Regression fusion framework: An approach for human capital evaluation
Intangible assets are currently one of the most prized resources of an organisation because of their ability to create value and their position as a competitive advantage. The production capability of the human capital (HC) is considered to be one of the most valuable intangible assets of the univer...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4564
- Acceso en línea:
- http://hdl.handle.net/11407/4564
- Palabra clave:
- Adaptive neural fuzzy inference system; Artificial neural networks; Human capital evaluation; Support vector regression
Competition; Education; Fuzzy logic; Fuzzy neural networks; Fuzzy systems; Inference engines; Job satisfaction; Knowledge management; Nearest neighbor search; Neural networks; Regression analysis; Societies and institutions; Adaptive neural fuzzy inference system (ANFIS); Competitive advantage; Dempster-Shafer algorithms; Higher education institutions; Human capitals; Production capabilities; Research productivity; Support vector regression (SVR); Fuzzy inference
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_6ddda969591d63e5e0d562c64065b8ac |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4564 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Regression fusion framework: An approach for human capital evaluation |
title |
Regression fusion framework: An approach for human capital evaluation |
spellingShingle |
Regression fusion framework: An approach for human capital evaluation Adaptive neural fuzzy inference system; Artificial neural networks; Human capital evaluation; Support vector regression Competition; Education; Fuzzy logic; Fuzzy neural networks; Fuzzy systems; Inference engines; Job satisfaction; Knowledge management; Nearest neighbor search; Neural networks; Regression analysis; Societies and institutions; Adaptive neural fuzzy inference system (ANFIS); Competitive advantage; Dempster-Shafer algorithms; Higher education institutions; Human capitals; Production capabilities; Research productivity; Support vector regression (SVR); Fuzzy inference |
title_short |
Regression fusion framework: An approach for human capital evaluation |
title_full |
Regression fusion framework: An approach for human capital evaluation |
title_fullStr |
Regression fusion framework: An approach for human capital evaluation |
title_full_unstemmed |
Regression fusion framework: An approach for human capital evaluation |
title_sort |
Regression fusion framework: An approach for human capital evaluation |
dc.contributor.affiliation.spa.fl_str_mv |
CEO Research Group, Universidad San Buenaventura, Colombia; GIRE Research Group, Institución Universitaria Salazar y Herrera, Colombia; GEA Research Group, Institución Universitaria Salazar y Herrera, Colombia; Universidad de Medellín, Colombia |
dc.subject.keyword.eng.fl_str_mv |
Adaptive neural fuzzy inference system; Artificial neural networks; Human capital evaluation; Support vector regression Competition; Education; Fuzzy logic; Fuzzy neural networks; Fuzzy systems; Inference engines; Job satisfaction; Knowledge management; Nearest neighbor search; Neural networks; Regression analysis; Societies and institutions; Adaptive neural fuzzy inference system (ANFIS); Competitive advantage; Dempster-Shafer algorithms; Higher education institutions; Human capitals; Production capabilities; Research productivity; Support vector regression (SVR); Fuzzy inference |
topic |
Adaptive neural fuzzy inference system; Artificial neural networks; Human capital evaluation; Support vector regression Competition; Education; Fuzzy logic; Fuzzy neural networks; Fuzzy systems; Inference engines; Job satisfaction; Knowledge management; Nearest neighbor search; Neural networks; Regression analysis; Societies and institutions; Adaptive neural fuzzy inference system (ANFIS); Competitive advantage; Dempster-Shafer algorithms; Higher education institutions; Human capitals; Production capabilities; Research productivity; Support vector regression (SVR); Fuzzy inference |
description |
Intangible assets are currently one of the most prized resources of an organisation because of their ability to create value and their position as a competitive advantage. The production capability of the human capital (HC) is considered to be one of the most valuable intangible assets of the universities. In fact, its evaluation allows identifying skills and capabilities of the organisation members, leading managers to make appropriate decisions when assigning activities and responsibilities to achieve specific goals efficiently. This paper presents a fusion framework for evaluating the human capital of the universities using Dempster-Shafer algorithm for fusing four regression systems (Adaptive neural fuzzy inference system- ANFIS, support vector regression-SVR, artificial neural networks - ANN, and k-nearest neighbour - KNN). Four criteria (work experience, education levels, skills, and job satisfaction) were established for assessing the human capital from 49 metrics, which were used as input of the regression systems. The Likert scale was used to obtain the perceptions and opinions of the experts (evaluators) to qualify the variables of each criterion. The system was validated using cross-fold validation and a database, which was constructed from a survey applied to 100 individuals professors of different categories from Colombian universities. The study allowed to measure the four criteria from 49 specific questions, which included personal information, research productivity, training activities, undergraduate and postgraduates, innovation, use of technology, among others. Finally, the clustering analysis and relevance analysis were carried out on the variables to group metrics and select the relevant variables into each established criteria. The results demonstrated that the proposed fusion framework is adequate to the human capital assessment of higher education institutions. Additionally, the fusion method achieved an accuracy greater than the individual regression systems. |
publishDate |
2017 |
dc.date.created.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2018-04-13T16:34:27Z |
dc.date.available.none.fl_str_mv |
2018-04-13T16:34:27Z |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.identifier.issn.none.fl_str_mv |
20488963 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4564 |
identifier_str_mv |
20488963 |
url |
http://hdl.handle.net/11407/4564 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035332735&partnerID=40&md5=db79e2ed0ed90f1adca5023ae76fb321 |
dc.relation.ispartofes.spa.fl_str_mv |
Proceedings of the European Conference on Knowledge Management, ECKM |
dc.relation.references.spa.fl_str_mv |
Becerra, M.A., Sánchez, M.B., Carvajal, J.G., Luna, J.A.G., Peluffo-Ordóñez, D.H., Tobón, C., "Data Fusion from Multiple Stations for Estimation of PM2.5 in Specific Geographical Location" (2017) Springer International Publishing, pp. 426-433. , https://doi.org/10.1007/978-3-319-52277-7_52; Becker, G.S., Front matter, human capital: a theoretical and empirical analysis, with special reference to education (1975) In Human Capital: A Theoretical and Empirical Analysis, with Special Reference to Education, Second Edition, pp. 20-22. , NBER; Beer, M., (1989) Gestión de recursos humanos, pp. 463-506. , Madrid: Centro de Publicaciones del Ministerio de Trabajo; Bontis, N., "Modelo Universidad de West Ontario" (1996), http://bvs.sld.cu/revistas/aci/vol13_6_05/aci060605.htm; Bourdreau, J.W., Ramstad, P., "Measuring Intellectual Capital: Learning from Financial History." (1997) Human Resource Management, 36 (3), pp. 343-356; Brooking, A., (1996) Intellectual Capital: core asset for the third millennium entreprise, , New York. Thomas Business Press; Bueno, E., "El capital Intangible como clave estratégica en la competencia actual" (1998) Boletín Estudios Económicos Deusto, 43 (164), pp. 207-229. , agosto; Bueno, E., "Hacia un modelo holístico de capital intelectual: El modelo Intellectus" (2002), www.acede.iub.es/papers/203-front.pdf; Bueno, E., (2003) Gestión del Conocimiento en Universidades y Organismos Públicos de Investigación, , Madrid: Dirección General de Investigación, Consejería de Educación, Comunidad de Madrid; Bueno, E., Salmador, M.P., Merino, C., "Génesis, concepto y desarrollo del capital intelectual en la economía del conocimiento: Una reflexión sobre el Modelo Intellectus y sus aplicaciones." (2008) Estudios de Economía Aplicada, 26 (2), pp. 43-63; Bueno, E., (2011) Model for the measurement and management of Intellectual Capital: Intellectus Model, , Universidad Autónoma de Madrid, Madrid; Cegarra, J.G., Rodrigo, B., "Influencia de los componentes del Capital Humano en el proceso de aprendizaje racional" (2003) Investigaciones Europeas de Dirección y Economía de la Empresa, 9 (3), pp. 159-182; Córcoles, Y.R., Importance of intellectual capital disclosure in Spanish universities (2013) Intangible Capital, 9 (3), pp. 931-944. , https://doi.org/10.3926/ic.348; Chiavenato, I., (1990) Modelo burocrático de organización, , Introducción a la teoría de administración. Antología básica. UPN Institución escolar. México; (2000) "A Guideline for Intellectual Capital Statements-A Key to Knowledge Management", , Copenhagen: Danish Trade and Industry Development Council; Davenport, T., De Long, D., Beers, M., "Building successful knowledge management project" (1997) Managing the knowledge of the organization, pp. 1-24; Duda, R., Hart, P., Stork, D., (2001) "Pattern classification", , 2a ed., Wiley, New York; Edvinsson, L., Malone, M.S., (1997) Intellectual Capital-Realising your Company's True Value by Finding its Hidden Brainpower, , Harper Business Publisher New York; Edvinsson, L., Kivikas, M., (2007) "Intellectual capital (IC) or Wissensbilanz process: some German experiences", , www.emeraldinsight.com/1469-1930.htm; (1998) "Medición del Capital Intelectual", , Madrid: Instituto Universitario Euroforum El Escorial; Fazlagic, A., Measuring the intellectual capital of a University (2005) Proceedings of the Conference on Trends in the Management of Human Resources in Higher Education, , http://www.oecd.org/dataoecd/56/16/35322785.pdf, Paris. OECD; Gimenez, G., "La dotación de capital humano de América Latina y el Caribe" (2005) Revista de la Cepal, 86, pp. 103-122; Hagan, M.T., Demuth, H.B., Beale, M., (1996) Neural Network Design, , PWS Publishing Company, Boston; Harper, S., Lynch, J., (1992) "Manuales de recursos humanos", , Madrid: Ed. Gaceta de los Negocios; Hernández, R.A., "Current state of intellectual capital and knowledge management in Risaralda's universities" (2007) Memorias Revista de Investigaciones, pp. 49-65; Jang, J., "ANFIS: adaptive-network-based fuzzy inference system" (1993) IEEE Trans Syst. Man Cybern, 23 (3), pp. 665-685; Mosquera, L.E., "Intellectual Capital Management of high education institution. Case Universidad Nacional de Manizales of Colombia" (2011), http://www.bdigital.unal.edu.co/4726/1/7709513.2011.pdf; Nava-Rogel, R.M., Mercado-Salgado, P., "Análisis de trayectoria del capital intelectual en una universidad pública mexicana" (2011) Revista Electrónica de Investigación Educativa, Vol, 13 (2), pp. 166-187; (2005) "Strategic Management for University Research", , Second University Panel Session. Observatory of the European University, Madrid; Ramírez, Y., "Intellectual capital management and reporting in European higher education institutions" (2013) Journal Intangible Capital, 9, pp. 1-19; Ramirez-Corcoles, Y., Manzaneque-Lizano, M., The relevance of intellectual capital disclosure: empirical evidence from Spanish universities (2015) Knowledge Management Research & Practice, 13 (1), pp. 31-44; Rex, P., Leona, M., Massingham, P.R., Tam, L., (2015) The relationship between human capital, , https://doi.org/10.1108/JIC-06-2014-0075, value creation and employee reward; Roos, G., Bainbridge, A., Jacobsen, K., "Intellectual capital analysis as a strategic tool" (2001) Strategy & Leadership, 29 (4), pp. 21-26; Saint-Onge, H., "Tacit knowledge: the key to strategic alignment of intelectual capital" (1996) Strategy and Leadership, 24, pp. 10-14; Salazar, J.M., Zarandona, X., "Valoración crítica de los modelos de gestión del conocimiento" XXI Congreso Anual AEDEM" (2006) Universidad Rey Juan Carlos, Madrid, 2, p. 50; Sánchez P.; Elena, S., "Managing Intellectual capital in Public Universities. The Autonomous University of Madrid Example" (2005) Proceedings of the 1st Workshop on Visualising, Measuring, and Managing Intangibles and Intellectual capital, , Ferrara, Italy; Secundo, G., Elena-Perez, S., Martinaitis, Ž., Leitner, K.-H., An intellectual capital maturity model (ICMM) to improve strategic management in European universities: A dynamic approach (2015) Journal of Information Systems, 16 (2), pp. 419-442. , https://doi.org/http://dx.doi.org/10.1108/09564230910978511; Secundo, G., Elena Perez, S., Martinaitis, Ž., Leitner, K.H., An Intellectual Capital framework to measure universities' third mission activities (2017) Technological Forecasting and Social Change, , https://doi.org/10.1016/j.techfore.2016.12.013; Sveiby, K., Model Intellectual Assets Monitor (1997), http://ascanio.blogspot.com/2007/05/intellectual-assetsmonitorsveiby-1997.html; Sumedrea, S., "Intellectual Capital and Firm Performance: A Dynamic Relationship in Crisis Time" (2013) Procedia Economics and Finance, 6, pp. 137-144; Vapnik, V.N., (2000) The Nature of Statistical Learning Theory, , New York, NY: Springer New York; Wang, P., "The reliable combination rule of evidence in Dempster-Shafer theory" (2008) Proceedings-1st International Congress on Image and Signal Processing, pp. 166-170. , CISP 2008, 2; Werther, W., Davis, K., (1991) Administración de Personas y Recursos Humanos, , México: Mc Graw-Hill; Zayas, P., (1996) ¿Cómo seleccionar al personal de la empresa, , Academia, Ciudad Habana |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Academic Conferences Limited |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159124039991296 |
spelling |
2018-04-13T16:34:27Z2018-04-13T16:34:27Z201720488963http://hdl.handle.net/11407/4564Intangible assets are currently one of the most prized resources of an organisation because of their ability to create value and their position as a competitive advantage. The production capability of the human capital (HC) is considered to be one of the most valuable intangible assets of the universities. In fact, its evaluation allows identifying skills and capabilities of the organisation members, leading managers to make appropriate decisions when assigning activities and responsibilities to achieve specific goals efficiently. This paper presents a fusion framework for evaluating the human capital of the universities using Dempster-Shafer algorithm for fusing four regression systems (Adaptive neural fuzzy inference system- ANFIS, support vector regression-SVR, artificial neural networks - ANN, and k-nearest neighbour - KNN). Four criteria (work experience, education levels, skills, and job satisfaction) were established for assessing the human capital from 49 metrics, which were used as input of the regression systems. The Likert scale was used to obtain the perceptions and opinions of the experts (evaluators) to qualify the variables of each criterion. The system was validated using cross-fold validation and a database, which was constructed from a survey applied to 100 individuals professors of different categories from Colombian universities. The study allowed to measure the four criteria from 49 specific questions, which included personal information, research productivity, training activities, undergraduate and postgraduates, innovation, use of technology, among others. Finally, the clustering analysis and relevance analysis were carried out on the variables to group metrics and select the relevant variables into each established criteria. The results demonstrated that the proposed fusion framework is adequate to the human capital assessment of higher education institutions. Additionally, the fusion method achieved an accuracy greater than the individual regression systems.engAcademic Conferences LimitedFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85035332735&partnerID=40&md5=db79e2ed0ed90f1adca5023ae76fb321Proceedings of the European Conference on Knowledge Management, ECKMBecerra, M.A., Sánchez, M.B., Carvajal, J.G., Luna, J.A.G., Peluffo-Ordóñez, D.H., Tobón, C., "Data Fusion from Multiple Stations for Estimation of PM2.5 in Specific Geographical Location" (2017) Springer International Publishing, pp. 426-433. , https://doi.org/10.1007/978-3-319-52277-7_52; Becker, G.S., Front matter, human capital: a theoretical and empirical analysis, with special reference to education (1975) In Human Capital: A Theoretical and Empirical Analysis, with Special Reference to Education, Second Edition, pp. 20-22. , NBER; Beer, M., (1989) Gestión de recursos humanos, pp. 463-506. , Madrid: Centro de Publicaciones del Ministerio de Trabajo; Bontis, N., "Modelo Universidad de West Ontario" (1996), http://bvs.sld.cu/revistas/aci/vol13_6_05/aci060605.htm; Bourdreau, J.W., Ramstad, P., "Measuring Intellectual Capital: Learning from Financial History." (1997) Human Resource Management, 36 (3), pp. 343-356; Brooking, A., (1996) Intellectual Capital: core asset for the third millennium entreprise, , New York. Thomas Business Press; Bueno, E., "El capital Intangible como clave estratégica en la competencia actual" (1998) Boletín Estudios Económicos Deusto, 43 (164), pp. 207-229. , agosto; Bueno, E., "Hacia un modelo holístico de capital intelectual: El modelo Intellectus" (2002), www.acede.iub.es/papers/203-front.pdf; Bueno, E., (2003) Gestión del Conocimiento en Universidades y Organismos Públicos de Investigación, , Madrid: Dirección General de Investigación, Consejería de Educación, Comunidad de Madrid; Bueno, E., Salmador, M.P., Merino, C., "Génesis, concepto y desarrollo del capital intelectual en la economía del conocimiento: Una reflexión sobre el Modelo Intellectus y sus aplicaciones." (2008) Estudios de Economía Aplicada, 26 (2), pp. 43-63; Bueno, E., (2011) Model for the measurement and management of Intellectual Capital: Intellectus Model, , Universidad Autónoma de Madrid, Madrid; Cegarra, J.G., Rodrigo, B., "Influencia de los componentes del Capital Humano en el proceso de aprendizaje racional" (2003) Investigaciones Europeas de Dirección y Economía de la Empresa, 9 (3), pp. 159-182; Córcoles, Y.R., Importance of intellectual capital disclosure in Spanish universities (2013) Intangible Capital, 9 (3), pp. 931-944. , https://doi.org/10.3926/ic.348; Chiavenato, I., (1990) Modelo burocrático de organización, , Introducción a la teoría de administración. Antología básica. UPN Institución escolar. México; (2000) "A Guideline for Intellectual Capital Statements-A Key to Knowledge Management", , Copenhagen: Danish Trade and Industry Development Council; Davenport, T., De Long, D., Beers, M., "Building successful knowledge management project" (1997) Managing the knowledge of the organization, pp. 1-24; Duda, R., Hart, P., Stork, D., (2001) "Pattern classification", , 2a ed., Wiley, New York; Edvinsson, L., Malone, M.S., (1997) Intellectual Capital-Realising your Company's True Value by Finding its Hidden Brainpower, , Harper Business Publisher New York; Edvinsson, L., Kivikas, M., (2007) "Intellectual capital (IC) or Wissensbilanz process: some German experiences", , www.emeraldinsight.com/1469-1930.htm; (1998) "Medición del Capital Intelectual", , Madrid: Instituto Universitario Euroforum El Escorial; Fazlagic, A., Measuring the intellectual capital of a University (2005) Proceedings of the Conference on Trends in the Management of Human Resources in Higher Education, , http://www.oecd.org/dataoecd/56/16/35322785.pdf, Paris. OECD; Gimenez, G., "La dotación de capital humano de América Latina y el Caribe" (2005) Revista de la Cepal, 86, pp. 103-122; Hagan, M.T., Demuth, H.B., Beale, M., (1996) Neural Network Design, , PWS Publishing Company, Boston; Harper, S., Lynch, J., (1992) "Manuales de recursos humanos", , Madrid: Ed. Gaceta de los Negocios; Hernández, R.A., "Current state of intellectual capital and knowledge management in Risaralda's universities" (2007) Memorias Revista de Investigaciones, pp. 49-65; Jang, J., "ANFIS: adaptive-network-based fuzzy inference system" (1993) IEEE Trans Syst. Man Cybern, 23 (3), pp. 665-685; Mosquera, L.E., "Intellectual Capital Management of high education institution. Case Universidad Nacional de Manizales of Colombia" (2011), http://www.bdigital.unal.edu.co/4726/1/7709513.2011.pdf; Nava-Rogel, R.M., Mercado-Salgado, P., "Análisis de trayectoria del capital intelectual en una universidad pública mexicana" (2011) Revista Electrónica de Investigación Educativa, Vol, 13 (2), pp. 166-187; (2005) "Strategic Management for University Research", , Second University Panel Session. Observatory of the European University, Madrid; Ramírez, Y., "Intellectual capital management and reporting in European higher education institutions" (2013) Journal Intangible Capital, 9, pp. 1-19; Ramirez-Corcoles, Y., Manzaneque-Lizano, M., The relevance of intellectual capital disclosure: empirical evidence from Spanish universities (2015) Knowledge Management Research & Practice, 13 (1), pp. 31-44; Rex, P., Leona, M., Massingham, P.R., Tam, L., (2015) The relationship between human capital, , https://doi.org/10.1108/JIC-06-2014-0075, value creation and employee reward; Roos, G., Bainbridge, A., Jacobsen, K., "Intellectual capital analysis as a strategic tool" (2001) Strategy & Leadership, 29 (4), pp. 21-26; Saint-Onge, H., "Tacit knowledge: the key to strategic alignment of intelectual capital" (1996) Strategy and Leadership, 24, pp. 10-14; Salazar, J.M., Zarandona, X., "Valoración crítica de los modelos de gestión del conocimiento" XXI Congreso Anual AEDEM" (2006) Universidad Rey Juan Carlos, Madrid, 2, p. 50; Sánchez P.; Elena, S., "Managing Intellectual capital in Public Universities. The Autonomous University of Madrid Example" (2005) Proceedings of the 1st Workshop on Visualising, Measuring, and Managing Intangibles and Intellectual capital, , Ferrara, Italy; Secundo, G., Elena-Perez, S., Martinaitis, Ž., Leitner, K.-H., An intellectual capital maturity model (ICMM) to improve strategic management in European universities: A dynamic approach (2015) Journal of Information Systems, 16 (2), pp. 419-442. , https://doi.org/http://dx.doi.org/10.1108/09564230910978511; Secundo, G., Elena Perez, S., Martinaitis, Ž., Leitner, K.H., An Intellectual Capital framework to measure universities' third mission activities (2017) Technological Forecasting and Social Change, , https://doi.org/10.1016/j.techfore.2016.12.013; Sveiby, K., Model Intellectual Assets Monitor (1997), http://ascanio.blogspot.com/2007/05/intellectual-assetsmonitorsveiby-1997.html; Sumedrea, S., "Intellectual Capital and Firm Performance: A Dynamic Relationship in Crisis Time" (2013) Procedia Economics and Finance, 6, pp. 137-144; Vapnik, V.N., (2000) The Nature of Statistical Learning Theory, , New York, NY: Springer New York; Wang, P., "The reliable combination rule of evidence in Dempster-Shafer theory" (2008) Proceedings-1st International Congress on Image and Signal Processing, pp. 166-170. , CISP 2008, 2; Werther, W., Davis, K., (1991) Administración de Personas y Recursos Humanos, , México: Mc Graw-Hill; Zayas, P., (1996) ¿Cómo seleccionar al personal de la empresa, , Academia, Ciudad HabanaScopusRegression fusion framework: An approach for human capital evaluationConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fCEO Research Group, Universidad San Buenaventura, Colombia; GIRE Research Group, Institución Universitaria Salazar y Herrera, Colombia; GEA Research Group, Institución Universitaria Salazar y Herrera, Colombia; Universidad de Medellín, ColombiaLondoño-Montoya E., Gomez-Bayona L., Moreno-López G., Duarte C.A., Marín L.G., Becerra M.Londoño-Montoya, E., CEO Research Group, Universidad San Buenaventura, Colombia, Universidad de Medellín, Colombia; Gomez-Bayona, L., GIRE Research Group, Institución Universitaria Salazar y Herrera, Colombia, Universidad de Medellín, Colombia; Moreno-López, G., CEO Research Group, Universidad San Buenaventura, Colombia, Universidad de Medellín, Colombia; Duarte, C.A., GEA Research Group, Institución Universitaria Salazar y Herrera, Colombia; Marín, L.G., Universidad de Medellín, Colombia; Becerra, M., GEA Research Group, Institución Universitaria Salazar y Herrera, ColombiaAdaptive neural fuzzy inference system; Artificial neural networks; Human capital evaluation; Support vector regressionCompetition; Education; Fuzzy logic; Fuzzy neural networks; Fuzzy systems; Inference engines; Job satisfaction; Knowledge management; Nearest neighbor search; Neural networks; Regression analysis; Societies and institutions; Adaptive neural fuzzy inference system (ANFIS); Competitive advantage; Dempster-Shafer algorithms; Higher education institutions; Human capitals; Production capabilities; Research productivity; Support vector regression (SVR); Fuzzy inferenceIntangible assets are currently one of the most prized resources of an organisation because of their ability to create value and their position as a competitive advantage. The production capability of the human capital (HC) is considered to be one of the most valuable intangible assets of the universities. In fact, its evaluation allows identifying skills and capabilities of the organisation members, leading managers to make appropriate decisions when assigning activities and responsibilities to achieve specific goals efficiently. This paper presents a fusion framework for evaluating the human capital of the universities using Dempster-Shafer algorithm for fusing four regression systems (Adaptive neural fuzzy inference system- ANFIS, support vector regression-SVR, artificial neural networks - ANN, and k-nearest neighbour - KNN). Four criteria (work experience, education levels, skills, and job satisfaction) were established for assessing the human capital from 49 metrics, which were used as input of the regression systems. The Likert scale was used to obtain the perceptions and opinions of the experts (evaluators) to qualify the variables of each criterion. The system was validated using cross-fold validation and a database, which was constructed from a survey applied to 100 individuals professors of different categories from Colombian universities. The study allowed to measure the four criteria from 49 specific questions, which included personal information, research productivity, training activities, undergraduate and postgraduates, innovation, use of technology, among others. Finally, the clustering analysis and relevance analysis were carried out on the variables to group metrics and select the relevant variables into each established criteria. The results demonstrated that the proposed fusion framework is adequate to the human capital assessment of higher education institutions. Additionally, the fusion method achieved an accuracy greater than the individual regression systems.http://purl.org/coar/access_right/c_16ec11407/4564oai:repository.udem.edu.co:11407/45642020-05-27 15:56:51.199Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |