New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B

In this work, anodic oxide layers on the surface of an AZ31 magnesium alloy were obtained by plasma electrolytic oxidation (PEO) process under low frequency pulsed current. For this, electrolytical solutions containing hexamethylenetetramine and sodium fluoride were used. The morphology and chemical...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5737
Acceso en línea:
http://hdl.handle.net/11407/5737
Palabra clave:
anodizing
corrosion
Mg-Al-Zn alloys
plasma electrolytic oxidation
salt fog test
Aluminum alloys
Aluminum corrosion
Anodic oxidation
Atmospheric corrosion
Coatings
Corrosion
Corrosive effects
Electrochemical impedance spectroscopy
Electrolysis
Energy dispersive spectroscopy
Fourier transform infrared spectroscopy
Hydrogen
Magnesium alloys
Morphology
Porosity
Scanning electron microscopy
Seawater corrosion
Sodium Fluoride
Ternary alloys
Testing
Zinc alloys
Chemical compositions
Corrosion measurements
Electrochemical test
Energy dispersive spectroscopies (EDS)
Mg-Al -Zn alloys
Morphological characteristic
Plasma electrolytic oxidation
Salt fog test
Electrochemical corrosion
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_6a9e8e462522acfcb0c702d50f0141b8
oai_identifier_str oai:repository.udem.edu.co:11407/5737
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B
title New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B
spellingShingle New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B
anodizing
corrosion
Mg-Al-Zn alloys
plasma electrolytic oxidation
salt fog test
Aluminum alloys
Aluminum corrosion
Anodic oxidation
Atmospheric corrosion
Coatings
Corrosion
Corrosive effects
Electrochemical impedance spectroscopy
Electrolysis
Energy dispersive spectroscopy
Fourier transform infrared spectroscopy
Hydrogen
Magnesium alloys
Morphology
Porosity
Scanning electron microscopy
Seawater corrosion
Sodium Fluoride
Ternary alloys
Testing
Zinc alloys
Chemical compositions
Corrosion measurements
Electrochemical test
Energy dispersive spectroscopies (EDS)
Mg-Al -Zn alloys
Morphological characteristic
Plasma electrolytic oxidation
Salt fog test
Electrochemical corrosion
title_short New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B
title_full New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B
title_fullStr New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B
title_full_unstemmed New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B
title_sort New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B
dc.subject.none.fl_str_mv anodizing
corrosion
Mg-Al-Zn alloys
plasma electrolytic oxidation
salt fog test
Aluminum alloys
Aluminum corrosion
Anodic oxidation
Atmospheric corrosion
Coatings
Corrosion
Corrosive effects
Electrochemical impedance spectroscopy
Electrolysis
Energy dispersive spectroscopy
Fourier transform infrared spectroscopy
Hydrogen
Magnesium alloys
Morphology
Porosity
Scanning electron microscopy
Seawater corrosion
Sodium Fluoride
Ternary alloys
Testing
Zinc alloys
Chemical compositions
Corrosion measurements
Electrochemical test
Energy dispersive spectroscopies (EDS)
Mg-Al -Zn alloys
Morphological characteristic
Plasma electrolytic oxidation
Salt fog test
Electrochemical corrosion
topic anodizing
corrosion
Mg-Al-Zn alloys
plasma electrolytic oxidation
salt fog test
Aluminum alloys
Aluminum corrosion
Anodic oxidation
Atmospheric corrosion
Coatings
Corrosion
Corrosive effects
Electrochemical impedance spectroscopy
Electrolysis
Energy dispersive spectroscopy
Fourier transform infrared spectroscopy
Hydrogen
Magnesium alloys
Morphology
Porosity
Scanning electron microscopy
Seawater corrosion
Sodium Fluoride
Ternary alloys
Testing
Zinc alloys
Chemical compositions
Corrosion measurements
Electrochemical test
Energy dispersive spectroscopies (EDS)
Mg-Al -Zn alloys
Morphological characteristic
Plasma electrolytic oxidation
Salt fog test
Electrochemical corrosion
description In this work, anodic oxide layers on the surface of an AZ31 magnesium alloy were obtained by plasma electrolytic oxidation (PEO) process under low frequency pulsed current. For this, electrolytical solutions containing hexamethylenetetramine and sodium fluoride were used. The morphology and chemical composition of formed coatings were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Also, salt spray test, hydrogen evolution and electrochemical tests (potentiodynamic polarization and electrochemical impedance spectroscopy) were conducted in order to study the corrosion behavior of the coated samples. It was found that the use of low frequency pulsed current for the PEO process reduces the film porosity and increases its thickness, compared with PEO films obtained by continuous anodization. The effect of the pulsed current signal was also analyzed for a two steps PEO process, observing changes in the morphological characteristics of the coatings which allow a better corrosion according electrochemical tests (short term corrosion measurements). However, long term tests results as hydrogen evolution and salt spray tests, indicated the opposite. Both the film porosity and thickness were affected by either the pulsing of the current or the use of a two-step process. © 2020 The Author(s). Published by IOP Publishing Ltd.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:49Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:49Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 20531591
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5737
dc.identifier.doi.none.fl_str_mv 10.1088/2053-1591/ab61ac
identifier_str_mv 20531591
10.1088/2053-1591/ab61ac
url http://hdl.handle.net/11407/5737
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078114537&doi=10.1088%2f2053-1591%2fab61ac&partnerID=40&md5=7a4ad2169e0860bd2a75097f1fe97774
dc.relation.citationvolume.none.fl_str_mv 7
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.references.none.fl_str_mv Alam, M.E.E., Han, S., Hamouda, A.S., Nguyen, Q.B., Gupta, M., (2011) Magnesium Technology 2011, pp. 553-558
Cho, K., Magnesium technology and manufacturing for ultra lightweight armored ground vehicles (2009) Proc. Of the 2008 Army Science Conf.
Esmaily, M., Fundamentals and advances in magnesium alloy corrosion (2017) Prog. Mater Sci., 89, pp. 92-193
Calderón, J.A., Jiménez, J.P., Zuleta, A.A., Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings (2016) Surf. Coatings Technol., 304, pp. 167-178
Research, E., Tech Brief, D., (2009), pp. 75-77
Cao, F., Song, G.-L., Atrens, A., Corrosion and passivation of magnesium alloys (2016) Corros. Sci., 111, pp. 835-845
Li, J., Jiang, Q., Sun, H., Li, Y., Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt% sodium chloride solution (2016) Corros. Sci., 111, pp. 288-301
Gray, J.E., Luan, B., Protective coatings on magnesium and its alloys-a critical review (2002) J. Alloys Compd., 336, pp. 88-113
Segarra, J.A., Calderón, B., Portolés, A., Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests (2015) Rev. Metal., 51, p. e050
Sreekanth, D., Rameshbabu, N., Venkateswarlu, K., Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation (2012) Ceram. Int., 38, pp. 4607-4615
Ramalingam, V.V., Ramasamy, P., Kovukkal, M.D., Myilsamy, G., Research and development in magnesium alloys for industrial and biomedical applications: A review (2019) Met. Mater. Int., 24
Ashassi-Sorkhabi, H., Moradi-Alavian, S., Jafari, R., Kazempour, A., Asghari, E., Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol-gel coating applied on AZ91 Mg alloy (2019) Mater. Chem. Phys., 225, pp. 298-308
Hsu, C., Nazari, M.H., Li, Q., Shi, X., Enhancing degradation and corrosion resistance of AZ31 magnesium alloy through hydrophobic coating (2019) Mater. Chem. Phys., 225, pp. 426-432
Wang, Y., An organic/inorganic composite multi-layer coating to improve the corrosion resistance of AZ31B Mg alloy (2019) Surf. Coatings Technol., 360, pp. 276-284
Nazeer, A.A., Al-Hetlani, E., Amin, M.O., Quiñones-Ruiz, T., Lednev, I.K., A poly(butyl methacrylate)/graphene oxide/TiO2 nanocomposite coating with superior corrosion protection for AZ31 alloy in chloride solution (2019) Chem. Eng. J., 361, pp. 485-498
Dehnavi, V., Luan, B.L., Shoesmith, D.W., Liu, X.Y., Rohani, S., Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior (2013) Surf. Coatings Technol., 226, pp. 100-107
Zhang, R.F., Film formation in the second step of micro-arc oxidation on magnesium alloys (2010) Corros. Sci., 52, pp. 1285-1290
Arrabal, R., Matykina, E., Hashimoto, T., Skeldon, P., Thompson, G.E., Characterization of AC PEO coatings on magnesium alloys (2009) Surf. Coatings Technol., 203, pp. 2207-2220
Barati Darband, G., Aliofkhazraei, M., Hamghalam, P., Valizade, N., Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications (2017) J. Magnes. Alloy., 5, pp. 74-132
Xin, Y.C., Chu, P.K., (2010) Surface Engineering of Light Alloys, pp. 362-397
Ur Rehman, Z., Koo, B.H., Effect of Na2SiO3 ·5H2O concentration on the microstructure and corrosion properties of two-step PEO coatings formed on AZ91 alloy (2017) Surf. Coatings Technol., 317, pp. 117-124
Bai, A., Chen, Z.-J., Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D (2009) Surf. Coatings Technol., 203, pp. 1956-1963
Lin, C.S., Fu, Y.C., Characterization of anodic films on AZ31 magnesium alloys in alkaline solutions containing fluoride and phosphate anions (2006) J. Electrochem. Soc., 153, p. B417
Chen, H., Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives (2010) Surf. Coatings Technol., 205, pp. S32-S35
Echeverry-Rendon, M., Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives (2018) J. Biomater. Appl., 33, pp. 725-740
Einkhah, F., Lee, K.M., Sani, M.A.F., Yoo, B., Shin, D.H., Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation (2014) Surf. Coatings Technol., 238, pp. 75-79
Lee, K.M., Ko, Y.G., Shin, D.H., Microstructural characteristics of oxide layers formed on Mg-9wt%Al-1wt%Zn alloy via two-step plasma electrolytic oxidation (2014) J. Alloys Compd., 615, pp. S418-S422
Tsunekawa, S., Aoki, Y., Habazaki, H., Two-step plasma electrolytic oxidation of Ti-15V-3Al-3Cr-3Sn for wear-resistant and adhesive coating (2011) Surf. Coatings Technol., 205, pp. 4732-4740
Raj, V., Rajaram, M.P., Balasubramanian, G., Vincent, S., Kanagaraj, D., Pulse anodizing - An overview (2003) Trans. IMF, 81, pp. 114-121
Juhl, A.D., Why it makes sense to upgrade to pulse anodizing (2009) Met. Finish., 107, pp. 24-27
Song, X., Lu, J., Yin, X., Jiang, J., Wang, J., The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy (2013) J. Magnes. Alloy., 1, pp. 318-322
Hwang, I.J., Hwang, D.Y., Ko, Y.G., Shin, D.H., Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation (2012) Surf. Coatings Technol., 206, pp. 3360-3365
Bala Srinivasan, P., Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy (2010) Appl. Surf. Sci., 256, pp. 3928-3935
Alabbasi, A., Bobby Kannan, M., Walter, R., Störmer, M., Blawert, C., Performance of pulsed constant current silicate-based PEO coating on pure magnesium in simulated body fluid (2013) Mater. Lett., 106, pp. 18-21
