Calculation and Prediction of Fugacity and Activity Coefficients in Binary Mixtures, using a Self-Regulated Fretwidth Harmony Search Algorithm

El presente artículo de investigación propone el uso de la nueva variante del algoritmo hs (Harmony Search), esto es, el sfhs (Self-Regulated Fretwidth Harmony Search Algorithm) para el cálculo y predicción de coeficientes de fugacidad y actividad en mezclas binarias. La selección de los parámetros...

Full description

Autores:
Jiménez Leiva, Cristian Camilo
Amaya, Iván
Correa, Rodrigo
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/3528
Acceso en línea:
http://hdl.handle.net/11407/3528
Palabra clave:
Fugacity coefficient
Activity coefficient
Binary mixtures
Thermodynamic equilibrium
Global optimization algorithms
Coeficiente de fugacidad
Coeficiente de actividad
Mezclas binarias
Equilibrio termodinámico
Algoritmos de optimización global
Rights
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id REPOUDEM2_731567133d1563470be5fa676e50456f
oai_identifier_str oai:repository.udem.edu.co:11407/3528
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Calculation and Prediction of Fugacity and Activity Coefficients in Binary Mixtures, using a Self-Regulated Fretwidth Harmony Search Algorithm
Cálculo y predicción de coeficientes de fugacidad y actividad en mezclas binarias mediante el algoritmo de búsqueda armónica con ancho de banda autoajustable
title Calculation and Prediction of Fugacity and Activity Coefficients in Binary Mixtures, using a Self-Regulated Fretwidth Harmony Search Algorithm
spellingShingle Calculation and Prediction of Fugacity and Activity Coefficients in Binary Mixtures, using a Self-Regulated Fretwidth Harmony Search Algorithm
Fugacity coefficient
Activity coefficient
Binary mixtures
Thermodynamic equilibrium
Global optimization algorithms
Coeficiente de fugacidad
Coeficiente de actividad
Mezclas binarias
Equilibrio termodinámico
Algoritmos de optimización global
title_short Calculation and Prediction of Fugacity and Activity Coefficients in Binary Mixtures, using a Self-Regulated Fretwidth Harmony Search Algorithm
title_full Calculation and Prediction of Fugacity and Activity Coefficients in Binary Mixtures, using a Self-Regulated Fretwidth Harmony Search Algorithm
title_fullStr Calculation and Prediction of Fugacity and Activity Coefficients in Binary Mixtures, using a Self-Regulated Fretwidth Harmony Search Algorithm
title_full_unstemmed Calculation and Prediction of Fugacity and Activity Coefficients in Binary Mixtures, using a Self-Regulated Fretwidth Harmony Search Algorithm
title_sort Calculation and Prediction of Fugacity and Activity Coefficients in Binary Mixtures, using a Self-Regulated Fretwidth Harmony Search Algorithm
dc.creator.fl_str_mv Jiménez Leiva, Cristian Camilo
Amaya, Iván
Correa, Rodrigo
dc.contributor.author.none.fl_str_mv Jiménez Leiva, Cristian Camilo
Amaya, Iván
Correa, Rodrigo
dc.subject.spa.fl_str_mv Fugacity coefficient
Activity coefficient
Binary mixtures
Thermodynamic equilibrium
Global optimization algorithms
Coeficiente de fugacidad
Coeficiente de actividad
Mezclas binarias
Equilibrio termodinámico
Algoritmos de optimización global
topic Fugacity coefficient
Activity coefficient
Binary mixtures
Thermodynamic equilibrium
Global optimization algorithms
Coeficiente de fugacidad
Coeficiente de actividad
Mezclas binarias
Equilibrio termodinámico
Algoritmos de optimización global
