Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model

In this research article a dynamic estimation of neuronal activity and brain dynamics from electroencephalographic (EEG) signals is presented using a dual Kalman filter. The dynamic model for brain behavior is evaluated using physiological-based linear models. Filter performance is analyzed for simu...

Full description

Autores:
Giraldo, Eduardo
Castellanos, César G.
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/768
Acceso en línea:
http://hdl.handle.net/11407/768
Palabra clave:
Inverse problem
Kalman filter
estimation
physiological model
brain model
cerebro
investigaciones
filtro de Kalman
modelo fisiológico
Rights
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id REPOUDEM2_76683e385e7386dd7f0523048a4e032f
oai_identifier_str oai:repository.udem.edu.co:11407/768
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
spelling Giraldo, EduardoCastellanos, César G.2014-10-22T23:25:51Z2014-10-22T23:25:51Z2013-06-301692-3324http://hdl.handle.net/11407/7682248-4094reponame:Repositorio Institucional Universidad de Medellínrepourl:https://repository.udem.edu.co/instname:Universidad de MedellínIn this research article a dynamic estimation of neuronal activity and brain dynamics from electroencephalographic (EEG) signals is presented using a dual Kalman filter. The dynamic model for brain behavior is evaluated using physiological-based linear models. Filter performance is analyzed for simulated and clinical EEG data, over several noise conditions. As a result a better performance on the solution of the dynamic inverse problem is achieved, in case of time varying parameters compared with the system with fixed parameters and the static case. An evaluation of computational load is performed when predicted dynamic cases, estimated using the Kalman filter, are up to ten times faster than the static case.Electrónicoapplication/pdfspaUniversidad de MedellínFacultad de IngenieríasMedellínhttp://revistas.udem.edu.co/index.php/ingenierias/article/view/643Revista Ingenierías Universidad de Medellínhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Ingenierías Universidad de Medellín; Vol. 12, núm. 22 (2013)2248-40941692-3324Inverse problemKalman filterestimationphysiological modelbrain modelcerebroinvestigacionesfiltro de Kalmanmodelo fisiológicoEstimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear modelArticlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad de MedellínTHUMBNAILEstimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model.pdf.jpgEstimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model.pdf.jpgIM Thumbnailimage/jpeg7301http://repository.udem.edu.co/bitstream/11407/768/3/Estimation%20of%20neuronal%20activity%20and%20brain%20dynamics%20using%20a%20dual%20Kalman%20filter%20with%20physiologycal%20based%20linear%20model.pdf.jpg4e8c4ca7f65c3f177cca003b0775d60bMD53ORIGINALArticulo.htmltext/html574http://repository.udem.edu.co/bitstream/11407/768/1/Articulo.htmlfb06aacf8acd73592b6b45e1db20ebd6MD51Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model.pdfEstimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model.pdfTexto completoapplication/pdf218650http://repository.udem.edu.co/bitstream/11407/768/2/Estimation%20of%20neuronal%20activity%20and%20brain%20dynamics%20using%20a%20dual%20Kalman%20filter%20with%20physiologycal%20based%20linear%20model.pdfc6c0a16bfdd1b4421d6e137fb898749dMD5211407/768oai:repository.udem.edu.co:11407/7682021-05-14 14:23:06.52Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co
dc.title.spa.fl_str_mv Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model
title Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model
spellingShingle Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model
Inverse problem
Kalman filter
estimation
physiological model
brain model
cerebro
investigaciones
filtro de Kalman
modelo fisiológico
title_short Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model
title_full Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model
title_fullStr Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model
title_full_unstemmed Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model
title_sort Estimation of neuronal activity and brain dynamics using a dual Kalman filter with physiologycal based linear model
dc.creator.fl_str_mv Giraldo, Eduardo
Castellanos, César G.
dc.contributor.author.none.fl_str_mv Giraldo, Eduardo
Castellanos, César G.
dc.subject.spa.fl_str_mv Inverse problem
Kalman filter
estimation
physiological model
brain model
cerebro
investigaciones
filtro de Kalman
modelo fisiológico
topic Inverse problem
Kalman filter
estimation
physiological model
brain model
cerebro
investigaciones
filtro de Kalman
modelo fisiológico
description In this research article a dynamic estimation of neuronal activity and brain dynamics from electroencephalographic (EEG) signals is presented using a dual Kalman filter. The dynamic model for brain behavior is evaluated using physiological-based linear models. Filter performance is analyzed for simulated and clinical EEG data, over several noise conditions. As a result a better performance on the solution of the dynamic inverse problem is achieved, in case of time varying parameters compared with the system with fixed parameters and the static case. An evaluation of computational load is performed when predicted dynamic cases, estimated using the Kalman filter, are up to ten times faster than the static case.
publishDate 2013
dc.date.created.none.fl_str_mv 2013-06-30
dc.date.accessioned.spa.fl_str_mv 2014-10-22T23:25:51Z
dc.date.available.spa.fl_str_mv 2014-10-22T23:25:51Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.local.spa.fl_str_mv Artículo científico
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1692-3324
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/768
dc.identifier.eissn.none.fl_str_mv 2248-4094
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.udem.edu.co/
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 1692-3324
2248-4094
reponame:Repositorio Institucional Universidad de Medellín
repourl:https://repository.udem.edu.co/
instname:Universidad de Medellín
url http://hdl.handle.net/11407/768
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.uri.none.fl_str_mv http://revistas.udem.edu.co/index.php/ingenierias/article/view/643
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ingenierías Universidad de Medellín
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.creativecommons.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
dc.format.medium.spa.fl_str_mv Electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Medellín
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.publisher.place.spa.fl_str_mv Medellín
dc.source.spa.fl_str_mv Revista Ingenierías Universidad de Medellín; Vol. 12, núm. 22 (2013)
2248-4094
1692-3324
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/768/3/Estimation%20of%20neuronal%20activity%20and%20brain%20dynamics%20using%20a%20dual%20Kalman%20filter%20with%20physiologycal%20based%20linear%20model.pdf.jpg
http://repository.udem.edu.co/bitstream/11407/768/1/Articulo.html
http://repository.udem.edu.co/bitstream/11407/768/2/Estimation%20of%20neuronal%20activity%20and%20brain%20dynamics%20using%20a%20dual%20Kalman%20filter%20with%20physiologycal%20based%20linear%20model.pdf
bitstream.checksum.fl_str_mv 4e8c4ca7f65c3f177cca003b0775d60b
fb06aacf8acd73592b6b45e1db20ebd6
c6c0a16bfdd1b4421d6e137fb898749d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159205762859008