Application of the hodrick-prescott model for the price forecast of electricity in Colombia [Aplicación del modelo de hodrick-prescott para el pronóstico del precio de la electricidad en Colombia]

The Colombian electricity market aims to offer a continuous and reliable service. However, the specific characteristics associated with its high dependence on hydroelectric generation, the technical limitations that allow its storage and the passive behavior of demand jeopardize the fulfillment of t...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/5771
Acceso en línea:
http://hdl.handle.net/11407/5771
Palabra clave:
Electricity price forecasting
Hodrick
Long-term seasonal component
Prescott filter
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_6e300a80604844cd473d81960aee23b5
oai_identifier_str oai:repository.udem.edu.co:11407/5771
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Application of the hodrick-prescott model for the price forecast of electricity in Colombia [Aplicación del modelo de hodrick-prescott para el pronóstico del precio de la electricidad en Colombia]
title Application of the hodrick-prescott model for the price forecast of electricity in Colombia [Aplicación del modelo de hodrick-prescott para el pronóstico del precio de la electricidad en Colombia]
spellingShingle Application of the hodrick-prescott model for the price forecast of electricity in Colombia [Aplicación del modelo de hodrick-prescott para el pronóstico del precio de la electricidad en Colombia]
Electricity price forecasting
Hodrick
Long-term seasonal component
Prescott filter
title_short Application of the hodrick-prescott model for the price forecast of electricity in Colombia [Aplicación del modelo de hodrick-prescott para el pronóstico del precio de la electricidad en Colombia]
title_full Application of the hodrick-prescott model for the price forecast of electricity in Colombia [Aplicación del modelo de hodrick-prescott para el pronóstico del precio de la electricidad en Colombia]
title_fullStr Application of the hodrick-prescott model for the price forecast of electricity in Colombia [Aplicación del modelo de hodrick-prescott para el pronóstico del precio de la electricidad en Colombia]
title_full_unstemmed Application of the hodrick-prescott model for the price forecast of electricity in Colombia [Aplicación del modelo de hodrick-prescott para el pronóstico del precio de la electricidad en Colombia]
title_sort Application of the hodrick-prescott model for the price forecast of electricity in Colombia [Aplicación del modelo de hodrick-prescott para el pronóstico del precio de la electricidad en Colombia]
dc.subject.none.fl_str_mv Electricity price forecasting
Hodrick
Long-term seasonal component
Prescott filter
topic Electricity price forecasting
Hodrick
Long-term seasonal component
Prescott filter
description The Colombian electricity market aims to offer a continuous and reliable service. However, the specific characteristics associated with its high dependence on hydroelectric generation, the technical limitations that allow its storage and the passive behavior of demand jeopardize the fulfillment of this objective. Uncertainty about future results has a significant impact on investment prospects, which consequently restricts the diversification of the energy matrix. In this context, among the mechanisms considered for the valuation of new projects and regulatory reforms, the interest to study the short and long-term behavior of the price of electricity stands out. The tool proposed in this paper develops an algorithm based on the Hodrick and Prescott filter for the Colombian market, which allows identifying the behavior of the cycle and the price trend, contributing to the decision making in the sector. © 2019, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:57Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:57Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 16469895
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5771
identifier_str_mv 16469895
url http://hdl.handle.net/11407/5771
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078334368&partnerID=40&md5=ecbf47ca991ea0a87540a6d732e32f70
dc.relation.citationvolume.none.fl_str_mv 2019
dc.relation.citationissue.none.fl_str_mv E21
dc.relation.citationstartpage.none.fl_str_mv 382
dc.relation.citationendpage.none.fl_str_mv 396
dc.relation.references.none.fl_str_mv Alonso, J.C., Arcila, A.M., Empleo del comportamiento estacional para mejorar el pronóstico de un commodity: El caso del mercado internacional del azúcar (2013) Estudios Gerenciales, 29 (129), pp. 406-415. , https://doi.org/10.1016/j.estger.2013.11.006
Arango, M., Botero, S., The application of real options as a tool for decision-making in the electricity market [La aplicación de opciones reales como herramienta de toma de decisiones en el mercado de electricidad] (2017) Iberian Conference on Information Systems and Technologies, CISTI, , https://doi.org/10.23919/CISTI.2017.7975807
Buga, A., Zaborowicz, M., Boniecki, P., Janczak, D., Koszela, K., Czeka, W., Lewicki, A., (2018) Short-Term Forecast of Generation of Electric Energy in Photovoltaic Systems, 81 (November), pp. 306-312. , https://doi.org/10.1016/j.rser.2017.07.032, 2016
Fama, E.F., (1965) The Behavior of Stock-Market Prices, 38 (1), pp. 34-105. , http://links.jstor.org/sici?sici=0021-9398%2528196501%252938%253A1%253C34%253ATBOSP%253E2.0.CO%253B2-6
Gómez Sánchez, A.M., Análisis de la interdependencia de los ciclos económicos del cauca y el suroccidente colombiano: Una aproximación econométrica desde los filtros de kalman y hodrick-prescott1 (2011) Estudios Gerenciales, 27 (121), pp. 115-141. , https://doi.org/10.1016/S0123-5923(11)70184-X
He, Y., Wang, B., Wang, J., Xiong, W., Xia, T., Correlation between Chinese and international energy prices based on a HP filter and time difference analysis (2013) Energy Policy, 62, pp. 898-909. , https://doi.org/10.1016/j.enpol.2013.07.136
Hodrick, R.J., Prescott, E.C., Postwar U. S. Business Cycles: An Empirical Investigation (1997) Journal of Money, Credit and Banking, 29 (1), pp. 1-16. , https://doi.org/10.2307/2953682
Kucher, O., Kurov, A., Review of Financial Economics Business cycle, storage, and energy prices (2014) Review of Financial Economics, 23 (4), pp. 217-226. , https://doi.org/10.1016/j.rfe.2014.09.001
Lisi, F., Nan, F., Component estimation for electricity prices: Procedures and comparisons (2014) Energy Economics, 44, pp. 143-159. , https://doi.org/10.1016/j.eneco.2014.03.018
Melichar, M., Energy price shocks and economic activity: Which energy price series should we be using? (2016) Energy Economics, 54, pp. 431-443. , https://doi.org/10.1016/j.eneco.2015.12.017
Nowotarski, J., Weron, R., Recent advances in electricity price forecasting: A review of probabilistic forecasting (2018) Renewable and Sustainable Energy Reviews, 81 (March 2017), pp. 1548-1568. , https://doi.org/10.1016/j.rser.2017.05.234
Oseni, M.O., Pollitt, M.G., The prospects for smart energy prices: Observations from 50 years of residential pricing for telecoms and energy (2016) EPRG Working Paper, 70, pp. 150-160. , https://doi.org/10.1016/j.rser.2016.11.214, March
Rios, G., (2008) Series De Tiempo, p. 52
Ruiz, B.J.Ã., Rodr?, V.Ã., (2006) Renewable Energy Sources in the Colombian Energy Policy, 34, pp. 3684-3690. , https://doi.org/10.1016/j.enpol.2005.08.007, analysis and perspectives
Satagopan, J.M., (1996) A Bayesian Approach, , (1992)
Singh, H., Fang, L., Guan, L., Forecasting day-ahead price spikes for the Ontario electricity market (2016) Electric Power Systems Research, 141, pp. 450-459. , https://doi.org/10.1016/j.epsr.2016.08.005
Tsai, S., Dong, W., Xue, Y., Zhang, J., Chen, Q., Liu, Y., Zhou, J., Models for forecasting growth trends in renewable energy (2017) Renewable and Sustainable Energy Reviews, 77 (2015), pp. 1169-1178. , https://doi.org/10.1016/j.rser.2016.06.001, December
Una Visión del Mercado Eléctrico Colombiano (2004) Mercado De Energía Eléctrica En Colombia-Análisis Comercial Y De Estrategias, pp. 1-110
(2016) Boletín Estadístico: Minas Y energía 2012 , 2016, p. 200
Wang, D., Luo, H., Grunder, O., Lin, Y., Guo, H., Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm (2017) Applied Energy, 190, pp. 390-407. , https://doi.org/10.1016/j.apenergy.2016.12.134
Weron, R., Zator, M., A note on using the Hodrick Prescott filter in electricity markets (2015) Energy Economics, 48, pp. 1-6. , https://doi.org/10.1016/j.eneco.2014.11.014
Yang, Z., Ce, L., Lian, L., Electricity price forecasting by a hybridmodel, combining wavelet transform, ARMA and kernel-based extreme learning machine methods (2017) Applied Energy, 190, pp. 291-305. , https://doi.org/10.1016/j.apenergy.2016.12.130
Ziel, F., Steinert, R., Electricity price forecasting using sale and purchase curves: The X-Model (2016) Energy Economics, 59, pp. 435-454. , https://doi.org/10.1016/j.eneco.2016.08.008
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Associacao Iberica de Sistemas e Tecnologias de Informacao
dc.publisher.program.none.fl_str_mv Ingeniería Financiera
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Associacao Iberica de Sistemas e Tecnologias de Informacao
dc.source.none.fl_str_mv RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159217922146304
spelling 20192020-04-29T14:53:57Z2020-04-29T14:53:57Z16469895http://hdl.handle.net/11407/5771The Colombian electricity market aims to offer a continuous and reliable service. However, the specific characteristics associated with its high dependence on hydroelectric generation, the technical limitations that allow its storage and the passive behavior of demand jeopardize the fulfillment of this objective. Uncertainty about future results has a significant impact on investment prospects, which consequently restricts the diversification of the energy matrix. In this context, among the mechanisms considered for the valuation of new projects and regulatory reforms, the interest to study the short and long-term behavior of the price of electricity stands out. The tool proposed in this paper develops an algorithm based on the Hodrick and Prescott filter for the Colombian market, which allows identifying the behavior of the cycle and the price trend, contributing to the decision making in the sector. © 2019, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.spaAssociacao Iberica de Sistemas e Tecnologias de InformacaoIngeniería FinancieraFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85078334368&partnerID=40&md5=ecbf47ca991ea0a87540a6d732e32f702019E21382396Alonso, J.C., Arcila, A.M., Empleo del comportamiento estacional para mejorar el pronóstico de un commodity: El caso del mercado internacional del azúcar (2013) Estudios Gerenciales, 29 (129), pp. 406-415. , https://doi.org/10.1016/j.estger.2013.11.006Arango, M., Botero, S., The application of real options as a tool for decision-making in the electricity market [La aplicación de opciones reales como herramienta de toma de decisiones en el mercado de electricidad] (2017) Iberian Conference on Information Systems and Technologies, CISTI, , https://doi.org/10.23919/CISTI.2017.7975807Buga, A., Zaborowicz, M., Boniecki, P., Janczak, D., Koszela, K., Czeka, W., Lewicki, A., (2018) Short-Term Forecast of Generation of Electric Energy in Photovoltaic Systems, 81 (November), pp. 306-312. , https://doi.org/10.1016/j.rser.2017.07.032, 2016Fama, E.F., (1965) The Behavior of Stock-Market Prices, 38 (1), pp. 34-105. , http://links.jstor.org/sici?sici=0021-9398%2528196501%252938%253A1%253C34%253ATBOSP%253E2.0.CO%253B2-6Gómez Sánchez, A.M., Análisis de la interdependencia de los ciclos económicos del cauca y el suroccidente colombiano: Una aproximación econométrica desde los filtros de kalman y hodrick-prescott1 (2011) Estudios Gerenciales, 27 (121), pp. 115-141. , https://doi.org/10.1016/S0123-5923(11)70184-XHe, Y., Wang, B., Wang, J., Xiong, W., Xia, T., Correlation between Chinese and international energy prices based on a HP filter and time difference analysis (2013) Energy Policy, 62, pp. 898-909. , https://doi.org/10.1016/j.enpol.2013.07.136Hodrick, R.J., Prescott, E.C., Postwar U. S. Business Cycles: An Empirical Investigation (1997) Journal of Money, Credit and Banking, 29 (1), pp. 1-16. , https://doi.org/10.2307/2953682Kucher, O., Kurov, A., Review of Financial Economics Business cycle, storage, and energy prices (2014) Review of Financial Economics, 23 (4), pp. 217-226. , https://doi.org/10.1016/j.rfe.2014.09.001Lisi, F., Nan, F., Component estimation for electricity prices: Procedures and comparisons (2014) Energy Economics, 44, pp. 143-159. , https://doi.org/10.1016/j.eneco.2014.03.018Melichar, M., Energy price shocks and economic activity: Which energy price series should we be using? (2016) Energy Economics, 54, pp. 431-443. , https://doi.org/10.1016/j.eneco.2015.12.017Nowotarski, J., Weron, R., Recent advances in electricity price forecasting: A review of probabilistic forecasting (2018) Renewable and Sustainable Energy Reviews, 81 (March 2017), pp. 1548-1568. , https://doi.org/10.1016/j.rser.2017.05.234Oseni, M.O., Pollitt, M.G., The prospects for smart energy prices: Observations from 50 years of residential pricing for telecoms and energy (2016) EPRG Working Paper, 70, pp. 150-160. , https://doi.org/10.1016/j.rser.2016.11.214, MarchRios, G., (2008) Series De Tiempo, p. 52Ruiz, B.J.Ã., Rodr?, V.Ã., (2006) Renewable Energy Sources in the Colombian Energy Policy, 34, pp. 3684-3690. , https://doi.org/10.1016/j.enpol.2005.08.007, analysis and perspectivesSatagopan, J.M., (1996) A Bayesian Approach, , (1992)Singh, H., Fang, L., Guan, L., Forecasting day-ahead price spikes for the Ontario electricity market (2016) Electric Power Systems Research, 141, pp. 450-459. , https://doi.org/10.1016/j.epsr.2016.08.005Tsai, S., Dong, W., Xue, Y., Zhang, J., Chen, Q., Liu, Y., Zhou, J., Models for forecasting growth trends in renewable energy (2017) Renewable and Sustainable Energy Reviews, 77 (2015), pp. 1169-1178. , https://doi.org/10.1016/j.rser.2016.06.001, DecemberUna Visión del Mercado Eléctrico Colombiano (2004) Mercado De Energía Eléctrica En Colombia-Análisis Comercial Y De Estrategias, pp. 1-110(2016) Boletín Estadístico: Minas Y energía 2012 , 2016, p. 200Wang, D., Luo, H., Grunder, O., Lin, Y., Guo, H., Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm (2017) Applied Energy, 190, pp. 390-407. , https://doi.org/10.1016/j.apenergy.2016.12.134Weron, R., Zator, M., A note on using the Hodrick Prescott filter in electricity markets (2015) Energy Economics, 48, pp. 1-6. , https://doi.org/10.1016/j.eneco.2014.11.014Yang, Z., Ce, L., Lian, L., Electricity price forecasting by a hybridmodel, combining wavelet transform, ARMA and kernel-based extreme learning machine methods (2017) Applied Energy, 190, pp. 291-305. , https://doi.org/10.1016/j.apenergy.2016.12.130Ziel, F., Steinert, R., Electricity price forecasting using sale and purchase curves: The X-Model (2016) Energy Economics, 59, pp. 435-454. , https://doi.org/10.1016/j.eneco.2016.08.008RISTI - Revista Iberica de Sistemas e Tecnologias de InformacaoElectricity price forecastingHodrickLong-term seasonal componentPrescott filterApplication of the hodrick-prescott model for the price forecast of electricity in Colombia [Aplicación del modelo de hodrick-prescott para el pronóstico del precio de la electricidad en Colombia]Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Arango, M., Universidad de Medellín/Universidad Nacional de Colombia, Medellín, Colombia; Galvis, J., Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecArango M.Galvis J.11407/5771oai:repository.udem.edu.co:11407/57712020-05-27 18:29:58.962Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co