Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction

The adsorption of atomic hydrogen on a platinum monolayer supported on orthorhombic Mo2C(100) surface has been investigated, considering different hydrogen surface coverages. Calculations have been performed using density functional theory with the Perdew–Burke–Ernzerhof exchange correlation functio...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5897
Acceso en línea:
http://hdl.handle.net/11407/5897
Palabra clave:
DFT
Electrocatalysis
HER
Pt
Supported monolayer
TMC
Atoms
Curve fitting
Density functional theory
Hydrogen
Hydrogen evolution reaction
Monolayers
Tungsten carbide
Van der Waals forces
Atomic hydrogen interaction
Catalytic potential
Effect of the support
Electrocatalytic system
Exchange-correlation functionals
Fundamental properties
Platinum monolayers
Van der Waals correction
Platinum
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_6cfd324c2e53b2038cd21aa197d726c5
oai_identifier_str oai:repository.udem.edu.co:11407/5897
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction
title Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction
spellingShingle Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction
DFT
Electrocatalysis
HER
Pt
Supported monolayer
TMC
Atoms
Curve fitting
Density functional theory
Hydrogen
Hydrogen evolution reaction
Monolayers
Tungsten carbide
Van der Waals forces
Atomic hydrogen interaction
Catalytic potential
Effect of the support
Electrocatalytic system
Exchange-correlation functionals
Fundamental properties
Platinum monolayers
Van der Waals correction
Platinum
title_short Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction
title_full Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction
title_fullStr Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction
title_full_unstemmed Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction
title_sort Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction
dc.subject.spa.fl_str_mv DFT
Electrocatalysis
HER
Pt
Supported monolayer
TMC
topic DFT
Electrocatalysis
HER
Pt
Supported monolayer
TMC
Atoms
Curve fitting
Density functional theory
Hydrogen
Hydrogen evolution reaction
Monolayers
Tungsten carbide
Van der Waals forces
Atomic hydrogen interaction
Catalytic potential
Effect of the support
Electrocatalytic system
Exchange-correlation functionals
Fundamental properties
Platinum monolayers
Van der Waals correction
Platinum
dc.subject.keyword.eng.fl_str_mv Atoms
Curve fitting
Density functional theory
Hydrogen
Hydrogen evolution reaction
Monolayers
Tungsten carbide
Van der Waals forces
Atomic hydrogen interaction
Catalytic potential
Effect of the support
Electrocatalytic system
Exchange-correlation functionals
Fundamental properties
Platinum monolayers
Van der Waals correction
Platinum
description The adsorption of atomic hydrogen on a platinum monolayer supported on orthorhombic Mo2C(100) surface has been investigated, considering different hydrogen surface coverages. Calculations have been performed using density functional theory with the Perdew–Burke–Ernzerhof exchange correlation functional and a D3 van der Waals corrections. The theoretical insight has been gained into atomic hydrogen interaction with Pt monolayer, supported on both molybdenum and well-studied tungsten carbide, and considering hydrogen surface coverage. Fundamental properties of Pt adlayer depend on the support, affecting hydrogen evolution activity of the resulting systems. At low hydrogen coverage all systems, with the exception of Pt supported on the molybdenum-terminated Mo2C, adsorb H comparably to a pristine Pt(111) surface and their high activity for the hydrogen evolution reaction is predicted. At higher coverages supported Pt monolayers interact with atomic hydrogen unlike the Pt(111), suggesting that the activity of the supported and unsupported platinum toward hydrogen evolution reaction have different origins. Furthermore, the position of the supported platinum monolayers on the volcano curve is a function of the surface coverage, more so than for extended metal surfaces. Therefore, hydrogen surface coverage is a key variable to understand the catalytic potential, approaching towards an improved model for screening of electrocatalytic systems. © 2020 Elsevier Ltd
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:38Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:38Z
dc.date.none.fl_str_mv 2021
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 134686
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5897
dc.identifier.doi.none.fl_str_mv 10.1016/j.electacta.2020.137598
identifier_str_mv 134686
10.1016/j.electacta.2020.137598
url http://hdl.handle.net/11407/5897
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097901047&doi=10.1016%2fj.electacta.2020.137598&partnerID=40&md5=62b7467149e51c0d17bf5393161f0688
dc.relation.citationvolume.none.fl_str_mv 368
dc.relation.references.none.fl_str_mv Youn, D.H., Han, S., Kim, J.Y., Kim, J.Y., Park, H., Choi, S.H., Lee, J.S., Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support (2014) ACS Nano, 8, pp. 5164-5173
Zheng, Y., Jiao, Y., Jaroniec, M., Qiao, S.Z., Advancing the electrochemistry of the hydrogen – evolution reaction through combining experiment (2015) Angew. Chem. – Int. Ed., 54, pp. 52-65
Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the exchange current for hydrogen evolution (2005) J. Electrochem. Soc., 152, p. J23
Trasatti, S., Work function, electronegativity, and electrochemical behaviour of metals. III. Electrolytic hydrogen evolution in acid solutions (1972) J. Electroanal. Chem., 39, pp. 163-184
Conway, B.E., Bockris, J.O., Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal (1957) J. Chem. Phys., 26, pp. 532-541
Marković P. N. Ross, N., Surface science studies of model fuel cell electrocatalysts (2002) Surf. Sci. Rep., 45, pp. 117-229
Yang, C.-J., An impending platinum crisis and its implications for the future of the automobile (2009) Energy Policy, 37, pp. 1805-1808
Gordon, R.B., Bertram, M., Graedel, T.E., Metal stocks and sustainability (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 1209-1214
Esposito, D.V., Hunt, S.T., Stottlemyer, A.L., Dobson, K.D., McCandless, B.E., Birkmire, R.W., Chen, J.G., Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates (2010) Angew. Chem. Int. Ed., 49, pp. 9859-9862
Esposito, D.V., Hunt, S.T., Kimmel, Y.C., Chen, J.G., A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides (2012) J. Am. Chem. Soc., 134, pp. 3025-3033
Levy, R.B., Boudart, M., Platinum-like behavior of tungsten carbide in surface catalysis (1973) Science, 181, pp. 547-549. , (80-.)
Weidman, M.C., Esposito, D.V., Hsu, Y.-C., Chen, J.G., Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range (2012) J. Power Sources, 202, pp. 11-17
Gómez-Marín, A.M., Ticianelli, E.A., Analysis of the electrocatalytic activity of α-molybdenum carbide thin porous electrodes toward the hydrogen evolution reaction (2016) Electrochim. Acta, 220, pp. 363-372
Esposito, D.V., Chen, J.G., Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations (2011) Energy Environ. Sci., 4, p. 3900
Kelly, T.G., Lee, K.X., Chen, J.G., Pt-modified molybdenum carbide for the hydrogen evolution reaction: from model surfaces to powder electrocatalysts (2014) J. Power Sources, 271, pp. 76-81
Ma, C., Liu, T., Chen, L., A computational study of H2 dissociation and CO adsorption on the PtML/WC(0001) surface (2010) Appl. Surf. Sci., 256, pp. 7400-7405
Vasić, D.D., Pašti, I.A., Mentus, S.V., DFT study of platinum and palladium overlayers on tungsten carbide: structure and electrocatalytic activity toward hydrogen oxidation/evolution reaction (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018
Vasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., Is platinum necessary for efficient hydrogen evolution? - DFT study of metal monolayers on tungsten carbide (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079
Kurlov, A.S., Gusev, A.I., Tungsten carbides (2013) Structure, Properties and Application in Hardmetals, pp. 5-56. , 1st edn Springer International Publishing
Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene and ethylene adsorption on a β-Mo2C(100) surface: a periodic DFT study on the role of C- and Mo-terminations for bonding and hydrogenation reactions (2017) J. Phys. Chem. C, 121, pp. 19786-19795
dos, J.R., Politi, S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617
Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C (001) surfaces (2014) Phys. Chem. Chem. Phys., pp. 14912-14921. , Royal Society of Chemistry
Posada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts: mechanism for admetal induced change in the selectivity and activity (2016) Catal. Sci. Technol., 6, pp. 6766-6777
Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals (1993) Phys. Rev. B, 47, pp. 558-561
Kresse, G., Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metalamorphous – semiconductor transition in germanium (1994) Phys. Rev. B, 49, pp. 14251-14269
Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B – Condens. Matter Mater. Phys., 54, pp. 11169-11186
Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set (1996) Comput. Mater. Sci., 6, pp. 15-50
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
Blöchl, P.E., Projector augmented-wave method (1994) Phys. Rev. B, 50, pp. 17953-17979
Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B – Condens. Matter Mater. Phys., 59, pp. 1758-1775
Grimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections (2004) J. Comput. Chem., 25, pp. 1463-1473
Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J. Chem. Phys., 132
Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13, pp. 5188-5192
Methfessel, M., Paxton, A.T., High-precision sampling for Brillouin-zone integration in metals (1989) Phys. Rev. B, 40, pp. 3616-3621
Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., CO, CO2, and H2 Interactions with (0001) and (001) tungsten carbide surfaces: importance of carbon and metal sites (2019) J. Phys. Chem. C, 123, pp. 8871-8883
Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2 reduction (2020) Phys. Chem. Chem. Phys., 22, pp. 13666-13679
Posada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces (2015) J. Chem. Phys., 143
Bader, R.F.W., Atoms in Molecules: A Quantum Theory (1990), Oxford University Press Oxford, U.K
Henkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density (2006) Comput. Mater. Sci., 36, pp. 354-360
Koverga, A.A., Frank, S., Koper, M.T.M., Density functional theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces (2013) Electrochim. Acta, 101, pp. 244-253
Momma, K., Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276
Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14, pp. 33-38
Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32
Yu, M., Liu, L., Wang, Q., Jia, L., Hou, B., Si, Y., Li, D., Zhao, Y., High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics (2018) Int. J. Hydrogen Energy, 43, pp. 5576-5590
Gudmundsdóttir, S., Skúlason, E., Weststrate, K.-J., Juurlink, L., Jónsson, H., Hydrogen adsorption and desorption at the Pt(110)-(1×2) surface: experimental and theoretical study (2013) Phys. Chem. Chem. Phys., 15, p. 6323
Pašti, I.A., Gavrilov, N.M., Mentus, S.V., Hydrogen adsorption on palladium and platinum overlayers: DFT study (2011) Adv. Phys. Chem., 2011, pp. 1-8
Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Catalytic activity and product selectivity trends for carbon dioxide electroreduction on transition metal-coated tungsten carbides (2017) J. Phys. Chem. C, 121, pp. 20306-20314
Da Silva, J.L.F., Stampfl, C., Scheffler, M., Converged properties of clean metal surfaces by all-electron first-principles calculations (2006) Surf. Sci., 600, pp. 703-715
Krishnamurthy, C.B., Lori, O., Elbaz, L., Grinberg, I., First-principles investigation of the formation of Pt nanorafts on a Mo2C support and their catalytic activity for oxygen reduction reaction (2018) J. Phys. Chem. Lett., 9, pp. 2229-2234
Hammer, B., Nørskov, J.K., Electronic factors determining the reactivity of metal surfaces (1995) Surf. Sci., 343, pp. 211-220
Hammer, B., Norskov, J.K., Why gold is the noblest of all the metals (1995) Nature, 376, pp. 238-240
Paßens, M., Caciuc, V., Atodiresei, N., Moors, M., Blügel, S., Waser, R., Karthäuser, S., Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst (2016) Nanoscale, 8, pp. 13924-13933
Duan, H., Hao, Q., Xu, C., Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction (2015) J. Power Sources, 280, pp. 483-490
Stamenkovic, V., Mun, B.S., Mayrhofer, K.J.J., Ross, P.N., Markovic, N.M., Rossmeisl, J., Greeley, J., Nørskov, J.K., Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure (2006) Angew. Chem., 118, pp. 2963-2967
Michalsky, R., Zhang, Y.J., Peterson, A.A., Trends in the hydrogen evolution activity of metal carbide catalysts (2014) ACS Catal., 4, pp. 1274-1278
Zhang, Q., Jiang, Z., Tackett, B.M., Denny, S.R., Tian, B., Chen, X., Wang, B., Chen, J.G., Trends and descriptors of metal-modified transition metal carbides for hydrogen evolution in alkaline electrolyte (2019) ACS Catal., 9, pp. 2415-2422
Olsen, R.A., Kroes, G.J., Baerends, E.J., Atomic and molecular hydrogen interacting with Pt(111) (1999) J. Chem. Phys., 111, pp. 11155-11163
Silveri, F., Quesne, M.G., Roldan, A., de Leeuw, N.H., Catlow, C.R.A., Hydrogen adsorption on transition metal carbides: a DFT study (2019) Phys. Chem. Chem. Phys., 21, pp. 5335-5343
Piñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of adsorbed hydrogen on the TiC(001) surface at high coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020
Zheng, W., Chen, L., Ma, C., Density functional study of H2O adsorption and dissociation on WC(0001) (2014) Comput. Theor. Chem., 1039, pp. 75-80
Tong, Y.J., Wu, S.Y., Chen, H.T., Adsorption and reaction of CO and H2O on WC(0001) surface: a first-principles investigation (2018) Appl. Surf. Sci., 428, pp. 579-585
Khoobiar, S., Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles (1964) J. Phys. Chem., 68, pp. 411-412
Beaumont, S.K., Alayoglu, S., Specht, C., Kruse, N., Somorjai, G.A., A nanoscale demonstration of hydrogen atom spillover and surface diffusion across silica using the kinetics of CO2 methanation catalyzed on spatially separate Pt and Co nanoparticles (2014) Nano Lett., 14, pp. 4792-4796
Merte, L.R., Peng, G., Bechstein, R., Rieboldt, F., Farberow, C.A., Grabow, L.C., Kudernatsch, W., Besenbacher, F., Water-mediated proton hopping on an iron oxide surface (2012) Science, 336, pp. 889-893. , (80-.)
Li, B., Yim, W.L., Zhang, Q., Chen, L., A comparative study of hydrogen spillover on Pd and Pt decorated MoO3(010) surfaces from first principles (2010) J. Phys. Chem. C, 114, pp. 3052-3058
Sabatier, P., La Catalyse en Chimie Organique (1920), Librairie polytechnique Paris et Liege
Conway, B.E., Jerkiewicz, G., Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics (2000) Electrochim. Acta, 45, pp. 4075-4083
Hamada, I., Morikawa, Y., Density-functional analysis of hydrogen on Pt(111): electric field, solvent, and coverage effects (2008) J. Phys. Chem. C, 112, pp. 10889-10898
Shi, Q., Sun, R., Adsorption manners of hydrogen on Pt(100), (110) and (111) surfaces at high coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49
Yan, L., Sun, Y., Yamamoto, Y., Kasamatsu, S., Hamada, I., Sugino, O., Hydrogen adsorption on Pt(111) revisited from random phase approximation (2018) J. Chem. Phys., 149
Jimenez-Orozco, C., Florez, E., Vines, F., Rodriguez, J.A., Illas, F., Critical hydrogen coverage effect on the hydrogenation of ethylene catalyzed by δ-MoC(001): an ab initio thermodynamic and kinetic study (2020) ACS Catal., 10, pp. 6213-6222
Trasatti, S., The electrode potential (1980) Comprehensive Treatise of Electrochemistry. Volume 1: Double Layer, pp. 45-83. , J. O'M. Bokris B.E. Conway E. Yeager Springer Science + Business Media New York
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv Electrochimica Acta
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159182533754880
spelling 20212021-02-05T14:57:38Z2021-02-05T14:57:38Z134686http://hdl.handle.net/11407/589710.1016/j.electacta.2020.137598The adsorption of atomic hydrogen on a platinum monolayer supported on orthorhombic Mo2C(100) surface has been investigated, considering different hydrogen surface coverages. Calculations have been performed using density functional theory with the Perdew–Burke–Ernzerhof exchange correlation functional and a D3 van der Waals corrections. The theoretical insight has been gained into atomic hydrogen interaction with Pt monolayer, supported on both molybdenum and well-studied tungsten carbide, and considering hydrogen surface coverage. Fundamental properties of Pt adlayer depend on the support, affecting hydrogen evolution activity of the resulting systems. At low hydrogen coverage all systems, with the exception of Pt supported on the molybdenum-terminated Mo2C, adsorb H comparably to a pristine Pt(111) surface and their high activity for the hydrogen evolution reaction is predicted. At higher coverages supported Pt monolayers interact with atomic hydrogen unlike the Pt(111), suggesting that the activity of the supported and unsupported platinum toward hydrogen evolution reaction have different origins. Furthermore, the position of the supported platinum monolayers on the volcano curve is a function of the surface coverage, more so than for extended metal surfaces. Therefore, hydrogen surface coverage is a key variable to understand the catalytic potential, approaching towards an improved model for screening of electrocatalytic systems. © 2020 Elsevier LtdengElsevier LtdFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097901047&doi=10.1016%2fj.electacta.2020.137598&partnerID=40&md5=62b7467149e51c0d17bf5393161f0688368Youn, D.H., Han, S., Kim, J.Y., Kim, J.Y., Park, H., Choi, S.H., Lee, J.S., Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support (2014) ACS Nano, 8, pp. 5164-5173Zheng, Y., Jiao, Y., Jaroniec, M., Qiao, S.Z., Advancing the electrochemistry of the hydrogen – evolution reaction through combining experiment (2015) Angew. Chem. – Int. Ed., 54, pp. 52-65Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the exchange current for hydrogen evolution (2005) J. Electrochem. Soc., 152, p. J23Trasatti, S., Work function, electronegativity, and electrochemical behaviour of metals. III. Electrolytic hydrogen evolution in acid solutions (1972) J. Electroanal. Chem., 39, pp. 163-184Conway, B.E., Bockris, J.O., Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal (1957) J. Chem. Phys., 26, pp. 532-541Marković P. N. Ross, N., Surface science studies of model fuel cell electrocatalysts (2002) Surf. Sci. Rep., 45, pp. 117-229Yang, C.-J., An impending platinum crisis and its implications for the future of the automobile (2009) Energy Policy, 37, pp. 1805-1808Gordon, R.B., Bertram, M., Graedel, T.E., Metal stocks and sustainability (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 1209-1214Esposito, D.V., Hunt, S.T., Stottlemyer, A.L., Dobson, K.D., McCandless, B.E., Birkmire, R.W., Chen, J.G., Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates (2010) Angew. Chem. Int. Ed., 49, pp. 9859-9862Esposito, D.V., Hunt, S.T., Kimmel, Y.C., Chen, J.G., A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides (2012) J. Am. Chem. Soc., 134, pp. 3025-3033Levy, R.B., Boudart, M., Platinum-like behavior of tungsten carbide in surface catalysis (1973) Science, 181, pp. 547-549. , (80-.)Weidman, M.C., Esposito, D.V., Hsu, Y.-C., Chen, J.G., Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range (2012) J. Power Sources, 202, pp. 11-17Gómez-Marín, A.M., Ticianelli, E.A., Analysis of the electrocatalytic activity of α-molybdenum carbide thin porous electrodes toward the hydrogen evolution reaction (2016) Electrochim. Acta, 220, pp. 363-372Esposito, D.V., Chen, J.G., Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations (2011) Energy Environ. Sci., 4, p. 3900Kelly, T.G., Lee, K.X., Chen, J.G., Pt-modified molybdenum carbide for the hydrogen evolution reaction: from model surfaces to powder electrocatalysts (2014) J. Power Sources, 271, pp. 76-81Ma, C., Liu, T., Chen, L., A computational study of H2 dissociation and CO adsorption on the PtML/WC(0001) surface (2010) Appl. Surf. Sci., 256, pp. 7400-7405Vasić, D.D., Pašti, I.A., Mentus, S.V., DFT study of platinum and palladium overlayers on tungsten carbide: structure and electrocatalytic activity toward hydrogen oxidation/evolution reaction (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018Vasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., Is platinum necessary for efficient hydrogen evolution? - DFT study of metal monolayers on tungsten carbide (2013) Int. J. Hydrogen Energy, 38, pp. 16071-16079Kurlov, A.S., Gusev, A.I., Tungsten carbides (2013) Structure, Properties and Application in Hardmetals, pp. 5-56. , 1st edn Springer International PublishingJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., Acetylene and ethylene adsorption on a β-Mo2C(100) surface: a periodic DFT study on the role of C- and Mo-terminations for bonding and hydrogenation reactions (2017) J. Phys. Chem. C, 121, pp. 19786-19795dos, J.R., Politi, S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C (001) surfaces (2014) Phys. Chem. Chem. Phys., pp. 14912-14921. , Royal Society of ChemistryPosada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts: mechanism for admetal induced change in the selectivity and activity (2016) Catal. Sci. Technol., 6, pp. 6766-6777Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals (1993) Phys. Rev. B, 47, pp. 558-561Kresse, G., Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metalamorphous – semiconductor transition in germanium (1994) Phys. Rev. B, 49, pp. 14251-14269Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B – Condens. Matter Mater. Phys., 54, pp. 11169-11186Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set (1996) Comput. Mater. Sci., 6, pp. 15-50Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868Blöchl, P.E., Projector augmented-wave method (1994) Phys. Rev. B, 50, pp. 17953-17979Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B – Condens. Matter Mater. Phys., 59, pp. 1758-1775Grimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections (2004) J. Comput. Chem., 25, pp. 1463-1473Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J. Chem. Phys., 132Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13, pp. 5188-5192Methfessel, M., Paxton, A.T., High-precision sampling for Brillouin-zone integration in metals (1989) Phys. Rev. B, 40, pp. 3616-3621Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., CO, CO2, and H2 Interactions with (0001) and (001) tungsten carbide surfaces: importance of carbon and metal sites (2019) J. Phys. Chem. C, 123, pp. 8871-8883Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2 reduction (2020) Phys. Chem. Chem. Phys., 22, pp. 13666-13679Posada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces (2015) J. Chem. Phys., 143Bader, R.F.W., Atoms in Molecules: A Quantum Theory (1990), Oxford University Press Oxford, U.KHenkelman, G., Arnaldsson, A., Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density (2006) Comput. Mater. Sci., 36, pp. 354-360Koverga, A.A., Frank, S., Koper, M.T.M., Density functional theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces (2013) Electrochim. Acta, 101, pp. 244-253Momma, K., Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14, pp. 33-38Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32Yu, M., Liu, L., Wang, Q., Jia, L., Hou, B., Si, Y., Li, D., Zhao, Y., High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics (2018) Int. J. Hydrogen Energy, 43, pp. 5576-5590Gudmundsdóttir, S., Skúlason, E., Weststrate, K.-J., Juurlink, L., Jónsson, H., Hydrogen adsorption and desorption at the Pt(110)-(1×2) surface: experimental and theoretical study (2013) Phys. Chem. Chem. Phys., 15, p. 6323Pašti, I.A., Gavrilov, N.M., Mentus, S.V., Hydrogen adsorption on palladium and platinum overlayers: DFT study (2011) Adv. Phys. Chem., 2011, pp. 1-8Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Catalytic activity and product selectivity trends for carbon dioxide electroreduction on transition metal-coated tungsten carbides (2017) J. Phys. Chem. C, 121, pp. 20306-20314Da Silva, J.L.F., Stampfl, C., Scheffler, M., Converged properties of clean metal surfaces by all-electron first-principles calculations (2006) Surf. Sci., 600, pp. 703-715Krishnamurthy, C.B., Lori, O., Elbaz, L., Grinberg, I., First-principles investigation of the formation of Pt nanorafts on a Mo2C support and their catalytic activity for oxygen reduction reaction (2018) J. Phys. Chem. Lett., 9, pp. 2229-2234Hammer, B., Nørskov, J.K., Electronic factors determining the reactivity of metal surfaces (1995) Surf. Sci., 343, pp. 211-220Hammer, B., Norskov, J.K., Why gold is the noblest of all the metals (1995) Nature, 376, pp. 238-240Paßens, M., Caciuc, V., Atodiresei, N., Moors, M., Blügel, S., Waser, R., Karthäuser, S., Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst (2016) Nanoscale, 8, pp. 13924-13933Duan, H., Hao, Q., Xu, C., Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction (2015) J. Power Sources, 280, pp. 483-490Stamenkovic, V., Mun, B.S., Mayrhofer, K.J.J., Ross, P.N., Markovic, N.M., Rossmeisl, J., Greeley, J., Nørskov, J.K., Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure (2006) Angew. Chem., 118, pp. 2963-2967Michalsky, R., Zhang, Y.J., Peterson, A.A., Trends in the hydrogen evolution activity of metal carbide catalysts (2014) ACS Catal., 4, pp. 1274-1278Zhang, Q., Jiang, Z., Tackett, B.M., Denny, S.R., Tian, B., Chen, X., Wang, B., Chen, J.G., Trends and descriptors of metal-modified transition metal carbides for hydrogen evolution in alkaline electrolyte (2019) ACS Catal., 9, pp. 2415-2422Olsen, R.A., Kroes, G.J., Baerends, E.J., Atomic and molecular hydrogen interacting with Pt(111) (1999) J. Chem. Phys., 111, pp. 11155-11163Silveri, F., Quesne, M.G., Roldan, A., de Leeuw, N.H., Catlow, C.R.A., Hydrogen adsorption on transition metal carbides: a DFT study (2019) Phys. Chem. Chem. Phys., 21, pp. 5335-5343Piñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of adsorbed hydrogen on the TiC(001) surface at high coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020Zheng, W., Chen, L., Ma, C., Density functional study of H2O adsorption and dissociation on WC(0001) (2014) Comput. Theor. Chem., 1039, pp. 75-80Tong, Y.J., Wu, S.Y., Chen, H.T., Adsorption and reaction of CO and H2O on WC(0001) surface: a first-principles investigation (2018) Appl. Surf. Sci., 428, pp. 579-585Khoobiar, S., Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles (1964) J. Phys. Chem., 68, pp. 411-412Beaumont, S.K., Alayoglu, S., Specht, C., Kruse, N., Somorjai, G.A., A nanoscale demonstration of hydrogen atom spillover and surface diffusion across silica using the kinetics of CO2 methanation catalyzed on spatially separate Pt and Co nanoparticles (2014) Nano Lett., 14, pp. 4792-4796Merte, L.R., Peng, G., Bechstein, R., Rieboldt, F., Farberow, C.A., Grabow, L.C., Kudernatsch, W., Besenbacher, F., Water-mediated proton hopping on an iron oxide surface (2012) Science, 336, pp. 889-893. , (80-.)Li, B., Yim, W.L., Zhang, Q., Chen, L., A comparative study of hydrogen spillover on Pd and Pt decorated MoO3(010) surfaces from first principles (2010) J. Phys. Chem. C, 114, pp. 3052-3058Sabatier, P., La Catalyse en Chimie Organique (1920), Librairie polytechnique Paris et LiegeConway, B.E., Jerkiewicz, G., Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics (2000) Electrochim. Acta, 45, pp. 4075-4083Hamada, I., Morikawa, Y., Density-functional analysis of hydrogen on Pt(111): electric field, solvent, and coverage effects (2008) J. Phys. Chem. C, 112, pp. 10889-10898Shi, Q., Sun, R., Adsorption manners of hydrogen on Pt(100), (110) and (111) surfaces at high coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49Yan, L., Sun, Y., Yamamoto, Y., Kasamatsu, S., Hamada, I., Sugino, O., Hydrogen adsorption on Pt(111) revisited from random phase approximation (2018) J. Chem. Phys., 149Jimenez-Orozco, C., Florez, E., Vines, F., Rodriguez, J.A., Illas, F., Critical hydrogen coverage effect on the hydrogenation of ethylene catalyzed by δ-MoC(001): an ab initio thermodynamic and kinetic study (2020) ACS Catal., 10, pp. 6213-6222Trasatti, S., The electrode potential (1980) Comprehensive Treatise of Electrochemistry. Volume 1: Double Layer, pp. 45-83. , J. O'M. Bokris B.E. Conway E. Yeager Springer Science + Business Media New YorkElectrochimica ActaDFTElectrocatalysisHERPtSupported monolayerTMCAtomsCurve fittingDensity functional theoryHydrogenHydrogen evolution reactionMonolayersTungsten carbideVan der Waals forcesAtomic hydrogen interactionCatalytic potentialEffect of the supportElectrocatalytic systemExchange-correlation functionalsFundamental propertiesPlatinum monolayersVan der Waals correctionPlatinumNot all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reactionArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Koverga, A.A., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, ColombiaFlórez, E., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, ColombiaJimenez-Orozco, C., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, ColombiaRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United Stateshttp://purl.org/coar/access_right/c_16ecKoverga A.A.Flórez E.Jimenez-Orozco C.Rodriguez J.A.11407/5897oai:repository.udem.edu.co:11407/58972021-02-05 09:57:38.512Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co