Bononi, M., Giovanardi, R., Bozza, A., Pulsed current hard anodizing of heat treated aluminum alloys: Frequency and current amplitude influence (2016) Surf. Coatings Technol., 307, pp. 861-870
Chen, D., Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy (2018) Appl. Surf. Sci., 434, pp. 326-335
Yu, L., Cao, J., Cheng, Y., An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate-hexametaphosphate electrolyte with the suspension of SiC nanoparticles (2015) Surf. Coatings Technol., 276, pp. 266-278
Narayanan, T.S.N.S., Park, I.-S., Lee, M.-H., (2015) Surface Modification of Magnesium and Its Alloys for Biomedical Applications, 2, pp. 235-267. , ed S Narayanan et al (Amsterdam: Elsevier)
Song, J., Nam, K., Moon, J., Choi, Y., Lim, D., Influence of the duty cycle on structural and mechanical properties of oxide layers on Al-1050 by a plasma electrolytic oxidation process (2014) Met. Mater. Int., 20, pp. 451-458
Hairong, D., Effect of growth rate on microstructure and corrosion resistance of micro-arc oxidation coatings on magnesium alloy (2017) Rare Met. Mater. Eng., 46, pp. 2399-2404
Qian, J., Wang, C., Li, D., Guo, B., Song, G., Formation mechanism of pulse current anodized film on AZ91D Mg alloy (2008) Trans. Nonferrous Met. Soc. China, 18, pp. 19-23
Choi, Y., Salman, S., Kuroda, K., Okido, M., Enhanced corrosion resistance of AZ31 magnesium alloy by pulse anodization (2013) J. Electrochem. Soc., 160, pp. C364-C368
Rasband, W.S., (2018) ImageJ
Mingo, B., Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy (2018) Appl. Surf. Sci., 433, pp. 653-667
Atrens, A., Song, G.-L., Cao, F., Shi, Z., Bowen, P.K., Advances in Mg corrosion and research suggestions (2013) J. Magnes. Alloy., 1, pp. 177-200
Song, G., Atrens, A., Hryn, J.N., (2016) Essential Readings in Magnesium Technology, pp. 565-572
Mingo, B., Arrabal, R., Mohedano, M., Pardo, A., Matykina, E., Corrosion and wear of PEO coated AZ91/SiC composites (2017) Surf. Coatings Technol., 309, pp. 1023-1032
B117-18, A., (2018), pp. 1-15
ASTM D610-08 2008 1-6 Surfaces.Standard test method for evaluating degree of rusting on painted steel
Hussein, R.O., Nie, X., Northwood, D.O., Yerokhin, A., Matthews, A., Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process (2010) J. Phys. D: Appl. Phys., 43 (10)
Liu, F., Yu, J., Song, Y., Shan, D., Han, E.-H., Effect of potassium fluoride on the in-situ sealing pores of plasma electrolytic oxidation film on AM50 Mg alloy (2015) Mater. Chem. Phys., 162, pp. 452-460
Hwang, D.Y., Kim, Y.M., Shin, D.H., Corrosion resistance of plasma-anodized AZ91 Mg alloy in the electrolyte with/without potassium fluoride (2009) Mater. Trans., 50, pp. 671-678
Pezzato, L., Brunelli, K., Babbolin, R., Dolcet, P., Dabalà, M., Sealing of PEO coated AZ91 magnesium alloy using la-based solutions (2017) Int. J. Corros., 2017, pp. 1-13
Gabor, A.E., Lanthanum separation from aqueous solutions using magnesium silicate functionalized with tetrabutylammonium dihydrogen phosphate (2016) J. Chem. Eng. Data, 61, pp. 535-542
Arrabal, R., Matykina, E., Skeldon, P., Thompson, G.E., Pardo, A., Transport of Species during Plasma Electrolytic Oxidation of WE43-T6 Magnesium Alloy (2008) J. Electrochem. Soc., 155, p. C101
Bonilla, F.A., Formation of anodic films on magnesium alloys in an alkaline phosphate electrolyte (2002) J. Electrochem. Soc., 149, p. B4
Cui, X.-J., Liu, C.-H., Yang, R.-S., Li, M.-T., Lin, X.-Z., Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism (2015) Surf. Coatings Technol., 269, pp. 228-237
Salman, S.A., Okido, M., (2013) In Corrosion Prevention of Magnesium Alloys, pp. 197-231
Betancur, B., Tratamiento, L., (2017) Superficial Del Magnesio Comercialmente Puro Mediante Electrolítica Por Plasma (PEO) Para Su Aplicación en Implantes Óseos Bioabsorbibles.
Duan, H., Yan, C., Wang, F., Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution (2007) Electrochim. Acta, 52, pp. 5002-5009
Sabaghi Joni, M., Fattah-Alhosseini, A., Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy (2016) J. Alloys Compd., 661, pp. 237-244
Li, J., Zhang, B., Wei, Q., Wang, N., Hou, B., Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5 wt% NaCl solution (2017) Electrochim. Acta, 238, pp. 156-167
Delgado, M.C., García-Galvan, F.R., Barranco, V., Aliofkhazraei, M., (2017) Magnesium Alloys
Yun Xiong, Q., The study of a phosphate conversion coating on magnesium Alloy AZ91D: III. Nano-particle Modification (2017) Int. J. Electrochem. Sci., 12, pp. 4238-4250
Feliu, S., Llorente, I., Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability (2015) Appl. Surf. Sci., 347, pp. 736-746
Lee, C.D., Kang, C.S., Shin, K.S., Effects of chunk breakage and surface protective film on negative difference effect of magnesium alloys (2001) Met. Mater. Int., 7, pp. 385-391
Samaniego Miracle, A., (2014) Profundización en Los Mecanismos de Corrosión de Las Aleaciones de Magnesio: Estrategias Para Mejorar la Resistencia A la Corrosión.
Li, W., Zhu, L., Li, Y., Zhao, B., Growth characterization of anodic film on AZ91D magnesium alloy in an electrolyte of Na2SiO3 and KF (2006) J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., 13, pp. 450-455
Mori, Y., Koshi, A., Liao, J., Asoh, H., Ono, S., Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate - Silicate mixture electrolytes (2014) Corros. Sci., 88, pp. 254-262
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Institute of Physics Publishing
dc.publisher.program.none.fl_str_mv Ingeniería de Materiales
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv Materials Research Express
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159198951309312
spelling 20202020-04-29T14:53:49Z2020-04-29T14:53:49Z20531591http://hdl.handle.net/11407/573710.1088/2053-1591/ab61acIn this work, anodic oxide layers on the surface of an AZ31 magnesium alloy were obtained by plasma electrolytic oxidation (PEO) process under low frequency pulsed current. For this, electrolytical solutions containing hexamethylenetetramine and sodium fluoride were used. The morphology and chemical composition of formed coatings were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Also, salt spray test, hydrogen evolution and electrochemical tests (potentiodynamic polarization and electrochemical impedance spectroscopy) were conducted in order to study the corrosion behavior of the coated samples. It was found that the use of low frequency pulsed current for the PEO process reduces the film porosity and increases its thickness, compared with PEO films obtained by continuous anodization. The effect of the pulsed current signal was also analyzed for a two steps PEO process, observing changes in the morphological characteristics of the coatings which allow a better corrosion according electrochemical tests (short term corrosion measurements). However, long term tests results as hydrogen evolution and salt spray tests, indicated the opposite. Both the film porosity and thickness were affected by either the pulsing of the current or the use of a two-step process. © 2020 The Author(s). Published by IOP Publishing Ltd.engInstitute of Physics PublishingIngeniería de MaterialesFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85078114537&doi=10.1088%2f2053-1591%2fab61ac&partnerID=40&md5=7a4ad2169e0860bd2a75097f1fe9777471Alam, M.E.E., Han, S., Hamouda, A.S., Nguyen, Q.B., Gupta, M., (2011) Magnesium Technology 2011, pp. 553-558Cho, K., Magnesium technology and manufacturing for ultra lightweight armored ground vehicles (2009) Proc. Of the 2008 Army Science Conf.Esmaily, M., Fundamentals and advances in magnesium alloy corrosion (2017) Prog. Mater Sci., 89, pp. 92-193Calderón, J.A., Jiménez, J.P., Zuleta, A.A., Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings (2016) Surf. Coatings Technol., 304, pp. 167-178Research, E., Tech Brief, D., (2009), pp. 75-77Cao, F., Song, G.-L., Atrens, A., Corrosion and passivation of magnesium alloys (2016) Corros. Sci., 111, pp. 835-845Li, J., Jiang, Q., Sun, H., Li, Y., Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt% sodium chloride solution (2016) Corros. Sci., 111, pp. 288-301Gray, J.E., Luan, B., Protective coatings on magnesium and its alloys-a critical review (2002) J. Alloys Compd., 336, pp. 88-113Segarra, J.A., Calderón, B., Portolés, A., Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests (2015) Rev. Metal., 51, p. e050Sreekanth, D., Rameshbabu, N., Venkateswarlu, K., Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation (2012) Ceram. Int., 38, pp. 4607-4615Ramalingam, V.V., Ramasamy, P., Kovukkal, M.D., Myilsamy, G., Research and development in magnesium alloys for industrial and biomedical applications: A review (2019) Met. Mater. Int., 24Ashassi-Sorkhabi, H., Moradi-Alavian, S., Jafari, R., Kazempour, A., Asghari, E., Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol-gel coating applied on AZ91 Mg alloy (2019) Mater. Chem. Phys., 225, pp. 298-308Hsu, C., Nazari, M.H., Li, Q., Shi, X., Enhancing degradation and corrosion resistance of AZ31 magnesium alloy through hydrophobic coating (2019) Mater. Chem. Phys., 225, pp. 426-432Wang, Y., An organic/inorganic composite multi-layer coating to improve the corrosion resistance of AZ31B Mg alloy (2019) Surf. Coatings Technol., 360, pp. 276-284Nazeer, A.A., Al-Hetlani, E., Amin, M.O., Quiñones-Ruiz, T., Lednev, I.K., A poly(butyl methacrylate)/graphene oxide/TiO2 nanocomposite coating with superior corrosion protection for AZ31 alloy in chloride solution (2019) Chem. Eng. J., 361, pp. 485-498Dehnavi, V., Luan, B.L., Shoesmith, D.W., Liu, X.Y., Rohani, S., Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior (2013) Surf. Coatings Technol., 226, pp. 100-107Zhang, R.F., Film formation in the second step of micro-arc oxidation on magnesium alloys (2010) Corros. Sci., 52, pp. 1285-1290Arrabal, R., Matykina, E., Hashimoto, T., Skeldon, P., Thompson, G.E., Characterization of AC PEO coatings on magnesium alloys (2009) Surf. Coatings Technol., 203, pp. 2207-2220Barati Darband, G., Aliofkhazraei, M., Hamghalam, P., Valizade, N., Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications (2017) J. Magnes. Alloy., 5, pp. 74-132Xin, Y.C., Chu, P.K., (2010) Surface Engineering of Light Alloys, pp. 362-397Ur Rehman, Z., Koo, B.H., Effect of Na2SiO3 ·5H2O concentration on the microstructure and corrosion properties of two-step PEO coatings formed on AZ91 alloy (2017) Surf. Coatings Technol., 317, pp. 117-124Bai, A., Chen, Z.-J., Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D (2009) Surf. Coatings Technol., 203, pp. 1956-1963Lin, C.S., Fu, Y.C., Characterization of anodic films on AZ31 magnesium alloys in alkaline solutions containing fluoride and phosphate anions (2006) J. Electrochem. Soc., 153, p. B417Chen, H., Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives (2010) Surf. Coatings Technol., 205, pp. S32-S35Echeverry-Rendon, M., Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives (2018) J. Biomater. Appl., 33, pp. 725-740Einkhah, F., Lee, K.M., Sani, M.A.F., Yoo, B., Shin, D.H., Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation (2014) Surf. Coatings Technol., 238, pp. 75-79Lee, K.M., Ko, Y.G., Shin, D.H., Microstructural characteristics of oxide layers formed on Mg-9wt%Al-1wt%Zn alloy via two-step plasma electrolytic oxidation (2014) J. Alloys Compd., 615, pp. S418-S422Tsunekawa, S., Aoki, Y., Habazaki, H., Two-step plasma electrolytic oxidation of Ti-15V-3Al-3Cr-3Sn for wear-resistant and adhesive coating (2011) Surf. Coatings Technol., 205, pp. 4732-4740Raj, V., Rajaram, M.P., Balasubramanian, G., Vincent, S., Kanagaraj, D., Pulse anodizing - An overview (2003) Trans. IMF, 81, pp. 114-121Juhl, A.D., Why it makes sense to upgrade to pulse anodizing (2009) Met. Finish., 107, pp. 24-27Song, X., Lu, J., Yin, X., Jiang, J., Wang, J., The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy (2013) J. Magnes. Alloy., 1, pp. 318-322Hwang, I.J., Hwang, D.Y., Ko, Y.G., Shin, D.H., Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation (2012) Surf. Coatings Technol., 206, pp. 3360-3365Bala Srinivasan, P., Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy (2010) Appl. Surf. Sci., 256, pp. 3928-3935Alabbasi, A., Bobby Kannan, M., Walter, R., Störmer, M., Blawert, C., Performance of pulsed constant current silicate-based PEO coating on pure magnesium in simulated body fluid (2013) Mater. Lett., 106, pp. 18-21Bononi, M., Giovanardi, R., Bozza, A., Pulsed current hard anodizing of heat treated aluminum alloys: Frequency and current amplitude influence (2016) Surf. Coatings Technol., 307, pp. 861-870Chen, D., Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy (2018) Appl. Surf. Sci., 434, pp. 326-335Yu, L., Cao, J., Cheng, Y., An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate-hexametaphosphate electrolyte with the suspension of SiC nanoparticles (2015) Surf. Coatings Technol., 276, pp. 266-278Narayanan, T.S.N.S., Park, I.-S., Lee, M.-H., (2015) Surface Modification of Magnesium and Its Alloys for Biomedical Applications, 2, pp. 235-267. , ed S Narayanan et al (Amsterdam: Elsevier)Song, J., Nam, K., Moon, J., Choi, Y., Lim, D., Influence of the duty cycle on structural and mechanical properties of oxide layers on Al-1050 by a plasma electrolytic oxidation process (2014) Met. Mater. Int., 20, pp. 451-458Hairong, D., Effect of growth rate on microstructure and corrosion resistance of micro-arc oxidation coatings on magnesium alloy (2017) Rare Met. Mater. Eng., 46, pp. 2399-2404Qian, J., Wang, C., Li, D., Guo, B., Song, G., Formation mechanism of pulse current anodized film on AZ91D Mg alloy (2008) Trans. Nonferrous Met. Soc. China, 18, pp. 19-23Choi, Y., Salman, S., Kuroda, K., Okido, M., Enhanced corrosion resistance of AZ31 magnesium alloy by pulse anodization (2013) J. Electrochem. Soc., 160, pp. C364-C368Rasband, W.S., (2018) ImageJMingo, B., Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy (2018) Appl. Surf. Sci., 433, pp. 653-667Atrens, A., Song, G.-L., Cao, F., Shi, Z., Bowen, P.K., Advances in Mg corrosion and research suggestions (2013) J. Magnes. Alloy., 1, pp. 177-200Song, G., Atrens, A., Hryn, J.N., (2016) Essential Readings in Magnesium Technology, pp. 565-572Mingo, B., Arrabal, R., Mohedano, M., Pardo, A., Matykina, E., Corrosion and wear of PEO coated AZ91/SiC composites (2017) Surf. Coatings Technol., 309, pp. 1023-1032B117-18, A., (2018), pp. 1-15ASTM D610-08 2008 1-6 Surfaces.Standard test method for evaluating degree of rusting on painted steelHussein, R.O., Nie, X., Northwood, D.O., Yerokhin, A., Matthews, A., Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process (2010) J. Phys. D: Appl. Phys., 43 (10)Liu, F., Yu, J., Song, Y., Shan, D., Han, E.-H., Effect of potassium fluoride on the in-situ sealing pores of plasma electrolytic oxidation film on AM50 Mg alloy (2015) Mater. Chem. Phys., 162, pp. 452-460Hwang, D.Y., Kim, Y.M., Shin, D.H., Corrosion resistance of plasma-anodized AZ91 Mg alloy in the electrolyte with/without potassium fluoride (2009) Mater. Trans., 50, pp. 671-678Pezzato, L., Brunelli, K., Babbolin, R., Dolcet, P., Dabalà, M., Sealing of PEO coated AZ91 magnesium alloy using la-based solutions (2017) Int. J. Corros., 2017, pp. 1-13Gabor, A.E., Lanthanum separation from aqueous solutions using magnesium silicate functionalized with tetrabutylammonium dihydrogen phosphate (2016) J. Chem. Eng. Data, 61, pp. 535-542Arrabal, R., Matykina, E., Skeldon, P., Thompson, G.E., Pardo, A., Transport of Species during Plasma Electrolytic Oxidation of WE43-T6 Magnesium Alloy (2008) J. Electrochem. Soc., 155, p. C101Bonilla, F.A., Formation of anodic films on magnesium alloys in an alkaline phosphate electrolyte (2002) J. Electrochem. Soc., 149, p. B4Cui, X.-J., Liu, C.-H., Yang, R.-S., Li, M.-T., Lin, X.-Z., Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism (2015) Surf. Coatings Technol., 269, pp. 228-237Salman, S.A., Okido, M., (2013) In Corrosion Prevention of Magnesium Alloys, pp. 197-231Betancur, B., Tratamiento, L., (2017) Superficial Del Magnesio Comercialmente Puro Mediante Electrolítica Por Plasma (PEO) Para Su Aplicación en Implantes Óseos Bioabsorbibles.Duan, H., Yan, C., Wang, F., Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution (2007) Electrochim. Acta, 52, pp. 5002-5009Sabaghi Joni, M., Fattah-Alhosseini, A., Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy (2016) J. Alloys Compd., 661, pp. 237-244Li, J., Zhang, B., Wei, Q., Wang, N., Hou, B., Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5 wt% NaCl solution (2017) Electrochim. Acta, 238, pp. 156-167Delgado, M.C., García-Galvan, F.R., Barranco, V., Aliofkhazraei, M., (2017) Magnesium AlloysYun Xiong, Q., The study of a phosphate conversion coating on magnesium Alloy AZ91D: III. Nano-particle Modification (2017) Int. J. Electrochem. Sci., 12, pp. 4238-4250Feliu, S., Llorente, I., Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability (2015) Appl. Surf. Sci., 347, pp. 736-746Lee, C.D., Kang, C.S., Shin, K.S., Effects of chunk breakage and surface protective film on negative difference effect of magnesium alloys (2001) Met. Mater. Int., 7, pp. 385-391Samaniego Miracle, A., (2014) Profundización en Los Mecanismos de Corrosión de Las Aleaciones de Magnesio: Estrategias Para Mejorar la Resistencia A la Corrosión.Li, W., Zhu, L., Li, Y., Zhao, B., Growth characterization of anodic film on AZ91D magnesium alloy in an electrolyte of Na2SiO3 and KF (2006) J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., 13, pp. 450-455Mori, Y., Koshi, A., Liao, J., Asoh, H., Ono, S., Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate - Silicate mixture electrolytes (2014) Corros. Sci., 88, pp. 254-262Materials Research ExpressanodizingcorrosionMg-Al-Zn alloysplasma electrolytic oxidationsalt fog testAluminum alloysAluminum corrosionAnodic oxidationAtmospheric corrosionCoatingsCorrosionCorrosive effectsElectrochemical impedance spectroscopyElectrolysisEnergy dispersive spectroscopyFourier transform infrared spectroscopyHydrogenMagnesium alloysMorphologyPorosityScanning electron microscopySeawater corrosionSodium FluorideTernary alloysTestingZinc alloysChemical compositionsCorrosion measurementsElectrochemical testEnergy dispersive spectroscopies (EDS)Mg-Al -Zn alloysMorphological characteristicPlasma electrolytic oxidationSalt fog testElectrochemical corrosionNew insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31BArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Toro, L., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia; Zuleta, A.A., Grupo de Investigación de Estudios en Diseo - GED, Facultad de Diseo Industrial, Universidad Pontificia Bolivariana, Circular 1a. N° 70-01, Medellín, Colombia; Correa, E., Grupo de Investigación Materiales Con Impacto - MATandMPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 65, Medellín, Colombia; Calderón, D., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia; Galindez, Y., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia; Calderón, J., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia; Chacón, P., Grupo de Investigación de Estudios en Diseo - GED, Facultad de Diseo Industrial, Universidad Pontificia Bolivariana, Circular 1a. N° 70-01, Medellín, Colombia; Valencia-Escobar, A., Grupo de Investigación de Estudios en Diseo - GED, Facultad de Diseo Industrial, Universidad Pontificia Bolivariana, Circular 1a. N° 70-01, Medellín, Colombia; Echeverría E, F., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecToro L.Zuleta A.A.Correa E.Calderón D.Galindez Y.Calderón J.Chacón P.Valencia-Escobar A.Echeverría E F.11407/5737oai:repository.udem.edu.co:11407/57372020-05-27 18:15:09.017Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co