description El presente artículo de investigación propone el uso de la nueva variante del algoritmo hs (Harmony Search), esto es, el sfhs (Self-Regulated Fretwidth Harmony Search Algorithm) para el cálculo y predicción de coeficientes de fugacidad y actividad en mezclas binarias. La selección de los parámetros de ejecución del algoritmo sfhs se realizó con base en pruebas preliminares con diferentes funciones de prueba estándar. Se seleccionaron sistemas previamente reportados en la literatura, a 25 ºC y 40 ºC, y a presiones bajas y moderadas. Adicionalmente, se seleccionaron dos solutos diferentes: dióxido de carbono y etano. Se tomaron diferentes solventes, polares y no polares, con propósitos comparativos. Los coeficientes de actividad y fugacidad se calcularon utilizando la ecuación de estado Redlich-Kwong y la regla de Lewis, junto con el algoritmo sfhs para los dos solutos en fase vapor. La consistencia de los coeficientes de actividad se analizó mediante la estrategia de Redlich-Kister. Se obtuvieron resultados muy cercanos a los encontrados experimentalmente por otros autores y en su mayoría, no difirieron en más de una unidad porcentual.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-06-29T22:22:34Z
dc.date.available.none.fl_str_mv 2017-06-29T22:22:34Z
dc.date.created.none.fl_str_mv 2017-06-30
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.local.spa.fl_str_mv Artículo científico
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1692-3324
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/3528
dc.identifier.doi.none.fl_str_mv  http://dx.doi.org/10.22395/rium.v16n30a4
dc.identifier.eissn.none.fl_str_mv 2248-4094
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.udem.edu.co/
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 1692-3324
 http://dx.doi.org/10.22395/rium.v16n30a4
2248-4094
reponame:Repositorio Institucional Universidad de Medellín
repourl:https://repository.udem.edu.co/
instname:Universidad de Medellín
url http://hdl.handle.net/11407/3528
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.uri.none.fl_str_mv http://revistas.udem.edu.co/index.php/ingenierias/article/view/1084
dc.relation.citationvolume.none.fl_str_mv 16
dc.relation.citationissue.none.fl_str_mv 30
dc.relation.citationstartpage.none.fl_str_mv 67
dc.relation.citationendpage.none.fl_str_mv 95
dc.relation.references.spa.fl_str_mv A. Bonilla-Petriciolet, “On the capabilities and limitations of harmony search for parameter estimation in vapor-liquid equilibrium modeling,” Fluid Phase Equilibria, no. 332, pp. 7-20, 2012.
J. M. Smith, H. C. Van Ness and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, México: Mc Graw Hill, 1995.
J. M. Prausnitz, Computer Calculations For High Pressure Vapor Liquid Equilibria, Prentice Hall International Series, 1968.
K. Ohgaki, F. Sano and T. Katayama, “Isothermal Vapor-Liquid Equilibrium Data for Binary Systems Containing Ethane at High Pressures,” Journal of Chemical and Engineering Data, vol. 21, no. 1, pp. 55-58, 1976.
K. Ohgaki and T. Katayama, “Isothermal Vapor-Liquid Equilibria for Systems Ethil Ether-Carbon Dioxide and Methil Acetate-Carbon Dioxide at High Pressures,” Journal of Chemical and Engineering Data, vol. 20, no. 3, 1975.
K. Ohgaki and T. Katayama, “Isothermal Vapor-Liquid Equilibrium Data for Binaryt Systems Containing Carbon Dioxide at High Pressures: Methanol-Carbon Dioxide, n-Hexane-Carbon Dioxid, and Benzene-Carbon Dioxide Systems,” Journal of Chemical and Engineering Data, vol. 21, no. 1, 1976.
S. E. Fateen and A. Bonilla, “On the performance of swarm intelligence optimization algorithms for phase stability and liquid-liquid and vapor-liquid equilibrium calculations,” Periodica Polytechnica Chemjical Engineering, vol. 59, no. 3, pp. 186-200, 2015.
M. Sadeghi, H. Salami, V. Taghikhani and M. Robert, “A comprehensive study on CO2 solubility in brine: Thermodynamic-based and neural network modeling,” Fluid Phase Equilibria, vol. 403, pp. 153-159, 2015.
J. A. Lazzús, “Optimization of high-pressure vapor-liquid equilibrium modelling of binary mixtures (supercritical fluid + ionic liquid) by particle swarm algorithm,” University of Kragujevac, Faculty of Science, vol. 73, no. 3, pp. 663-688, 2015.
Z. Geem, J. Kim and G. Loganathan, “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, no. 76, pp. 60-68, 2001.
J. Contreras, I. Amaya and R. Correa, “An improved variant of the conventional Harmony Search algorithm,” Appl. Math. Comput., no. 227, pp. 824-830, 2014.
I. Amaya, J. Cruz and R. Correa, “Harmoy Search algorithm: a variant with Self-regulated Fretwidth,” Appl. Math. Comput., no. 266, pp. 1127-1152, 2015.
O. A. Hougen, K. M. Watson and R. A. Ragatz, Chemical Process Principles - Part II. Thermodynamics, New York: John Wiley & Sons, Inc., 2005.
J. López, V. Trejos and C. Cardona, “Objetive functions analysis in the minimization of binary VLE data for asymmetric mixtures at high pressures,” Fluid Phase Equilibria, no. 248, pp. 147-157, 2006.
D.-Y. Peng and D. B. Robinson, “A New Two Constant Equation of State,” Journal of Industrial and Engineering Chemistry, vol. 15, no. 1, 1976.
G. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state,” Chemical Engineering Science, vol. 27, no. 6, pp. 1197-1203, 1971.
L. N. Canjar and F. S. Manning, Thermodynamic Properties and Reduced Correlations for Gases, Houston: Gulf Publishing Company, 1967.
J. López, V. Trejos and C. Cardona, “Parameters estimation and VLE calculation in asymmetric binary mixtures containing carbon dioxide + n alkanols,” Fluid Phase Equilibria, no. 275, pp. 1-7, 2009.
A. Bharti, Prerna and T. Banerjee, “Applicability of Cuckoo Search Algorithm for the Prediction of Multicomponent Liquid-Liquid Equilibria for Imidazolium and Phosphonium Based Ionic Liquids,” Industrial and Engineering Chemistry Research, vol. 54, no. 49, pp. 12393-12407, 2015.
J. Fernández-Vargas, A. Bonilla-Petriciolet and J. Segovia-Hernández, “An improved ant colony optimization method and its application for the thermodynamic modeling of phase equilibrium,” Fluid Phase Equilibria, no. 353, pp. 121-131, 2013.
V. Bhargava, S. Fateen and A. Bonilla-Petriciolet, “Cuckoo Search: A new nature-inspired optimization method for phase equilibrium calculations,” Fluid Phase Equilibria, no. 337, pp. 191-200, 2013.
A. Kabouche, A. Boultif, A. Abidi and N. Gherraf, “Interaction parameter estimation in liquid-liquid phase equilibrium modeling using stochastic and hybrid algorithms,” Fluid Phase
Equilibria, no. 336, pp. 113-121, 2012.
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ingenierías Universidad de Medellín
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.creativecommons.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv p. 67-95
dc.format.medium.spa.fl_str_mv Electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.spa.fl_str_mv Lat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.publisher.spa.fl_str_mv Universidad de Medellín
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.publisher.place.spa.fl_str_mv Medellín
dc.source.spa.fl_str_mv Revista Ingenierías Universidad de Medellín; Vol. 16, núm. 30 (2017); 67-95
2248-4094
1692-3324
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/3528/3/Revista_Ingenierias_UdeM_301.pdf.jpg
http://repository.udem.edu.co/bitstream/11407/3528/1/Articulo.html
http://repository.udem.edu.co/bitstream/11407/3528/2/Revista_Ingenierias_UdeM_301.pdf
bitstream.checksum.fl_str_mv 73291bd1836bfead2b69ed350992b16c
63c1af2f47b0ec94bf0bfb5e332838cd
74cb55e397d527b6670fe8384c52ae90
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159127686938624
spelling Jiménez Leiva, Cristian CamiloAmaya, IvánCorrea, RodrigoJiménez Leiva, Cristian Camilo; Universidad Industrial de SantanderAmaya, Iván; Universidad Industrial de SantanderCorrea, Rodrigo; Profesor titular, Escuela de ingenierías eléctrica, electrónica y telecomunicaciones. Universidad Industrial de Santander2017-06-29T22:22:34Z2017-06-29T22:22:34Z2017-06-301692-3324http://hdl.handle.net/11407/3528 http://dx.doi.org/10.22395/rium.v16n30a42248-4094reponame:Repositorio Institucional Universidad de Medellínrepourl:https://repository.udem.edu.co/instname:Universidad de MedellínEl presente artículo de investigación propone el uso de la nueva variante del algoritmo hs (Harmony Search), esto es, el sfhs (Self-Regulated Fretwidth Harmony Search Algorithm) para el cálculo y predicción de coeficientes de fugacidad y actividad en mezclas binarias. La selección de los parámetros de ejecución del algoritmo sfhs se realizó con base en pruebas preliminares con diferentes funciones de prueba estándar. Se seleccionaron sistemas previamente reportados en la literatura, a 25 ºC y 40 ºC, y a presiones bajas y moderadas. Adicionalmente, se seleccionaron dos solutos diferentes: dióxido de carbono y etano. Se tomaron diferentes solventes, polares y no polares, con propósitos comparativos. Los coeficientes de actividad y fugacidad se calcularon utilizando la ecuación de estado Redlich-Kwong y la regla de Lewis, junto con el algoritmo sfhs para los dos solutos en fase vapor. La consistencia de los coeficientes de actividad se analizó mediante la estrategia de Redlich-Kister. Se obtuvieron resultados muy cercanos a los encontrados experimentalmente por otros autores y en su mayoría, no difirieron en más de una unidad porcentual.This research article proposes the use of a novel variant of the HS algorithm (harmony search), i.e. SFHS (self-regulated fret width harmony search algorithm), for calculating and predicting fugacity and activity coefficients in binary mixtures. Parameter selection was carried out based on preliminary results with different standard test functions. Different previously reported systems were selected, at 25 ° C and 40 ° C, and at low and moderate pressure levels. Moreover, two solutes were selected: carbon dioxide and ethane. Different solvents, both polar and nonpolar, were selected with comparative purposes. Activity and fugacity coefficients were calculated using the Redlich-Kwong state equation and Lewis rule, along with the sfhs algorithm, assuming both solutes in vapor phase. Consistency of the activity coefficients was analyzed by the Redlich-Kister strategy. Results were very close to those found experimentally by other authors, and most of them did not differ in more than one percentage unit.p. 67-95Electrónicoapplication/pdfspaUniversidad de MedellínFacultad de IngenieríasMedellínhttp://revistas.udem.edu.co/index.php/ingenierias/article/view/108416306795A. Bonilla-Petriciolet, “On the capabilities and limitations of harmony search for parameter estimation in vapor-liquid equilibrium modeling,” Fluid Phase Equilibria, no. 332, pp. 7-20, 2012.J. M. Smith, H. C. Van Ness and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, México: Mc Graw Hill, 1995.J. M. Prausnitz, Computer Calculations For High Pressure Vapor Liquid Equilibria, Prentice Hall International Series, 1968.K. Ohgaki, F. Sano and T. Katayama, “Isothermal Vapor-Liquid Equilibrium Data for Binary Systems Containing Ethane at High Pressures,” Journal of Chemical and Engineering Data, vol. 21, no. 1, pp. 55-58, 1976.K. Ohgaki and T. Katayama, “Isothermal Vapor-Liquid Equilibria for Systems Ethil Ether-Carbon Dioxide and Methil Acetate-Carbon Dioxide at High Pressures,” Journal of Chemical and Engineering Data, vol. 20, no. 3, 1975.K. Ohgaki and T. Katayama, “Isothermal Vapor-Liquid Equilibrium Data for Binaryt Systems Containing Carbon Dioxide at High Pressures: Methanol-Carbon Dioxide, n-Hexane-Carbon Dioxid, and Benzene-Carbon Dioxide Systems,” Journal of Chemical and Engineering Data, vol. 21, no. 1, 1976.S. E. Fateen and A. Bonilla, “On the performance of swarm intelligence optimization algorithms for phase stability and liquid-liquid and vapor-liquid equilibrium calculations,” Periodica Polytechnica Chemjical Engineering, vol. 59, no. 3, pp. 186-200, 2015.M. Sadeghi, H. Salami, V. Taghikhani and M. Robert, “A comprehensive study on CO2 solubility in brine: Thermodynamic-based and neural network modeling,” Fluid Phase Equilibria, vol. 403, pp. 153-159, 2015.J. A. Lazzús, “Optimization of high-pressure vapor-liquid equilibrium modelling of binary mixtures (supercritical fluid + ionic liquid) by particle swarm algorithm,” University of Kragujevac, Faculty of Science, vol. 73, no. 3, pp. 663-688, 2015.Z. Geem, J. Kim and G. Loganathan, “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, no. 76, pp. 60-68, 2001.J. Contreras, I. Amaya and R. Correa, “An improved variant of the conventional Harmony Search algorithm,” Appl. Math. Comput., no. 227, pp. 824-830, 2014.I. Amaya, J. Cruz and R. Correa, “Harmoy Search algorithm: a variant with Self-regulated Fretwidth,” Appl. Math. Comput., no. 266, pp. 1127-1152, 2015.O. A. Hougen, K. M. Watson and R. A. Ragatz, Chemical Process Principles - Part II. Thermodynamics, New York: John Wiley & Sons, Inc., 2005.J. López, V. Trejos and C. Cardona, “Objetive functions analysis in the minimization of binary VLE data for asymmetric mixtures at high pressures,” Fluid Phase Equilibria, no. 248, pp. 147-157, 2006.D.-Y. Peng and D. B. Robinson, “A New Two Constant Equation of State,” Journal of Industrial and Engineering Chemistry, vol. 15, no. 1, 1976.G. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state,” Chemical Engineering Science, vol. 27, no. 6, pp. 1197-1203, 1971.L. N. Canjar and F. S. Manning, Thermodynamic Properties and Reduced Correlations for Gases, Houston: Gulf Publishing Company, 1967.J. López, V. Trejos and C. Cardona, “Parameters estimation and VLE calculation in asymmetric binary mixtures containing carbon dioxide + n alkanols,” Fluid Phase Equilibria, no. 275, pp. 1-7, 2009.A. Bharti, Prerna and T. Banerjee, “Applicability of Cuckoo Search Algorithm for the Prediction of Multicomponent Liquid-Liquid Equilibria for Imidazolium and Phosphonium Based Ionic Liquids,” Industrial and Engineering Chemistry Research, vol. 54, no. 49, pp. 12393-12407, 2015.J. Fernández-Vargas, A. Bonilla-Petriciolet and J. Segovia-Hernández, “An improved ant colony optimization method and its application for the thermodynamic modeling of phase equilibrium,” Fluid Phase Equilibria, no. 353, pp. 121-131, 2013.V. Bhargava, S. Fateen and A. Bonilla-Petriciolet, “Cuckoo Search: A new nature-inspired optimization method for phase equilibrium calculations,” Fluid Phase Equilibria, no. 337, pp. 191-200, 2013.A. Kabouche, A. Boultif, A. Abidi and N. Gherraf, “Interaction parameter estimation in liquid-liquid phase equilibrium modeling using stochastic and hybrid algorithms,” Fluid PhaseEquilibria, no. 336, pp. 113-121, 2012.Revista Ingenierías Universidad de Medellínhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Ingenierías Universidad de Medellín; Vol. 16, núm. 30 (2017); 67-952248-40941692-3324Fugacity coefficientActivity coefficientBinary mixturesThermodynamic equilibriumGlobal optimization algorithmsCoeficiente de fugacidadCoeficiente de actividadMezclas binariasEquilibrio termodinámicoAlgoritmos de optimización globalCalculation and Prediction of Fugacity and Activity Coefficients in Binary Mixtures, using a Self-Regulated Fretwidth Harmony Search AlgorithmCálculo y predicción de coeficientes de fugacidad y actividad en mezclas binarias mediante el algoritmo de búsqueda armónica con ancho de banda autoajustableArticlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad de MedellínLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degreesTHUMBNAILRevista_Ingenierias_UdeM_301.pdf.jpgRevista_Ingenierias_UdeM_301.pdf.jpgIM Thumbnailimage/jpeg11059http://repository.udem.edu.co/bitstream/11407/3528/3/Revista_Ingenierias_UdeM_301.pdf.jpg73291bd1836bfead2b69ed350992b16cMD53ORIGINALArticulo.htmltext/html497http://repository.udem.edu.co/bitstream/11407/3528/1/Articulo.html63c1af2f47b0ec94bf0bfb5e332838cdMD51Revista_Ingenierias_UdeM_301.pdfRevista_Ingenierias_UdeM_301.pdfapplication/pdf1714224http://repository.udem.edu.co/bitstream/11407/3528/2/Revista_Ingenierias_UdeM_301.pdf74cb55e397d527b6670fe8384c52ae90MD5211407/3528oai:repository.udem.edu.co:11407/35282021-05-14 14:29:07.388Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co