Structural feedback linearization based on nonlinearities rejection

In this paper, a structural feedback linearization technique is proposed. This is a quite simple and effective linear control scheme based on failure detection techniques. Our proposed linear control approach is intended to reject the nonlinearities, which are treated as failure signals affecting th...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4249
Acceso en línea:
http://hdl.handle.net/11407/4249
Palabra clave:
failure reconstruction
feedback linearization
Nonlinear systems
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_6e3b132068bea63652edf04934420ae7
oai_identifier_str oai:repository.udem.edu.co:11407/4249
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
spelling 2017-12-19T19:36:41Z2017-12-19T19:36:41Z201724058963http://hdl.handle.net/11407/424910.1016/j.ifacol.2017.08.090reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínIn this paper, a structural feedback linearization technique is proposed. This is a quite simple and effective linear control scheme based on failure detection techniques. Our proposed linear control approach is intended to reject the nonlinearities, which are treated as failure signals affecting the systems dynamics. The proposed control methodology is illustrated via the attitude control of a quadrotor in hover flying. © 2017engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85031776095&doi=10.1016%2fj.ifacol.2017.08.090&partnerID=40&md5=8dfa35de87143f0594e830d4b729452eIFAC-PapersOnLineIFAC-PapersOnLine Volume 50, Issue 1, July 2017, Pages 922-927Blinchikoff, H. J., & Zverev, A. I. (1976). Filtering in the Time and Frequency Domains.Bonilla, M., Blas, L. A., Salazar, S., MartÍnez, J. C., & Malabre, M. (2016). , 2596-2601.Brunovsky, P. (1970). A classification of linear controllable systems. Kybernetika, 3(6), 173-188.Carrillo, L. R. G., Lopez, A. E. D., Lozano, R., & Pegard, C. (2013). Quad Rotorcraft Control.Cook, M. V. (2013). Flight dynamics principles. Flight dynamics principles () doi:10.1016/C2010-0-65889-5Isermann, R. (1984). Process fault detection based on modeling and estimation methods-A survey. Automatica, 20(4), 387-404. doi:10.1016/0005-1098(84)90098-0Massoumnia, M. -. (1986). A geometric approach to the synthesis of failure detection filters. IEEE Transactions on Automatic Control, 31(9), 839-846. doi:10.1109/TAC.1986.1104419Powers, C., Mellinger, D., & Kumar, V. (2014). Quadrotor kinematics and dynamics. Chapter 16 of Handbook of Unmanned Aerial Vehicles.Saberi, A., Stoorvogel, A. A., Sannuti, P., & Niemann, H. (2000). Fundamental problems in fault detection and identification. International Journal of Robust and Nonlinear Control, 10(14), 1209-1236. doi:10.1002/1099-1239(20001215)10:14<1209Vidyasagar, M. (1993). Nonlinear Systems Analysis.ScopusStructural feedback linearization based on nonlinearities rejectionArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Blas, L.A., CINVESTAV-IPN, DCA, MexicoBonilla, M., CINVESTAV-IPN, DCA, UMI 3175, CINVESTAV-CNRS, MexicoMalabre, M., CNRS, LS2N (Laboratoire des Sciences du Numérique de Nantes), UMR 6004, FranceAzhmyakov, V., Universidad de Medellin, Department of Basic Sciences, Medellin, ColombiaSalazar, S., CINVESTAV-IPN, SANAS, UMI 3175, CINVESTAV-CNRS, MexicoBlas L.A.Bonilla M.Malabre M.Azhmyakov V.Salazar S.CINVESTAV-IPN, DCA, MexicoCINVESTAV-IPN, DCA, UMI 3175, CINVESTAV-CNRS, MexicoCNRS, LS2N (Laboratoire des Sciences du Numérique de Nantes), UMR 6004, FranceUniversidad de Medellin, Department of Basic Sciences, Medellin, ColombiaCINVESTAV-IPN, SANAS, UMI 3175, CINVESTAV-CNRS, Mexicofailure reconstructionfeedback linearizationNonlinear systemsIn this paper, a structural feedback linearization technique is proposed. This is a quite simple and effective linear control scheme based on failure detection techniques. Our proposed linear control approach is intended to reject the nonlinearities, which are treated as failure signals affecting the systems dynamics. The proposed control methodology is illustrated via the attitude control of a quadrotor in hover flying. © 2017http://purl.org/coar/access_right/c_16ec11407/4249oai:repository.udem.edu.co:11407/42492020-05-27 17:42:55.482Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co
dc.title.spa.fl_str_mv Structural feedback linearization based on nonlinearities rejection
title Structural feedback linearization based on nonlinearities rejection
spellingShingle Structural feedback linearization based on nonlinearities rejection
failure reconstruction
feedback linearization
Nonlinear systems
title_short Structural feedback linearization based on nonlinearities rejection
title_full Structural feedback linearization based on nonlinearities rejection
title_fullStr Structural feedback linearization based on nonlinearities rejection
title_full_unstemmed Structural feedback linearization based on nonlinearities rejection
title_sort Structural feedback linearization based on nonlinearities rejection
dc.contributor.affiliation.spa.fl_str_mv Blas, L.A., CINVESTAV-IPN, DCA, Mexico
Bonilla, M., CINVESTAV-IPN, DCA, UMI 3175, CINVESTAV-CNRS, Mexico
Malabre, M., CNRS, LS2N (Laboratoire des Sciences du Numérique de Nantes), UMR 6004, France
Azhmyakov, V., Universidad de Medellin, Department of Basic Sciences, Medellin, Colombia
Salazar, S., CINVESTAV-IPN, SANAS, UMI 3175, CINVESTAV-CNRS, Mexico
dc.subject.keyword.eng.fl_str_mv failure reconstruction
feedback linearization
Nonlinear systems
topic failure reconstruction
feedback linearization
Nonlinear systems
description In this paper, a structural feedback linearization technique is proposed. This is a quite simple and effective linear control scheme based on failure detection techniques. Our proposed linear control approach is intended to reject the nonlinearities, which are treated as failure signals affecting the systems dynamics. The proposed control methodology is illustrated via the attitude control of a quadrotor in hover flying. © 2017
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:41Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:41Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 24058963
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4249
dc.identifier.doi.none.fl_str_mv 10.1016/j.ifacol.2017.08.090
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 24058963
10.1016/j.ifacol.2017.08.090
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4249
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031776095&doi=10.1016%2fj.ifacol.2017.08.090&partnerID=40&md5=8dfa35de87143f0594e830d4b729452e
dc.relation.ispartofes.spa.fl_str_mv IFAC-PapersOnLine
IFAC-PapersOnLine Volume 50, Issue 1, July 2017, Pages 922-927
dc.relation.references.spa.fl_str_mv Blinchikoff, H. J., & Zverev, A. I. (1976). Filtering in the Time and Frequency Domains.
Bonilla, M., Blas, L. A., Salazar, S., MartÍnez, J. C., & Malabre, M. (2016). , 2596-2601.
Brunovsky, P. (1970). A classification of linear controllable systems. Kybernetika, 3(6), 173-188.
Carrillo, L. R. G., Lopez, A. E. D., Lozano, R., & Pegard, C. (2013). Quad Rotorcraft Control.
Cook, M. V. (2013). Flight dynamics principles. Flight dynamics principles () doi:10.1016/C2010-0-65889-5
Isermann, R. (1984). Process fault detection based on modeling and estimation methods-A survey. Automatica, 20(4), 387-404. doi:10.1016/0005-1098(84)90098-0
Massoumnia, M. -. (1986). A geometric approach to the synthesis of failure detection filters. IEEE Transactions on Automatic Control, 31(9), 839-846. doi:10.1109/TAC.1986.1104419
Powers, C., Mellinger, D., & Kumar, V. (2014). Quadrotor kinematics and dynamics. Chapter 16 of Handbook of Unmanned Aerial Vehicles.
Saberi, A., Stoorvogel, A. A., Sannuti, P., & Niemann, H. (2000). Fundamental problems in fault detection and identification. International Journal of Robust and Nonlinear Control, 10(14), 1209-1236. doi:10.1002/1099-1239(20001215)10:14<1209
Vidyasagar, M. (1993). Nonlinear Systems Analysis.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Elsevier B.V.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159176730935296