Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction
The adsorption of atomic hydrogen on a platinum monolayer supported on orthorhombic Mo2C(100) surface has been investigated, considering different hydrogen surface coverages. Calculations have been performed using density functional theory with the Perdew–Burke–Ernzerhof exchange correlation functio...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5897
- Acceso en línea:
- http://hdl.handle.net/11407/5897
- Palabra clave:
- DFT
Electrocatalysis
HER
Pt
Supported monolayer
TMC
Atoms
Curve fitting
Density functional theory
Hydrogen
Hydrogen evolution reaction
Monolayers
Tungsten carbide
Van der Waals forces
Atomic hydrogen interaction
Catalytic potential
Effect of the support
Electrocatalytic system
Exchange-correlation functionals
Fundamental properties
Platinum monolayers
Van der Waals correction
Platinum
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_6cfd324c2e53b2038cd21aa197d726c5 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5897 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction |
title |
Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction |
spellingShingle |
Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction DFT Electrocatalysis HER Pt Supported monolayer TMC Atoms Curve fitting Density functional theory Hydrogen Hydrogen evolution reaction Monolayers Tungsten carbide Van der Waals forces Atomic hydrogen interaction Catalytic potential Effect of the support Electrocatalytic system Exchange-correlation functionals Fundamental properties Platinum monolayers Van der Waals correction Platinum |
title_short |
Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction |
title_full |
Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction |
title_fullStr |
Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction |
title_full_unstemmed |
Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction |
title_sort |
Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction |
dc.subject.spa.fl_str_mv |
DFT Electrocatalysis HER Pt Supported monolayer TMC |
topic |
DFT Electrocatalysis HER Pt Supported monolayer TMC Atoms Curve fitting Density functional theory Hydrogen Hydrogen evolution reaction Monolayers Tungsten carbide Van der Waals forces Atomic hydrogen interaction Catalytic potential Effect of the support Electrocatalytic system Exchange-correlation functionals Fundamental properties Platinum monolayers Van der Waals correction Platinum |
dc.subject.keyword.eng.fl_str_mv |
Atoms Curve fitting Density functional theory Hydrogen Hydrogen evolution reaction Monolayers Tungsten carbide Van der Waals forces Atomic hydrogen interaction Catalytic potential Effect of the support Electrocatalytic system Exchange-correlation functionals Fundamental properties Platinum monolayers Van der Waals correction Platinum |
description |
The adsorption of atomic hydrogen on a platinum monolayer supported on orthorhombic Mo2C(100) surface has been investigated, considering different hydrogen surface coverages. Calculations have been performed using density functional theory with the Perdew–Burke–Ernzerhof exchange correlation functional and a D3 van der Waals corrections. The theoretical insight has been gained into atomic hydrogen interaction with Pt monolayer, supported on both molybdenum and well-studied tungsten carbide, and considering hydrogen surface coverage. Fundamental properties of Pt adlayer depend on the support, affecting hydrogen evolution activity of the resulting systems. At low hydrogen coverage all systems, with the exception of Pt supported on the molybdenum-terminated Mo2C, adsorb H comparably to a pristine Pt(111) surface and their high activity for the hydrogen evolution reaction is predicted. At higher coverages supported Pt monolayers interact with atomic hydrogen unlike the Pt(111), suggesting that the activity of the supported and unsupported platinum toward hydrogen evolution reaction have different origins. Furthermore, the position of the supported platinum monolayers on the volcano curve is a function of the surface coverage, more so than for extended metal surfaces. Therefore, hydrogen surface coverage is a key variable to understand the catalytic potential, approaching towards an improved model for screening of electrocatalytic systems. © 2020 Elsevier Ltd |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:57:38Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:57:38Z |
dc.date.none.fl_str_mv |
2021 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
134686 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5897 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.electacta.2020.137598 |
identifier_str_mv |
134686 10.1016/j.electacta.2020.137598 |
url |
http://hdl.handle.net/11407/5897 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097901047&doi=10.1016%2fj.electacta.2020.137598&partnerID=40&md5=62b7467149e51c0d17bf5393161f0688 |
dc.relation.citationvolume.none.fl_str_mv |
368 |
dc.relation.references.none.fl_str_mv |
Youn, D.H., Han, S., Kim, J.Y., Kim, J.Y., Park, H., Choi, S.H., Lee, J.S., Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support (2014) ACS Nano, 8, pp. 5164-5173 Zheng, Y., Jiao, Y., Jaroniec, M., Qiao, S.Z., Advancing the electrochemistry of the hydrogen – evolution reaction through combining experiment (2015) Angew. Chem. – Int. Ed., 54, pp. 52-65 Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the exchange current for hydrogen evolution (2005) J. Electrochem. Soc., 152, p. J23 Trasatti, S., Work function, electronegativity, and electrochemical behaviour of metals. III. Electrolytic hydrogen evolution in acid solutions (1972) J. Electroanal. Chem., 39, pp. 163-184 Conway, B.E., Bockris, J.O., Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal (1957) J. Chem. Phys., 26, pp. 532-541 Marković P. N. Ross, N., Surface science studies of model fuel cell electrocatalysts (2002) Surf. Sci. Rep., 45, pp. 117-229 Yang, C.-J., An impending platinum crisis and its implications for the future of the automobile (2009) Energy Policy, 37, pp. 1805-1808 Gordon, R.B., Bertram, M., Graedel, T.E., Metal stocks and sustainability (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 1209-1214 Esposito, D.V., Hunt, S.T., Stottlemyer, A.L., Dobson, K.D., McCandless, B.E., Birkmire, R.W., Chen, J.G., Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates (2010) Angew. Chem. Int. Ed., 49, pp. 9859-9862 Esposito, D.V., Hunt, S.T., Kimmel, Y.C., Chen, J.G., A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides (2012) J. Am. Chem. Soc., 134, pp. 3025-3033 Levy, R.B., Boudart, M., Platinum-like behavior of tungsten carbide in surface catalysis (1973) Science, 181, pp. 547-549. , (80-.) Weidman, M.C., Esposito, D.V., Hsu, Y.-C., Chen, J.G., Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range (2012) J. Power Sources, 202, pp. 11-17 Gómez-Marín, A.M., Ticianelli, E.A., Analysis of the electrocatalytic activity of α-molybdenum carbide thin porous electrodes toward the hydrogen evolution reaction (2016) Electrochim. Acta, 220, pp. 363-372 Esposito, D.V., Chen, J.G., Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations (2011) Energy Environ. Sci., 4, p. 3900 Kelly, T.G., Lee, K.X., Chen, J.G., Pt-modified molybdenum carbide for the hydrogen evolution reaction: from model surfaces to powder electrocatalysts (2014) J. Power Sources, 271, pp. 76-81 Ma, C., Liu, T., Chen, L., A computational study of H2 dissociation and CO adsorption on the PtML/WC(0001) surface (2010) Appl. Surf. Sci., 256, pp. 7400-7405 Vasić, D.D., Pašti, I.A., Mentus, S.V., DFT study of platinum and palladium overlayers on tungsten carbide: structure and electrocatalytic activity toward hydrogen oxidation/evolution reaction (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018 Vasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., Is platinum necessary for efficient hydrogen evolution? - DFT study of metal monolayers on tungsten carbide (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079 Kurlov, A.S., Gusev, A.I., Tungsten carbides (2013) Structure, Properties and Application in Hardmetals, pp. 5-56. , 1st edn Springer International Publishing Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene and ethylene adsorption on a β-Mo2C(100) surface: a periodic DFT study on the role of C- and Mo-terminations for bonding and hydrogenation reactions (2017) J. Phys. Chem. C, 121, pp. 19786-19795 dos, J.R., Politi, S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617 Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C (001) surfaces (2014) Phys. Chem. Chem. Phys., pp. 14912-14921. , Royal Society of Chemistry Posada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts: mechanism for admetal induced change in the selectivity and activity (2016) Catal. Sci. Technol., 6, pp. 6766-6777 Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals (1993) Phys. Rev. B, 47, pp. 558-561 Kresse, G., Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metalamorphous – semiconductor transition in germanium (1994) Phys. Rev. B, 49, pp. 14251-14269 Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B – Condens. Matter Mater. Phys., 54, pp. 11169-11186 Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set (1996) Comput. Mater. Sci., 6, pp. 15-50 Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868 Blöchl, P.E., Projector augmented-wave method (1994) Phys. Rev. B, 50, pp. 17953-17979 Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B – Condens. Matter Mater. Phys., 59, pp. 1758-1775 Grimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections (2004) J. Comput. Chem., 25, pp. 1463-1473 Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J. Chem. Phys., 132 Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13, pp. 5188-5192 Methfessel, M., Paxton, A.T., High-precision sampling for Brillouin-zone integration in metals (1989) Phys. Rev. B, 40, pp. 3616-3621 Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., CO, CO2, and H2 Interactions with (0001) and (001) tungsten carbide surfaces: importance of carbon and metal sites (2019) J. Phys. Chem. C, 123, pp. 8871-8883 Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2 reduction (2020) Phys. Chem. Chem. Phys., 22, pp. 13666-13679 Posada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces (2015) J. Chem. Phys., 143 Bader, R.F.W., Atoms in Molecules: A Quantum Theory (1990), Oxford University Press Oxford, U.K Henkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density (2006) Comput. Mater. Sci., 36, pp. 354-360 Koverga, A.A., Frank, S., Koper, M.T.M., Density functional theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces (2013) Electrochim. Acta, 101, pp. 244-253 Momma, K., Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276 Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14, pp. 33-38 Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32 Yu, M., Liu, L., Wang, Q., Jia, L., Hou, B., Si, Y., Li, D., Zhao, Y., High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics (2018) Int. J. Hydrogen Energy, 43, pp. 5576-5590 Gudmundsdóttir, S., Skúlason, E., Weststrate, K.-J., Juurlink, L., Jónsson, H., Hydrogen adsorption and desorption at the Pt(110)-(1×2) surface: experimental and theoretical study (2013) Phys. Chem. Chem. Phys., 15, p. 6323 Pašti, I.A., Gavrilov, N.M., Mentus, S.V., Hydrogen adsorption on palladium and platinum overlayers: DFT study (2011) Adv. Phys. Chem., 2011, pp. 1-8 Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Catalytic activity and product selectivity trends for carbon dioxide electroreduction on transition metal-coated tungsten carbides (2017) J. Phys. Chem. C, 121, pp. 20306-20314 Da Silva, J.L.F., Stampfl, C., Scheffler, M., Converged properties of clean metal surfaces by all-electron first-principles calculations (2006) Surf. Sci., 600, pp. 703-715 Krishnamurthy, C.B., Lori, O., Elbaz, L., Grinberg, I., First-principles investigation of the formation of Pt nanorafts on a Mo2C support and their catalytic activity for oxygen reduction reaction (2018) J. Phys. Chem. Lett., 9, pp. 2229-2234 Hammer, B., Nørskov, J.K., Electronic factors determining the reactivity of metal surfaces (1995) Surf. Sci., 343, pp. 211-220 Hammer, B., Norskov, J.K., Why gold is the noblest of all the metals (1995) Nature, 376, pp. 238-240 Paßens, M., Caciuc, V., Atodiresei, N., Moors, M., Blügel, S., Waser, R., Karthäuser, S., Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst (2016) Nanoscale, 8, pp. 13924-13933 Duan, H., Hao, Q., Xu, C., Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction (2015) J. Power Sources, 280, pp. 483-490 Stamenkovic, V., Mun, B.S., Mayrhofer, K.J.J., Ross, P.N., Markovic, N.M., Rossmeisl, J., Greeley, J., Nørskov, J.K., Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure (2006) Angew. Chem., 118, pp. 2963-2967 Michalsky, R., Zhang, Y.J., Peterson, A.A., Trends in the hydrogen evolution activity of metal carbide catalysts (2014) ACS Catal., 4, pp. 1274-1278 Zhang, Q., Jiang, Z., Tackett, B.M., Denny, S.R., Tian, B., Chen, X., Wang, B., Chen, J.G., Trends and descriptors of metal-modified transition metal carbides for hydrogen evolution in alkaline electrolyte (2019) ACS Catal., 9, pp. 2415-2422 Olsen, R.A., Kroes, G.J., Baerends, E.J., Atomic and molecular hydrogen interacting with Pt(111) (1999) J. Chem. Phys., 111, pp. 11155-11163 Silveri, F., Quesne, M.G., Roldan, A., de Leeuw, N.H., Catlow, C.R.A., Hydrogen adsorption on transition metal carbides: a DFT study (2019) Phys. Chem. Chem. Phys., 21, pp. 5335-5343 Piñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of adsorbed hydrogen on the TiC(001) surface at high coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020 Zheng, W., Chen, L., Ma, C., Density functional study of H2O adsorption and dissociation on WC(0001) (2014) Comput. Theor. Chem., 1039, pp. 75-80 Tong, Y.J., Wu, S.Y., Chen, H.T., Adsorption and reaction of CO and H2O on WC(0001) surface: a first-principles investigation (2018) Appl. Surf. Sci., 428, pp. 579-585 Khoobiar, S., Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles (1964) J. Phys. Chem., 68, pp. 411-412 Beaumont, S.K., Alayoglu, S., Specht, C., Kruse, N., Somorjai, G.A., A nanoscale demonstration of hydrogen atom spillover and surface diffusion across silica using the kinetics of CO2 methanation catalyzed on spatially separate Pt and Co nanoparticles (2014) Nano Lett., 14, pp. 4792-4796 Merte, L.R., Peng, G., Bechstein, R., Rieboldt, F., Farberow, C.A., Grabow, L.C., Kudernatsch, W., Besenbacher, F., Water-mediated proton hopping on an iron oxide surface (2012) Science, 336, pp. 889-893. , (80-.) Li, B., Yim, W.L., Zhang, Q., Chen, L., A comparative study of hydrogen spillover on Pd and Pt decorated MoO3(010) surfaces from first principles (2010) J. Phys. Chem. C, 114, pp. 3052-3058 Sabatier, P., La Catalyse en Chimie Organique (1920), Librairie polytechnique Paris et Liege Conway, B.E., Jerkiewicz, G., Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics (2000) Electrochim. Acta, 45, pp. 4075-4083 Hamada, I., Morikawa, Y., Density-functional analysis of hydrogen on Pt(111): electric field, solvent, and coverage effects (2008) J. Phys. Chem. C, 112, pp. 10889-10898 Shi, Q., Sun, R., Adsorption manners of hydrogen on Pt(100), (110) and (111) surfaces at high coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49 Yan, L., Sun, Y., Yamamoto, Y., Kasamatsu, S., Hamada, I., Sugino, O., Hydrogen adsorption on Pt(111) revisited from random phase approximation (2018) J. Chem. Phys., 149 Jimenez-Orozco, C., Florez, E., Vines, F., Rodriguez, J.A., Illas, F., Critical hydrogen coverage effect on the hydrogenation of ethylene catalyzed by δ-MoC(001): an ab initio thermodynamic and kinetic study (2020) ACS Catal., 10, pp. 6213-6222 Trasatti, S., The electrode potential (1980) Comprehensive Treatise of Electrochemistry. Volume 1: Double Layer, pp. 45-83. , J. O'M. Bokris B.E. Conway E. Yeager Springer Science + Business Media New York |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
Electrochimica Acta |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159182533754880 |
spelling |
20212021-02-05T14:57:38Z2021-02-05T14:57:38Z134686http://hdl.handle.net/11407/589710.1016/j.electacta.2020.137598The adsorption of atomic hydrogen on a platinum monolayer supported on orthorhombic Mo2C(100) surface has been investigated, considering different hydrogen surface coverages. Calculations have been performed using density functional theory with the Perdew–Burke–Ernzerhof exchange correlation functional and a D3 van der Waals corrections. The theoretical insight has been gained into atomic hydrogen interaction with Pt monolayer, supported on both molybdenum and well-studied tungsten carbide, and considering hydrogen surface coverage. Fundamental properties of Pt adlayer depend on the support, affecting hydrogen evolution activity of the resulting systems. At low hydrogen coverage all systems, with the exception of Pt supported on the molybdenum-terminated Mo2C, adsorb H comparably to a pristine Pt(111) surface and their high activity for the hydrogen evolution reaction is predicted. At higher coverages supported Pt monolayers interact with atomic hydrogen unlike the Pt(111), suggesting that the activity of the supported and unsupported platinum toward hydrogen evolution reaction have different origins. Furthermore, the position of the supported platinum monolayers on the volcano curve is a function of the surface coverage, more so than for extended metal surfaces. Therefore, hydrogen surface coverage is a key variable to understand the catalytic potential, approaching towards an improved model for screening of electrocatalytic systems. © 2020 Elsevier LtdengElsevier LtdFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097901047&doi=10.1016%2fj.electacta.2020.137598&partnerID=40&md5=62b7467149e51c0d17bf5393161f0688368Youn, D.H., Han, S., Kim, J.Y., Kim, J.Y., Park, H., Choi, S.H., Lee, J.S., Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support (2014) ACS Nano, 8, pp. 5164-5173Zheng, Y., Jiao, Y., Jaroniec, M., Qiao, S.Z., Advancing the electrochemistry of the hydrogen – evolution reaction through combining experiment (2015) Angew. Chem. – Int. Ed., 54, pp. 52-65Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the exchange current for hydrogen evolution (2005) J. Electrochem. Soc., 152, p. J23Trasatti, S., Work function, electronegativity, and electrochemical behaviour of metals. III. Electrolytic hydrogen evolution in acid solutions (1972) J. Electroanal. Chem., 39, pp. 163-184Conway, B.E., Bockris, J.O., Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal (1957) J. Chem. Phys., 26, pp. 532-541Marković P. N. Ross, N., Surface science studies of model fuel cell electrocatalysts (2002) Surf. Sci. Rep., 45, pp. 117-229Yang, C.-J., An impending platinum crisis and its implications for the future of the automobile (2009) Energy Policy, 37, pp. 1805-1808Gordon, R.B., Bertram, M., Graedel, T.E., Metal stocks and sustainability (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 1209-1214Esposito, D.V., Hunt, S.T., Stottlemyer, A.L., Dobson, K.D., McCandless, B.E., Birkmire, R.W., Chen, J.G., Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates (2010) Angew. Chem. Int. Ed., 49, pp. 9859-9862Esposito, D.V., Hunt, S.T., Kimmel, Y.C., Chen, J.G., A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides (2012) J. Am. Chem. Soc., 134, pp. 3025-3033Levy, R.B., Boudart, M., Platinum-like behavior of tungsten carbide in surface catalysis (1973) Science, 181, pp. 547-549. , (80-.)Weidman, M.C., Esposito, D.V., Hsu, Y.-C., Chen, J.G., Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range (2012) J. Power Sources, 202, pp. 11-17Gómez-Marín, A.M., Ticianelli, E.A., Analysis of the electrocatalytic activity of α-molybdenum carbide thin porous electrodes toward the hydrogen evolution reaction (2016) Electrochim. Acta, 220, pp. 363-372Esposito, D.V., Chen, J.G., Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations (2011) Energy Environ. Sci., 4, p. 3900Kelly, T.G., Lee, K.X., Chen, J.G., Pt-modified molybdenum carbide for the hydrogen evolution reaction: from model surfaces to powder electrocatalysts (2014) J. Power Sources, 271, pp. 76-81Ma, C., Liu, T., Chen, L., A computational study of H2 dissociation and CO adsorption on the PtML/WC(0001) surface (2010) Appl. Surf. Sci., 256, pp. 7400-7405Vasić, D.D., Pašti, I.A., Mentus, S.V., DFT study of platinum and palladium overlayers on tungsten carbide: structure and electrocatalytic activity toward hydrogen oxidation/evolution reaction (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018Vasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., Is platinum necessary for efficient hydrogen evolution? - DFT study of metal monolayers on tungsten carbide (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079Kurlov, A.S., Gusev, A.I., Tungsten carbides (2013) Structure, Properties and Application in Hardmetals, pp. 5-56. , 1st edn Springer International PublishingJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene and ethylene adsorption on a β-Mo2C(100) surface: a periodic DFT study on the role of C- and Mo-terminations for bonding and hydrogenation reactions (2017) J. Phys. Chem. C, 121, pp. 19786-19795dos, J.R., Politi, S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C (001) surfaces (2014) Phys. Chem. Chem. Phys., pp. 14912-14921. , Royal Society of ChemistryPosada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts: mechanism for admetal induced change in the selectivity and activity (2016) Catal. Sci. Technol., 6, pp. 6766-6777Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals (1993) Phys. Rev. B, 47, pp. 558-561Kresse, G., Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metalamorphous – semiconductor transition in germanium (1994) Phys. Rev. B, 49, pp. 14251-14269Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B – Condens. Matter Mater. Phys., 54, pp. 11169-11186Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set (1996) Comput. Mater. Sci., 6, pp. 15-50Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868Blöchl, P.E., Projector augmented-wave method (1994) Phys. Rev. B, 50, pp. 17953-17979Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B – Condens. Matter Mater. Phys., 59, pp. 1758-1775Grimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections (2004) J. Comput. Chem., 25, pp. 1463-1473Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J. Chem. Phys., 132Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13, pp. 5188-5192Methfessel, M., Paxton, A.T., High-precision sampling for Brillouin-zone integration in metals (1989) Phys. Rev. B, 40, pp. 3616-3621Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., CO, CO2, and H2 Interactions with (0001) and (001) tungsten carbide surfaces: importance of carbon and metal sites (2019) J. Phys. Chem. C, 123, pp. 8871-8883Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2 reduction (2020) Phys. Chem. Chem. Phys., 22, pp. 13666-13679Posada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces (2015) J. Chem. Phys., 143Bader, R.F.W., Atoms in Molecules: A Quantum Theory (1990), Oxford University Press Oxford, U.KHenkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density (2006) Comput. Mater. Sci., 36, pp. 354-360Koverga, A.A., Frank, S., Koper, M.T.M., Density functional theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces (2013) Electrochim. Acta, 101, pp. 244-253Momma, K., Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14, pp. 33-38Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32Yu, M., Liu, L., Wang, Q., Jia, L., Hou, B., Si, Y., Li, D., Zhao, Y., High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics (2018) Int. J. Hydrogen Energy, 43, pp. 5576-5590Gudmundsdóttir, S., Skúlason, E., Weststrate, K.-J., Juurlink, L., Jónsson, H., Hydrogen adsorption and desorption at the Pt(110)-(1×2) surface: experimental and theoretical study (2013) Phys. Chem. Chem. Phys., 15, p. 6323Pašti, I.A., Gavrilov, N.M., Mentus, S.V., Hydrogen adsorption on palladium and platinum overlayers: DFT study (2011) Adv. Phys. Chem., 2011, pp. 1-8Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Catalytic activity and product selectivity trends for carbon dioxide electroreduction on transition metal-coated tungsten carbides (2017) J. Phys. Chem. C, 121, pp. 20306-20314Da Silva, J.L.F., Stampfl, C., Scheffler, M., Converged properties of clean metal surfaces by all-electron first-principles calculations (2006) Surf. Sci., 600, pp. 703-715Krishnamurthy, C.B., Lori, O., Elbaz, L., Grinberg, I., First-principles investigation of the formation of Pt nanorafts on a Mo2C support and their catalytic activity for oxygen reduction reaction (2018) J. Phys. Chem. Lett., 9, pp. 2229-2234Hammer, B., Nørskov, J.K., Electronic factors determining the reactivity of metal surfaces (1995) Surf. Sci., 343, pp. 211-220Hammer, B., Norskov, J.K., Why gold is the noblest of all the metals (1995) Nature, 376, pp. 238-240Paßens, M., Caciuc, V., Atodiresei, N., Moors, M., Blügel, S., Waser, R., Karthäuser, S., Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst (2016) Nanoscale, 8, pp. 13924-13933Duan, H., Hao, Q., Xu, C., Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction (2015) J. Power Sources, 280, pp. 483-490Stamenkovic, V., Mun, B.S., Mayrhofer, K.J.J., Ross, P.N., Markovic, N.M., Rossmeisl, J., Greeley, J., Nørskov, J.K., Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure (2006) Angew. Chem., 118, pp. 2963-2967Michalsky, R., Zhang, Y.J., Peterson, A.A., Trends in the hydrogen evolution activity of metal carbide catalysts (2014) ACS Catal., 4, pp. 1274-1278Zhang, Q., Jiang, Z., Tackett, B.M., Denny, S.R., Tian, B., Chen, X., Wang, B., Chen, J.G., Trends and descriptors of metal-modified transition metal carbides for hydrogen evolution in alkaline electrolyte (2019) ACS Catal., 9, pp. 2415-2422Olsen, R.A., Kroes, G.J., Baerends, E.J., Atomic and molecular hydrogen interacting with Pt(111) (1999) J. Chem. Phys., 111, pp. 11155-11163Silveri, F., Quesne, M.G., Roldan, A., de Leeuw, N.H., Catlow, C.R.A., Hydrogen adsorption on transition metal carbides: a DFT study (2019) Phys. Chem. Chem. Phys., 21, pp. 5335-5343Piñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of adsorbed hydrogen on the TiC(001) surface at high coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020Zheng, W., Chen, L., Ma, C., Density functional study of H2O adsorption and dissociation on WC(0001) (2014) Comput. Theor. Chem., 1039, pp. 75-80Tong, Y.J., Wu, S.Y., Chen, H.T., Adsorption and reaction of CO and H2O on WC(0001) surface: a first-principles investigation (2018) Appl. Surf. Sci., 428, pp. 579-585Khoobiar, S., Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles (1964) J. Phys. Chem., 68, pp. 411-412Beaumont, S.K., Alayoglu, S., Specht, C., Kruse, N., Somorjai, G.A., A nanoscale demonstration of hydrogen atom spillover and surface diffusion across silica using the kinetics of CO2 methanation catalyzed on spatially separate Pt and Co nanoparticles (2014) Nano Lett., 14, pp. 4792-4796Merte, L.R., Peng, G., Bechstein, R., Rieboldt, F., Farberow, C.A., Grabow, L.C., Kudernatsch, W., Besenbacher, F., Water-mediated proton hopping on an iron oxide surface (2012) Science, 336, pp. 889-893. , (80-.)Li, B., Yim, W.L., Zhang, Q., Chen, L., A comparative study of hydrogen spillover on Pd and Pt decorated MoO3(010) surfaces from first principles (2010) J. Phys. Chem. C, 114, pp. 3052-3058Sabatier, P., La Catalyse en Chimie Organique (1920), Librairie polytechnique Paris et LiegeConway, B.E., Jerkiewicz, G., Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics (2000) Electrochim. Acta, 45, pp. 4075-4083Hamada, I., Morikawa, Y., Density-functional analysis of hydrogen on Pt(111): electric field, solvent, and coverage effects (2008) J. Phys. Chem. C, 112, pp. 10889-10898Shi, Q., Sun, R., Adsorption manners of hydrogen on Pt(100), (110) and (111) surfaces at high coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49Yan, L., Sun, Y., Yamamoto, Y., Kasamatsu, S., Hamada, I., Sugino, O., Hydrogen adsorption on Pt(111) revisited from random phase approximation (2018) J. Chem. Phys., 149Jimenez-Orozco, C., Florez, E., Vines, F., Rodriguez, J.A., Illas, F., Critical hydrogen coverage effect on the hydrogenation of ethylene catalyzed by δ-MoC(001): an ab initio thermodynamic and kinetic study (2020) ACS Catal., 10, pp. 6213-6222Trasatti, S., The electrode potential (1980) Comprehensive Treatise of Electrochemistry. Volume 1: Double Layer, pp. 45-83. , J. O'M. Bokris B.E. Conway E. Yeager Springer Science + Business Media New YorkElectrochimica ActaDFTElectrocatalysisHERPtSupported monolayerTMCAtomsCurve fittingDensity functional theoryHydrogenHydrogen evolution reactionMonolayersTungsten carbideVan der Waals forcesAtomic hydrogen interactionCatalytic potentialEffect of the supportElectrocatalytic systemExchange-correlation functionalsFundamental propertiesPlatinum monolayersVan der Waals correctionPlatinumNot all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reactionArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Koverga, A.A., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, ColombiaFlórez, E., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, ColombiaJimenez-Orozco, C., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, ColombiaRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United Stateshttp://purl.org/coar/access_right/c_16ecKoverga A.A.Flórez E.Jimenez-Orozco C.Rodriguez J.A.11407/5897oai:repository.udem.edu.co:11407/58972021-02-05 09:57:38.512Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |