Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition
The aim of this work was determined turbulent burning velocities of air-syngas-methane flames at sub-atmospheric conditions using the angle method and Schlieren imaging. We analyzed a high hydrogen content syngas that can be obtained with a Conoco-Phillips coal gasification process. Equivalence rati...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5804
- Acceso en línea:
- http://hdl.handle.net/11407/5804
- Palabra clave:
- Air
Atmospheric chemistry
Atmospheric turbulence
Coal combustion
Methane
Synthesis gas
Velocity
Atmospheric conditions
Equivalence ratios
Gasification process
Hydrogen contents
Laminar burning velocity
Turbulence intensity
Turbulence interactions
Turbulent burning velocities
Atmospheric thermodynamics
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_72c2448f9e306bafa5206b06173cf0e2 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5804 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition |
title |
Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition |
spellingShingle |
Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition Air Atmospheric chemistry Atmospheric turbulence Coal combustion Methane Synthesis gas Velocity Atmospheric conditions Equivalence ratios Gasification process Hydrogen contents Laminar burning velocity Turbulence intensity Turbulence interactions Turbulent burning velocities Atmospheric thermodynamics |
title_short |
Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition |
title_full |
Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition |
title_fullStr |
Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition |
title_full_unstemmed |
Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition |
title_sort |
Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition |
dc.subject.none.fl_str_mv |
Air Atmospheric chemistry Atmospheric turbulence Coal combustion Methane Synthesis gas Velocity Atmospheric conditions Equivalence ratios Gasification process Hydrogen contents Laminar burning velocity Turbulence intensity Turbulence interactions Turbulent burning velocities Atmospheric thermodynamics |
topic |
Air Atmospheric chemistry Atmospheric turbulence Coal combustion Methane Synthesis gas Velocity Atmospheric conditions Equivalence ratios Gasification process Hydrogen contents Laminar burning velocity Turbulence intensity Turbulence interactions Turbulent burning velocities Atmospheric thermodynamics |
description |
The aim of this work was determined turbulent burning velocities of air-syngas-methane flames at sub-atmospheric conditions using the angle method and Schlieren imaging. We analyzed a high hydrogen content syngas that can be obtained with a Conoco-Phillips coal gasification process. Equivalence ratios evaluated here correspond to lean combustion conditions: 0.8-1.0. Experiments were carried out at room temperature of 297 K and 849 mbar. The chemical-turbulence interaction was evaluated considering geometric parameters, laminar flame properties, and turbulence length scales. It was found that the turbulent burning velocity and the ratio between turbulent and laminar burning velocities increases with the turbulence intensity. Additionally, the addition of syngas to methane increases the laminar and turbulent burning velocity. © Published under licence by IOP Publishing Ltd. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:54:05Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:54:05Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
17426588 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5804 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/1409/1/012012 |
identifier_str_mv |
17426588 10.1088/1742-6596/1409/1/012012 |
url |
http://hdl.handle.net/11407/5804 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078026090&doi=10.1088%2f1742-6596%2f1409%2f1%2f012012&partnerID=40&md5=a32912a917f65f8fff76af107392e9b3 |
dc.relation.citationvolume.none.fl_str_mv |
1409 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.references.none.fl_str_mv |
Moussa, O., Driss, Z., Numerical investigation of the turbulence models effect on the combustion characteristics in a non-premixed turbulent flame methane-air (2017) Am. J. Energy Res., 5, p. 85 Wang, J., Zhang, M., Xie, Y., Huang, Z., Kudo, T., Kobayashi, H., Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0MPa (2013) Exp. Therm. Fluid Sci., 50, p. 90 Kobayashi, H., Seyama, K., Hagiwara, H., Ogami, Y., Aldredge, R., Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature (2005) Proc. Combust. Inst., 30 (1), p. 827 Wabel, T.M., Skiba, A.W., Driscoll, J.F., Turbulent burning velocity measurements: Extended to extreme levels of turbulence (2017) Proc. Combust. Inst., 36 (2), p. 1801 Shy, S.S., Liu, C.C., Lin, J.Y., Chen, L.L., Lipatnikov, A.N., Yang, S.I., Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damkohler, and Karlovitz numbers (2015) Proc. Combust. Inst., 35 (2), p. 1509 Arrieta, C.E., García, A.M., Amell, A.A., Experimental study of the combustion of natural gas and high-hydrogen content syngases in a radiant porous media burner (2017) Int. J. Hydrog. Energy, 42 (17), p. 12669 Jiang, L.J., Shy, S.S., Li, W.Y., Huang, H.M., Nguyen, M.T., High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames (2016) Combust. Flame, 172, p. 173 Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T., Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa (1997) Combust. Flame, 108 (1-2), p. 104 Wang, J., Yu, S., Zhang, M., Jin, W., Huang, Z., Chen, S., Kobayashi, H., Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa (2015) Exp. Therm. Fluid Sci., 68, p. 196 Pareja, J., Burbano, H.J., Ogami, Y., Measurements of the laminar burning velocity of hydrogen-air premixed flames (2010) Int. J. Hydrog. Energy, 35 (4), p. 1812 Burbano, H.J., Pareja, J., Amell, A.A., Laminar burning velocities and flame stability analysis of H2/CO/air mixtures with dilution of N2 and CO2 (2011) Int. J. Hydrog. Energy, 36 (4), p. 3232 Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., Law, C.K., (2007) USC Mech Version II. High-temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds Ansys, (2016) Chemkin, Reaction Design Version 17.0 Cardona, C., Amell, A., Burbano, H., Laminar Burning Velocity of Natural Gas/Syngas-Air Mixture (2013) Dyna, 80, pp. 136-143 Peters, N., (2000) Turbulent Combustion Kobayashi, H., Tamura, T., Maruta, K., Niioka, T., Williams, F.A., Burning velocity of turbulent premixed flames in a high-pressure environment (1996) Symp. Int. Combust., 26 (1), p. 389 Zhang, M., Wang, J., Xie, Y., Jin, W., Wei, Z., Huang, Z., Kobayashi, H., Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames (2013) Int. J. Hydrog. Energy, 38 (26), p. 11421 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.publisher.program.none.fl_str_mv |
Ingeniería en Energía |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.source.none.fl_str_mv |
Journal of Physics: Conference Series |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159235480551424 |
spelling |
20192020-04-29T14:54:05Z2020-04-29T14:54:05Z17426588http://hdl.handle.net/11407/580410.1088/1742-6596/1409/1/012012The aim of this work was determined turbulent burning velocities of air-syngas-methane flames at sub-atmospheric conditions using the angle method and Schlieren imaging. We analyzed a high hydrogen content syngas that can be obtained with a Conoco-Phillips coal gasification process. Equivalence ratios evaluated here correspond to lean combustion conditions: 0.8-1.0. Experiments were carried out at room temperature of 297 K and 849 mbar. The chemical-turbulence interaction was evaluated considering geometric parameters, laminar flame properties, and turbulence length scales. It was found that the turbulent burning velocity and the ratio between turbulent and laminar burning velocities increases with the turbulence intensity. Additionally, the addition of syngas to methane increases the laminar and turbulent burning velocity. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingIngeniería en EnergíaFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85078026090&doi=10.1088%2f1742-6596%2f1409%2f1%2f012012&partnerID=40&md5=a32912a917f65f8fff76af107392e9b314091Moussa, O., Driss, Z., Numerical investigation of the turbulence models effect on the combustion characteristics in a non-premixed turbulent flame methane-air (2017) Am. J. Energy Res., 5, p. 85Wang, J., Zhang, M., Xie, Y., Huang, Z., Kudo, T., Kobayashi, H., Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0MPa (2013) Exp. Therm. Fluid Sci., 50, p. 90Kobayashi, H., Seyama, K., Hagiwara, H., Ogami, Y., Aldredge, R., Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature (2005) Proc. Combust. Inst., 30 (1), p. 827Wabel, T.M., Skiba, A.W., Driscoll, J.F., Turbulent burning velocity measurements: Extended to extreme levels of turbulence (2017) Proc. Combust. Inst., 36 (2), p. 1801Shy, S.S., Liu, C.C., Lin, J.Y., Chen, L.L., Lipatnikov, A.N., Yang, S.I., Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damkohler, and Karlovitz numbers (2015) Proc. Combust. Inst., 35 (2), p. 1509Arrieta, C.E., García, A.M., Amell, A.A., Experimental study of the combustion of natural gas and high-hydrogen content syngases in a radiant porous media burner (2017) Int. J. Hydrog. Energy, 42 (17), p. 12669Jiang, L.J., Shy, S.S., Li, W.Y., Huang, H.M., Nguyen, M.T., High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames (2016) Combust. Flame, 172, p. 173Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T., Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa (1997) Combust. Flame, 108 (1-2), p. 104Wang, J., Yu, S., Zhang, M., Jin, W., Huang, Z., Chen, S., Kobayashi, H., Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa (2015) Exp. Therm. Fluid Sci., 68, p. 196Pareja, J., Burbano, H.J., Ogami, Y., Measurements of the laminar burning velocity of hydrogen-air premixed flames (2010) Int. J. Hydrog. Energy, 35 (4), p. 1812Burbano, H.J., Pareja, J., Amell, A.A., Laminar burning velocities and flame stability analysis of H2/CO/air mixtures with dilution of N2 and CO2 (2011) Int. J. Hydrog. Energy, 36 (4), p. 3232Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., Law, C.K., (2007) USC Mech Version II. High-temperature Combustion Reaction Model of H2/CO/C1-C4 CompoundsAnsys, (2016) Chemkin, Reaction Design Version 17.0Cardona, C., Amell, A., Burbano, H., Laminar Burning Velocity of Natural Gas/Syngas-Air Mixture (2013) Dyna, 80, pp. 136-143Peters, N., (2000) Turbulent CombustionKobayashi, H., Tamura, T., Maruta, K., Niioka, T., Williams, F.A., Burning velocity of turbulent premixed flames in a high-pressure environment (1996) Symp. Int. Combust., 26 (1), p. 389Zhang, M., Wang, J., Xie, Y., Jin, W., Wei, Z., Huang, Z., Kobayashi, H., Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames (2013) Int. J. Hydrog. Energy, 38 (26), p. 11421Journal of Physics: Conference SeriesAirAtmospheric chemistryAtmospheric turbulenceCoal combustionMethaneSynthesis gasVelocityAtmospheric conditionsEquivalence ratiosGasification processHydrogen contentsLaminar burning velocityTurbulence intensityTurbulence interactionsTurbulent burning velocitiesAtmospheric thermodynamicsExperimental study of turbulent syngas/methane/air flames at a sub-atmospheric conditionConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Cardona, A., Grupo de Investigación en Materiales Avanzados y Energía, Instituto Tecnológico Metropolitano, Medellín, Colombia, Grupo de Ciencia y Tecnología Del Gas y Uso Racional de la Energía, Universidad de Antioquia, Medellín, Colombia; García, A., Grupo de Ciencia y Tecnología Del Gas y Uso Racional de la Energía, Universidad de Antioquia, Medellín, Colombia; Cano, F., Grupo de Ciencia y Tecnología Del Gas y Uso Racional de la Energía, Universidad de Antioquia, Medellín, Colombia; Arrieta, C.E., Grupo de Investigación en Energía, Universidad de Medellín, Medellín, Colombia; Yepes, H.A., Grupo de Investigación en Ingenierías Aplicadas Para la Innovación, La Gestión y El Desarrollo, Universidad Francisco de Paula Santander Seccional Ocaña, Colombia; Amell, A., Grupo de Ciencia y Tecnología Del Gas y Uso Racional de la Energía, Universidad de Antioquia, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecCardona A.García A.Cano F.Arrieta C.E.Yepes H.A.Amell A.11407/5804oai:repository.udem.edu.co:11407/58042020-05-27 18:59:48.801Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |