Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming
An explicit form for the perturbation effect on the matrix of regression coeffi- cients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex prog...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/3471
- Acceso en línea:
- http://hdl.handle.net/11407/3471
- Palabra clave:
- Asymptotic normality
Multiresponse surface optimisation
Sensitivity analysis
Mathematical programming
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
REPOUDEM2_723461261fb7f27395a6c4d75e70a41d |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/3471 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming |
title |
Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming |
spellingShingle |
Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming Asymptotic normality Multiresponse surface optimisation Sensitivity analysis Mathematical programming |
title_short |
Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming |
title_full |
Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming |
title_fullStr |
Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming |
title_full_unstemmed |
Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming |
title_sort |
Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming |
dc.subject.spa.fl_str_mv |
Asymptotic normality Multiresponse surface optimisation Sensitivity analysis Mathematical programming |
topic |
Asymptotic normality Multiresponse surface optimisation Sensitivity analysis Mathematical programming |
description |
An explicit form for the perturbation effect on the matrix of regression coeffi- cients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods. |
publishDate |
2015 |
dc.date.created.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2017-06-15T22:05:23Z |
dc.date.available.none.fl_str_mv |
2017-06-15T22:05:23Z |
dc.type.eng.fl_str_mv |
Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.citation.spa.fl_str_mv |
Díaz-García, J. A., & Caro-Lopera, F. J. (2015). Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming. Metodoloski Zvezki, 12(1), 11-24 |
dc.identifier.issn.none.fl_str_mv |
18540023 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/3471 |
dc.identifier.eissn.none.fl_str_mv |
18540031 |
identifier_str_mv |
Díaz-García, J. A., & Caro-Lopera, F. J. (2015). Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming. Metodoloski Zvezki, 12(1), 11-24 18540023 18540031 |
url |
http://hdl.handle.net/11407/3471 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
http://www.stat-d.si/mz/mz12.12/Diaz2015.pdf |
dc.relation.ispartofes.spa.fl_str_mv |
Metodoloski zvezki, Vol. 12, No. 1, 2015, 11-24 |
dc.relation.references.spa.fl_str_mv |
Aitchison, J. and S. D. Silvey, S. D. (1958): Maximum likelihood estimation of parameters subject to restraints. Annals of Mathematical Statistics, 29, 813–828. Biles, W. E. (1975): A response surface method for experimental optimization of multi-response process. Industrial & Engeneering Chemistry Process Design Development, 14, 152-158. Gigelow, J. H. and Shapiro, N. Z. (1974): Implicit function theorem for mathematical programming and for systems of iniqualities. Mathematical Programming, 6(2), 141– 156. Bishop, Y. M. M., Finberg, S. E. and Holland, P. W. (1991): Discrete Multivariate Analysis: Theory and Practice. The MIT press, Cambridge. Chatterjee, S. and Hadi, A. S. (1988): Sensitivity Analysis in Linear Regression. John Wiley: New York. Cramer, H. (1946): ´ Mathematical Methods of Statistics. Princeton University Press, Princeton. D´ıaz Garc´ıa, J. A. and Ramos-Quiroga, R. (2001): An approach to optimization in response surfaces. Communication in Statatistics, Part A- Theory and Methods, 30, 827–835. D´ıaz Garc´ıa, J. A. and Ramos-Quiroga, R. (2002): Erratum. An approach to optimization in response surfaces. Communication in Statatistics, Part A- Theory and Methods, 31, 161. Dupacov ˇ a, J. (1984): Stability in stochastic programming with recourse-estimated ´ parameters. Mathematical Programming, 28, 72–83. Fiacco, A. V. and Ghaemi, A. (1982): Sensitivity analysis of a nonlinear structural design problem. Computers & Operations Research, 9(1), 29–55. Jagannathan, R. (1977): Minimax procedure for a class of linear programs under uncertainty. Operations Research, 25, 173–177. Kazemzadeh, R. B., Bashiri, M., Atkinson, A. C. and Noorossana, R. (2008): A General Framework for Multiresponse Optimization Problems Based on Goal Programming. European Journal of Operational Research, 189, 421-429. Khuri, A. I. and Conlon, M. (1981): Simultaneous optimization of multiple responses represented by polynomial regression functions. Technometrics, 23, 363–375. Khuri, A. I. and Cornell, J. A. (1987): Response Surfaces: Designs and Analysis. Marcel Dekker, Inc., NewYork. Miettinen, K. M. (1999): Non linear multiobjective optimization. Kluwer Academic Publishers, Boston. Muirhead, R. J. (1982): Aspects of multivariate statistical theory. Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., 1982. Myers, R. H., Montgomery, D. C. and Anderson-Cook, C. M. (2009): Response surface methodology: process and product optimization using designed experiments. Third edition, Wiley, New York, . Rao, C. R. (1973): Linear Statistical Inference and its Applications. (2nd ed.) John Wiley & Sons, New York. Rao, S. S. (1979): Optimization Theory and Applications. Wiley Eastern Limited, New Delhi. R´ıos, S., R´ıos Insua, S. and R´ıos Insua, M. J. (1989): Procesos de decision Multicri- ´ terio. EUDEMA, Madrid, (in Spanish). Steuer, R. E. (1986): Multiple criteria optimization: Theory, computation and applications. John Wiley, New York. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.publisher.spa.fl_str_mv |
Faculty of Social Sciences, University of Ljubljana |
dc.publisher.program.spa.fl_str_mv |
Tronco común Ingenierías |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Metodoloski Zvezki |
institution |
Universidad de Medellín |
bitstream.url.fl_str_mv |
http://repository.udem.edu.co/bitstream/11407/3471/1/Articulo_.html http://repository.udem.edu.co/bitstream/11407/3471/2/portada.png |
bitstream.checksum.fl_str_mv |
fd2929e11464534ee322cf72a8a9fab1 0fa31f46a9ad98bf42d9487c92a04205 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159226435534848 |
spelling |
2017-06-15T22:05:23Z2017-06-15T22:05:23Z2015Díaz-García, J. A., & Caro-Lopera, F. J. (2015). Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming. Metodoloski Zvezki, 12(1), 11-2418540023http://hdl.handle.net/11407/347118540031An explicit form for the perturbation effect on the matrix of regression coeffi- cients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods.engFaculty of Social Sciences, University of LjubljanaTronco común IngenieríasFacultad de Ciencias Básicashttp://www.stat-d.si/mz/mz12.12/Diaz2015.pdfMetodoloski zvezki, Vol. 12, No. 1, 2015, 11-24Aitchison, J. and S. D. Silvey, S. D. (1958): Maximum likelihood estimation of parameters subject to restraints. Annals of Mathematical Statistics, 29, 813–828.Biles, W. E. (1975): A response surface method for experimental optimization of multi-response process. Industrial & Engeneering Chemistry Process Design Development, 14, 152-158.Gigelow, J. H. and Shapiro, N. Z. (1974): Implicit function theorem for mathematical programming and for systems of iniqualities. Mathematical Programming, 6(2), 141– 156.Bishop, Y. M. M., Finberg, S. E. and Holland, P. W. (1991): Discrete Multivariate Analysis: Theory and Practice. The MIT press, Cambridge.Chatterjee, S. and Hadi, A. S. (1988): Sensitivity Analysis in Linear Regression. John Wiley: New York.Cramer, H. (1946): ´ Mathematical Methods of Statistics. Princeton University Press, Princeton.D´ıaz Garc´ıa, J. A. and Ramos-Quiroga, R. (2001): An approach to optimization in response surfaces. Communication in Statatistics, Part A- Theory and Methods, 30, 827–835.D´ıaz Garc´ıa, J. A. and Ramos-Quiroga, R. (2002): Erratum. An approach to optimization in response surfaces. Communication in Statatistics, Part A- Theory and Methods, 31, 161.Dupacov ˇ a, J. (1984): Stability in stochastic programming with recourse-estimated ´ parameters. Mathematical Programming, 28, 72–83.Fiacco, A. V. and Ghaemi, A. (1982): Sensitivity analysis of a nonlinear structural design problem. Computers & Operations Research, 9(1), 29–55.Jagannathan, R. (1977): Minimax procedure for a class of linear programs under uncertainty. Operations Research, 25, 173–177.Kazemzadeh, R. B., Bashiri, M., Atkinson, A. C. and Noorossana, R. (2008): A General Framework for Multiresponse Optimization Problems Based on Goal Programming. European Journal of Operational Research, 189, 421-429.Khuri, A. I. and Conlon, M. (1981): Simultaneous optimization of multiple responses represented by polynomial regression functions. Technometrics, 23, 363–375.Khuri, A. I. and Cornell, J. A. (1987): Response Surfaces: Designs and Analysis. Marcel Dekker, Inc., NewYork.Miettinen, K. M. (1999): Non linear multiobjective optimization. Kluwer Academic Publishers, Boston.Muirhead, R. J. (1982): Aspects of multivariate statistical theory. Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., 1982.Myers, R. H., Montgomery, D. C. and Anderson-Cook, C. M. (2009): Response surface methodology: process and product optimization using designed experiments. Third edition, Wiley, New York, .Rao, C. R. (1973): Linear Statistical Inference and its Applications. (2nd ed.) John Wiley & Sons, New York.Rao, S. S. (1979): Optimization Theory and Applications. Wiley Eastern Limited, New Delhi.R´ıos, S., R´ıos Insua, S. and R´ıos Insua, M. J. (1989): Procesos de decision Multicri- ´ terio. EUDEMA, Madrid, (in Spanish).Steuer, R. E. (1986): Multiple criteria optimization: Theory, computation and applications. John Wiley, New York.Metodoloski ZvezkiAsymptotic normalityMultiresponse surface optimisationSensitivity analysisMathematical programmingAsymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical ProgrammingArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Díaz-García, José A.Caro-Lopera, Francisco J.Díaz-García, José A.; Universidad Autónoma Agraria Antonio NarroCaro-Lopera, Francisco J.; Universidad de MedellínORIGINALArticulo_.htmlArticulo_.htmlVer PDF en página del publicadortext/html545http://repository.udem.edu.co/bitstream/11407/3471/1/Articulo_.htmlfd2929e11464534ee322cf72a8a9fab1MD51THUMBNAILportada.pngportada.pngimage/png19702http://repository.udem.edu.co/bitstream/11407/3471/2/portada.png0fa31f46a9ad98bf42d9487c92a04205MD5211407/3471oai:repository.udem.edu.co:11407/34712020-05-27 18:32:39.273Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |