdf.jpgIM Thumbnailimage/jpeg7301http://repository.udem.edu.co/bitstream/11407/768/3/Estimation%20of%20neuronal%20activity%20and%20brain%20dynamics%20using%20a%20dual%20Kalman%20filter%20with%20physiologycal%20based%20linear%20model.pdf.jpg4e8c4ca7f65c3f177cca003b0775d60bMD53ORIGINALArticulo.htmltext/html574http://repository.udem.edu.co/bitstream/11407/768/1/Articulo.htmlfb06aacf8acd73592b6b45e1db20ebd6MD51Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model.pdfEstimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model.pdfTexto completoapplication/pdf218650http://repository.udem.edu.co/bitstream/11407/768/2/Estimation%20of%20neuronal%20activity%20and%20brain%20dynamics%20using%20a%20dual%20Kalman%20filter%20with%20physiologycal%20based%20linear%20model.pdfc6c0a16bfdd1b4421d6e137fb898749dMD5211407/768oai:repository.udem.edu.co:11407/7682021-05-14 14:23:06.52Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |
dc.title.spa.fl_str_mv |
Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model |
title |
Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model |
spellingShingle |
Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model Inverse problem Kalman filter estimation physiological model brain model cerebro investigaciones filtro de Kalman modelo fisiológico |
title_short |
Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model |
title_full |
Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model |
title_fullStr |
Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model |
title_full_unstemmed |
Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model |
title_sort |
Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model |
dc.creator.fl_str_mv |
Giraldo, Eduardo Castellanos, César G. |
dc.contributor.author.none.fl_str_mv |
Giraldo, Eduardo Castellanos, César G. |
dc.subject.spa.fl_str_mv |
Inverse problem Kalman filter estimation physiological model brain model cerebro investigaciones filtro de Kalman modelo fisiológico |
topic |
Inverse problem Kalman filter estimation physiological model brain model cerebro investigaciones filtro de Kalman modelo fisiológico |
description |
In this research article a dynamic estimation of neuronal activity and brain dynamics from electroencephalographic (EEG) signals is presented using a dual Kalman filter. The dynamic model for brain behavior is evaluated using physiological-based linear models. Filter performance is analyzed for simulated and clinical EEG data, over several noise conditions. As a result a better performance on the solution of the dynamic inverse problem is achieved, in case of time varying parameters compared with the system with fixed parameters and the static case. An evaluation of computational load is performed when predicted dynamic cases, estimated using the Kalman filter, are up to ten times faster than the static case. |
publishDate |
2013 |
dc.date.created.none.fl_str_mv |
2013-06-30 |
dc.date.accessioned.spa.fl_str_mv |
2014-10-22T23:25:51Z |
dc.date.available.spa.fl_str_mv |
2014-10-22T23:25:51Z |
dc.type.eng.fl_str_mv |
Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.local.spa.fl_str_mv |
Artículo científico |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
1692-3324 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/768 |
dc.identifier.eissn.none.fl_str_mv |
2248-4094 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.udem.edu.co/ |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
1692-3324 2248-4094 reponame:Repositorio Institucional Universidad de Medellín repourl:https://repository.udem.edu.co/ instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/768 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.uri.none.fl_str_mv |
http://revistas.udem.edu.co/index.php/ingenierias/article/view/643 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Ingenierías Universidad de Medellín |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.creativecommons.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
dc.format.medium.spa.fl_str_mv |
Electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Medellín |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.source.spa.fl_str_mv |
Revista Ingenierías Universidad de Medellín; Vol. 12, núm. 22 (2013) 2248-4094 1692-3324 |
institution |
Universidad de Medellín |
bitstream.url.fl_str_mv |
http://repository.udem.edu.co/bitstream/11407/768/3/Estimation%20of%20neuronal%20activity%20and%20brain%20dynamics%20using%20a%20dual%20Kalman%20filter%20with%20physiologycal%20based%20linear%20model.pdf.jpg http://repository.udem.edu.co/bitstream/11407/768/1/Articulo.html http://repository.udem.edu.co/bitstream/11407/768/2/Estimation%20of%20neuronal%20activity%20and%20brain%20dynamics%20using%20a%20dual%20Kalman%20filter%20with%20physiologycal%20based%20linear%20model.pdf |
bitstream.checksum.fl_str_mv |
4e8c4ca7f65c3f177cca003b0775d60b fb06aacf8acd73592b6b45e1db20ebd6 c6c0a16bfdd1b4421d6e137fb898749d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159205762859008 |