New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B
In this work, anodic oxide layers on the surface of an AZ31 magnesium alloy were obtained by plasma electrolytic oxidation (PEO) process under low frequency pulsed current. For this, electrolytical solutions containing hexamethylenetetramine and sodium fluoride were used. The morphology and chemical...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5737
- Acceso en línea:
- http://hdl.handle.net/11407/5737
- Palabra clave:
- anodizing
corrosion
Mg-Al-Zn alloys
plasma electrolytic oxidation
salt fog test
Aluminum alloys
Aluminum corrosion
Anodic oxidation
Atmospheric corrosion
Coatings
Corrosion
Corrosive effects
Electrochemical impedance spectroscopy
Electrolysis
Energy dispersive spectroscopy
Fourier transform infrared spectroscopy
Hydrogen
Magnesium alloys
Morphology
Porosity
Scanning electron microscopy
Seawater corrosion
Sodium Fluoride
Ternary alloys
Testing
Zinc alloys
Chemical compositions
Corrosion measurements
Electrochemical test
Energy dispersive spectroscopies (EDS)
Mg-Al -Zn alloys
Morphological characteristic
Plasma electrolytic oxidation
Salt fog test
Electrochemical corrosion
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_6a9e8e462522acfcb0c702d50f0141b8 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5737 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B |
title |
New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B |
spellingShingle |
New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B anodizing corrosion Mg-Al-Zn alloys plasma electrolytic oxidation salt fog test Aluminum alloys Aluminum corrosion Anodic oxidation Atmospheric corrosion Coatings Corrosion Corrosive effects Electrochemical impedance spectroscopy Electrolysis Energy dispersive spectroscopy Fourier transform infrared spectroscopy Hydrogen Magnesium alloys Morphology Porosity Scanning electron microscopy Seawater corrosion Sodium Fluoride Ternary alloys Testing Zinc alloys Chemical compositions Corrosion measurements Electrochemical test Energy dispersive spectroscopies (EDS) Mg-Al -Zn alloys Morphological characteristic Plasma electrolytic oxidation Salt fog test Electrochemical corrosion |
title_short |
New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B |
title_full |
New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B |
title_fullStr |
New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B |
title_full_unstemmed |
New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B |
title_sort |
New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31B |
dc.subject.none.fl_str_mv |
anodizing corrosion Mg-Al-Zn alloys plasma electrolytic oxidation salt fog test Aluminum alloys Aluminum corrosion Anodic oxidation Atmospheric corrosion Coatings Corrosion Corrosive effects Electrochemical impedance spectroscopy Electrolysis Energy dispersive spectroscopy Fourier transform infrared spectroscopy Hydrogen Magnesium alloys Morphology Porosity Scanning electron microscopy Seawater corrosion Sodium Fluoride Ternary alloys Testing Zinc alloys Chemical compositions Corrosion measurements Electrochemical test Energy dispersive spectroscopies (EDS) Mg-Al -Zn alloys Morphological characteristic Plasma electrolytic oxidation Salt fog test Electrochemical corrosion |
topic |
anodizing corrosion Mg-Al-Zn alloys plasma electrolytic oxidation salt fog test Aluminum alloys Aluminum corrosion Anodic oxidation Atmospheric corrosion Coatings Corrosion Corrosive effects Electrochemical impedance spectroscopy Electrolysis Energy dispersive spectroscopy Fourier transform infrared spectroscopy Hydrogen Magnesium alloys Morphology Porosity Scanning electron microscopy Seawater corrosion Sodium Fluoride Ternary alloys Testing Zinc alloys Chemical compositions Corrosion measurements Electrochemical test Energy dispersive spectroscopies (EDS) Mg-Al -Zn alloys Morphological characteristic Plasma electrolytic oxidation Salt fog test Electrochemical corrosion |
description |
In this work, anodic oxide layers on the surface of an AZ31 magnesium alloy were obtained by plasma electrolytic oxidation (PEO) process under low frequency pulsed current. For this, electrolytical solutions containing hexamethylenetetramine and sodium fluoride were used. The morphology and chemical composition of formed coatings were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Also, salt spray test, hydrogen evolution and electrochemical tests (potentiodynamic polarization and electrochemical impedance spectroscopy) were conducted in order to study the corrosion behavior of the coated samples. It was found that the use of low frequency pulsed current for the PEO process reduces the film porosity and increases its thickness, compared with PEO films obtained by continuous anodization. The effect of the pulsed current signal was also analyzed for a two steps PEO process, observing changes in the morphological characteristics of the coatings which allow a better corrosion according electrochemical tests (short term corrosion measurements). However, long term tests results as hydrogen evolution and salt spray tests, indicated the opposite. Both the film porosity and thickness were affected by either the pulsing of the current or the use of a two-step process. © 2020 The Author(s). Published by IOP Publishing Ltd. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:49Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:49Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
20531591 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5737 |
dc.identifier.doi.none.fl_str_mv |
10.1088/2053-1591/ab61ac |
identifier_str_mv |
20531591 10.1088/2053-1591/ab61ac |
url |
http://hdl.handle.net/11407/5737 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078114537&doi=10.1088%2f2053-1591%2fab61ac&partnerID=40&md5=7a4ad2169e0860bd2a75097f1fe97774 |
dc.relation.citationvolume.none.fl_str_mv |
7 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.references.none.fl_str_mv |
Alam, M.E.E., Han, S., Hamouda, A.S., Nguyen, Q.B., Gupta, M., (2011) Magnesium Technology 2011, pp. 553-558 Cho, K., Magnesium technology and manufacturing for ultra lightweight armored ground vehicles (2009) Proc. Of the 2008 Army Science Conf. Esmaily, M., Fundamentals and advances in magnesium alloy corrosion (2017) Prog. Mater Sci., 89, pp. 92-193 Calderón, J.A., Jiménez, J.P., Zuleta, A.A., Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings (2016) Surf. Coatings Technol., 304, pp. 167-178 Research, E., Tech Brief, D., (2009), pp. 75-77 Cao, F., Song, G.-L., Atrens, A., Corrosion and passivation of magnesium alloys (2016) Corros. Sci., 111, pp. 835-845 Li, J., Jiang, Q., Sun, H., Li, Y., Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt% sodium chloride solution (2016) Corros. Sci., 111, pp. 288-301 Gray, J.E., Luan, B., Protective coatings on magnesium and its alloys-a critical review (2002) J. Alloys Compd., 336, pp. 88-113 Segarra, J.A., Calderón, B., Portolés, A., Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests (2015) Rev. Metal., 51, p. e050 Sreekanth, D., Rameshbabu, N., Venkateswarlu, K., Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation (2012) Ceram. Int., 38, pp. 4607-4615 Ramalingam, V.V., Ramasamy, P., Kovukkal, M.D., Myilsamy, G., Research and development in magnesium alloys for industrial and biomedical applications: A review (2019) Met. Mater. Int., 24 Ashassi-Sorkhabi, H., Moradi-Alavian, S., Jafari, R., Kazempour, A., Asghari, E., Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol-gel coating applied on AZ91 Mg alloy (2019) Mater. Chem. Phys., 225, pp. 298-308 Hsu, C., Nazari, M.H., Li, Q., Shi, X., Enhancing degradation and corrosion resistance of AZ31 magnesium alloy through hydrophobic coating (2019) Mater. Chem. Phys., 225, pp. 426-432 Wang, Y., An organic/inorganic composite multi-layer coating to improve the corrosion resistance of AZ31B Mg alloy (2019) Surf. Coatings Technol., 360, pp. 276-284 Nazeer, A.A., Al-Hetlani, E., Amin, M.O., Quiñones-Ruiz, T., Lednev, I.K., A poly(butyl methacrylate)/graphene oxide/TiO2 nanocomposite coating with superior corrosion protection for AZ31 alloy in chloride solution (2019) Chem. Eng. J., 361, pp. 485-498 Dehnavi, V., Luan, B.L., Shoesmith, D.W., Liu, X.Y., Rohani, S., Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior (2013) Surf. Coatings Technol., 226, pp. 100-107 Zhang, R.F., Film formation in the second step of micro-arc oxidation on magnesium alloys (2010) Corros. Sci., 52, pp. 1285-1290 Arrabal, R., Matykina, E., Hashimoto, T., Skeldon, P., Thompson, G.E., Characterization of AC PEO coatings on magnesium alloys (2009) Surf. Coatings Technol., 203, pp. 2207-2220 Barati Darband, G., Aliofkhazraei, M., Hamghalam, P., Valizade, N., Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications (2017) J. Magnes. Alloy., 5, pp. 74-132 Xin, Y.C., Chu, P.K., (2010) Surface Engineering of Light Alloys, pp. 362-397 Ur Rehman, Z., Koo, B.H., Effect of Na2SiO3 ·5H2O concentration on the microstructure and corrosion properties of two-step PEO coatings formed on AZ91 alloy (2017) Surf. Coatings Technol., 317, pp. 117-124 Bai, A., Chen, Z.-J., Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D (2009) Surf. Coatings Technol., 203, pp. 1956-1963 Lin, C.S., Fu, Y.C., Characterization of anodic films on AZ31 magnesium alloys in alkaline solutions containing fluoride and phosphate anions (2006) J. Electrochem. Soc., 153, p. B417 Chen, H., Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives (2010) Surf. Coatings Technol., 205, pp. S32-S35 Echeverry-Rendon, M., Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives (2018) J. Biomater. Appl., 33, pp. 725-740 Einkhah, F., Lee, K.M., Sani, M.A.F., Yoo, B., Shin, D.H., Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation (2014) Surf. Coatings Technol., 238, pp. 75-79 Lee, K.M., Ko, Y.G., Shin, D.H., Microstructural characteristics of oxide layers formed on Mg-9wt%Al-1wt%Zn alloy via two-step plasma electrolytic oxidation (2014) J. Alloys Compd., 615, pp. S418-S422 Tsunekawa, S., Aoki, Y., Habazaki, H., Two-step plasma electrolytic oxidation of Ti-15V-3Al-3Cr-3Sn for wear-resistant and adhesive coating (2011) Surf. Coatings Technol., 205, pp. 4732-4740 Raj, V., Rajaram, M.P., Balasubramanian, G., Vincent, S., Kanagaraj, D., Pulse anodizing - An overview (2003) Trans. IMF, 81, pp. 114-121 Juhl, A.D., Why it makes sense to upgrade to pulse anodizing (2009) Met. Finish., 107, pp. 24-27 Song, X., Lu, J., Yin, X., Jiang, J., Wang, J., The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy (2013) J. Magnes. Alloy., 1, pp. 318-322 Hwang, I.J., Hwang, D.Y., Ko, Y.G., Shin, D.H., Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation (2012) Surf. Coatings Technol., 206, pp. 3360-3365 Bala Srinivasan, P., Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy (2010) Appl. Surf. Sci., 256, pp. 3928-3935 Alabbasi, A., Bobby Kannan, M., Walter, R., Störmer, M., Blawert, C., Performance of pulsed constant current silicate-based PEO coating on pure magnesium in simulated body fluid (2013) Mater. Lett., 106, pp. 18-21 Bononi, M., Giovanardi, R., Bozza, A., Pulsed current hard anodizing of heat treated aluminum alloys: Frequency and current amplitude influence (2016) Surf. Coatings Technol., 307, pp. 861-870 Chen, D., Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy (2018) Appl. Surf. Sci., 434, pp. 326-335 Yu, L., Cao, J., Cheng, Y., An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate-hexametaphosphate electrolyte with the suspension of SiC nanoparticles (2015) Surf. Coatings Technol., 276, pp. 266-278 Narayanan, T.S.N.S., Park, I.-S., Lee, M.-H., (2015) Surface Modification of Magnesium and Its Alloys for Biomedical Applications, 2, pp. 235-267. , ed S Narayanan et al (Amsterdam: Elsevier) Song, J., Nam, K., Moon, J., Choi, Y., Lim, D., Influence of the duty cycle on structural and mechanical properties of oxide layers on Al-1050 by a plasma electrolytic oxidation process (2014) Met. Mater. Int., 20, pp. 451-458 Hairong, D., Effect of growth rate on microstructure and corrosion resistance of micro-arc oxidation coatings on magnesium alloy (2017) Rare Met. Mater. Eng., 46, pp. 2399-2404 Qian, J., Wang, C., Li, D., Guo, B., Song, G., Formation mechanism of pulse current anodized film on AZ91D Mg alloy (2008) Trans. Nonferrous Met. Soc. China, 18, pp. 19-23 Choi, Y., Salman, S., Kuroda, K., Okido, M., Enhanced corrosion resistance of AZ31 magnesium alloy by pulse anodization (2013) J. Electrochem. Soc., 160, pp. C364-C368 Rasband, W.S., (2018) ImageJ Mingo, B., Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy (2018) Appl. Surf. Sci., 433, pp. 653-667 Atrens, A., Song, G.-L., Cao, F., Shi, Z., Bowen, P.K., Advances in Mg corrosion and research suggestions (2013) J. Magnes. Alloy., 1, pp. 177-200 Song, G., Atrens, A., Hryn, J.N., (2016) Essential Readings in Magnesium Technology, pp. 565-572 Mingo, B., Arrabal, R., Mohedano, M., Pardo, A., Matykina, E., Corrosion and wear of PEO coated AZ91/SiC composites (2017) Surf. Coatings Technol., 309, pp. 1023-1032 B117-18, A., (2018), pp. 1-15 ASTM D610-08 2008 1-6 Surfaces.Standard test method for evaluating degree of rusting on painted steel Hussein, R.O., Nie, X., Northwood, D.O., Yerokhin, A., Matthews, A., Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process (2010) J. Phys. D: Appl. Phys., 43 (10) Liu, F., Yu, J., Song, Y., Shan, D., Han, E.-H., Effect of potassium fluoride on the in-situ sealing pores of plasma electrolytic oxidation film on AM50 Mg alloy (2015) Mater. Chem. Phys., 162, pp. 452-460 Hwang, D.Y., Kim, Y.M., Shin, D.H., Corrosion resistance of plasma-anodized AZ91 Mg alloy in the electrolyte with/without potassium fluoride (2009) Mater. Trans., 50, pp. 671-678 Pezzato, L., Brunelli, K., Babbolin, R., Dolcet, P., Dabalà, M., Sealing of PEO coated AZ91 magnesium alloy using la-based solutions (2017) Int. J. Corros., 2017, pp. 1-13 Gabor, A.E., Lanthanum separation from aqueous solutions using magnesium silicate functionalized with tetrabutylammonium dihydrogen phosphate (2016) J. Chem. Eng. Data, 61, pp. 535-542 Arrabal, R., Matykina, E., Skeldon, P., Thompson, G.E., Pardo, A., Transport of Species during Plasma Electrolytic Oxidation of WE43-T6 Magnesium Alloy (2008) J. Electrochem. Soc., 155, p. C101 Bonilla, F.A., Formation of anodic films on magnesium alloys in an alkaline phosphate electrolyte (2002) J. Electrochem. Soc., 149, p. B4 Cui, X.-J., Liu, C.-H., Yang, R.-S., Li, M.-T., Lin, X.-Z., Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism (2015) Surf. Coatings Technol., 269, pp. 228-237 Salman, S.A., Okido, M., (2013) In Corrosion Prevention of Magnesium Alloys, pp. 197-231 Betancur, B., Tratamiento, L., (2017) Superficial Del Magnesio Comercialmente Puro Mediante Electrolítica Por Plasma (PEO) Para Su Aplicación en Implantes Óseos Bioabsorbibles. Duan, H., Yan, C., Wang, F., Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution (2007) Electrochim. Acta, 52, pp. 5002-5009 Sabaghi Joni, M., Fattah-Alhosseini, A., Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy (2016) J. Alloys Compd., 661, pp. 237-244 Li, J., Zhang, B., Wei, Q., Wang, N., Hou, B., Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5 wt% NaCl solution (2017) Electrochim. Acta, 238, pp. 156-167 Delgado, M.C., García-Galvan, F.R., Barranco, V., Aliofkhazraei, M., (2017) Magnesium Alloys Yun Xiong, Q., The study of a phosphate conversion coating on magnesium Alloy AZ91D: III. Nano-particle Modification (2017) Int. J. Electrochem. Sci., 12, pp. 4238-4250 Feliu, S., Llorente, I., Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability (2015) Appl. Surf. Sci., 347, pp. 736-746 Lee, C.D., Kang, C.S., Shin, K.S., Effects of chunk breakage and surface protective film on negative difference effect of magnesium alloys (2001) Met. Mater. Int., 7, pp. 385-391 Samaniego Miracle, A., (2014) Profundización en Los Mecanismos de Corrosión de Las Aleaciones de Magnesio: Estrategias Para Mejorar la Resistencia A la Corrosión. Li, W., Zhu, L., Li, Y., Zhao, B., Growth characterization of anodic film on AZ91D magnesium alloy in an electrolyte of Na2SiO3 and KF (2006) J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., 13, pp. 450-455 Mori, Y., Koshi, A., Liao, J., Asoh, H., Ono, S., Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate - Silicate mixture electrolytes (2014) Corros. Sci., 88, pp. 254-262 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.publisher.program.none.fl_str_mv |
Ingeniería de Materiales |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.source.none.fl_str_mv |
Materials Research Express |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159198951309312 |
spelling |
20202020-04-29T14:53:49Z2020-04-29T14:53:49Z20531591http://hdl.handle.net/11407/573710.1088/2053-1591/ab61acIn this work, anodic oxide layers on the surface of an AZ31 magnesium alloy were obtained by plasma electrolytic oxidation (PEO) process under low frequency pulsed current. For this, electrolytical solutions containing hexamethylenetetramine and sodium fluoride were used. The morphology and chemical composition of formed coatings were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Also, salt spray test, hydrogen evolution and electrochemical tests (potentiodynamic polarization and electrochemical impedance spectroscopy) were conducted in order to study the corrosion behavior of the coated samples. It was found that the use of low frequency pulsed current for the PEO process reduces the film porosity and increases its thickness, compared with PEO films obtained by continuous anodization. The effect of the pulsed current signal was also analyzed for a two steps PEO process, observing changes in the morphological characteristics of the coatings which allow a better corrosion according electrochemical tests (short term corrosion measurements). However, long term tests results as hydrogen evolution and salt spray tests, indicated the opposite. Both the film porosity and thickness were affected by either the pulsing of the current or the use of a two-step process. © 2020 The Author(s). Published by IOP Publishing Ltd.engInstitute of Physics PublishingIngeniería de MaterialesFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85078114537&doi=10.1088%2f2053-1591%2fab61ac&partnerID=40&md5=7a4ad2169e0860bd2a75097f1fe9777471Alam, M.E.E., Han, S., Hamouda, A.S., Nguyen, Q.B., Gupta, M., (2011) Magnesium Technology 2011, pp. 553-558Cho, K., Magnesium technology and manufacturing for ultra lightweight armored ground vehicles (2009) Proc. Of the 2008 Army Science Conf.Esmaily, M., Fundamentals and advances in magnesium alloy corrosion (2017) Prog. Mater Sci., 89, pp. 92-193Calderón, J.A., Jiménez, J.P., Zuleta, A.A., Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings (2016) Surf. Coatings Technol., 304, pp. 167-178Research, E., Tech Brief, D., (2009), pp. 75-77Cao, F., Song, G.-L., Atrens, A., Corrosion and passivation of magnesium alloys (2016) Corros. Sci., 111, pp. 835-845Li, J., Jiang, Q., Sun, H., Li, Y., Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt% sodium chloride solution (2016) Corros. Sci., 111, pp. 288-301Gray, J.E., Luan, B., Protective coatings on magnesium and its alloys-a critical review (2002) J. Alloys Compd., 336, pp. 88-113Segarra, J.A., Calderón, B., Portolés, A., Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests (2015) Rev. Metal., 51, p. e050Sreekanth, D., Rameshbabu, N., Venkateswarlu, K., Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation (2012) Ceram. Int., 38, pp. 4607-4615Ramalingam, V.V., Ramasamy, P., Kovukkal, M.D., Myilsamy, G., Research and development in magnesium alloys for industrial and biomedical applications: A review (2019) Met. Mater. Int., 24Ashassi-Sorkhabi, H., Moradi-Alavian, S., Jafari, R., Kazempour, A., Asghari, E., Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol-gel coating applied on AZ91 Mg alloy (2019) Mater. Chem. Phys., 225, pp. 298-308Hsu, C., Nazari, M.H., Li, Q., Shi, X., Enhancing degradation and corrosion resistance of AZ31 magnesium alloy through hydrophobic coating (2019) Mater. Chem. Phys., 225, pp. 426-432Wang, Y., An organic/inorganic composite multi-layer coating to improve the corrosion resistance of AZ31B Mg alloy (2019) Surf. Coatings Technol., 360, pp. 276-284Nazeer, A.A., Al-Hetlani, E., Amin, M.O., Quiñones-Ruiz, T., Lednev, I.K., A poly(butyl methacrylate)/graphene oxide/TiO2 nanocomposite coating with superior corrosion protection for AZ31 alloy in chloride solution (2019) Chem. Eng. J., 361, pp. 485-498Dehnavi, V., Luan, B.L., Shoesmith, D.W., Liu, X.Y., Rohani, S., Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior (2013) Surf. Coatings Technol., 226, pp. 100-107Zhang, R.F., Film formation in the second step of micro-arc oxidation on magnesium alloys (2010) Corros. Sci., 52, pp. 1285-1290Arrabal, R., Matykina, E., Hashimoto, T., Skeldon, P., Thompson, G.E., Characterization of AC PEO coatings on magnesium alloys (2009) Surf. Coatings Technol., 203, pp. 2207-2220Barati Darband, G., Aliofkhazraei, M., Hamghalam, P., Valizade, N., Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications (2017) J. Magnes. Alloy., 5, pp. 74-132Xin, Y.C., Chu, P.K., (2010) Surface Engineering of Light Alloys, pp. 362-397Ur Rehman, Z., Koo, B.H., Effect of Na2SiO3 ·5H2O concentration on the microstructure and corrosion properties of two-step PEO coatings formed on AZ91 alloy (2017) Surf. Coatings Technol., 317, pp. 117-124Bai, A., Chen, Z.-J., Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D (2009) Surf. Coatings Technol., 203, pp. 1956-1963Lin, C.S., Fu, Y.C., Characterization of anodic films on AZ31 magnesium alloys in alkaline solutions containing fluoride and phosphate anions (2006) J. Electrochem. Soc., 153, p. B417Chen, H., Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives (2010) Surf. Coatings Technol., 205, pp. S32-S35Echeverry-Rendon, M., Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives (2018) J. Biomater. Appl., 33, pp. 725-740Einkhah, F., Lee, K.M., Sani, M.A.F., Yoo, B., Shin, D.H., Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation (2014) Surf. Coatings Technol., 238, pp. 75-79Lee, K.M., Ko, Y.G., Shin, D.H., Microstructural characteristics of oxide layers formed on Mg-9wt%Al-1wt%Zn alloy via two-step plasma electrolytic oxidation (2014) J. Alloys Compd., 615, pp. S418-S422Tsunekawa, S., Aoki, Y., Habazaki, H., Two-step plasma electrolytic oxidation of Ti-15V-3Al-3Cr-3Sn for wear-resistant and adhesive coating (2011) Surf. Coatings Technol., 205, pp. 4732-4740Raj, V., Rajaram, M.P., Balasubramanian, G., Vincent, S., Kanagaraj, D., Pulse anodizing - An overview (2003) Trans. IMF, 81, pp. 114-121Juhl, A.D., Why it makes sense to upgrade to pulse anodizing (2009) Met. Finish., 107, pp. 24-27Song, X., Lu, J., Yin, X., Jiang, J., Wang, J., The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy (2013) J. Magnes. Alloy., 1, pp. 318-322Hwang, I.J., Hwang, D.Y., Ko, Y.G., Shin, D.H., Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation (2012) Surf. Coatings Technol., 206, pp. 3360-3365Bala Srinivasan, P., Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy (2010) Appl. Surf. Sci., 256, pp. 3928-3935Alabbasi, A., Bobby Kannan, M., Walter, R., Störmer, M., Blawert, C., Performance of pulsed constant current silicate-based PEO coating on pure magnesium in simulated body fluid (2013) Mater. Lett., 106, pp. 18-21Bononi, M., Giovanardi, R., Bozza, A., Pulsed current hard anodizing of heat treated aluminum alloys: Frequency and current amplitude influence (2016) Surf. Coatings Technol., 307, pp. 861-870Chen, D., Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy (2018) Appl. Surf. Sci., 434, pp. 326-335Yu, L., Cao, J., Cheng, Y., An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate-hexametaphosphate electrolyte with the suspension of SiC nanoparticles (2015) Surf. Coatings Technol., 276, pp. 266-278Narayanan, T.S.N.S., Park, I.-S., Lee, M.-H., (2015) Surface Modification of Magnesium and Its Alloys for Biomedical Applications, 2, pp. 235-267. , ed S Narayanan et al (Amsterdam: Elsevier)Song, J., Nam, K., Moon, J., Choi, Y., Lim, D., Influence of the duty cycle on structural and mechanical properties of oxide layers on Al-1050 by a plasma electrolytic oxidation process (2014) Met. Mater. Int., 20, pp. 451-458Hairong, D., Effect of growth rate on microstructure and corrosion resistance of micro-arc oxidation coatings on magnesium alloy (2017) Rare Met. Mater. Eng., 46, pp. 2399-2404Qian, J., Wang, C., Li, D., Guo, B., Song, G., Formation mechanism of pulse current anodized film on AZ91D Mg alloy (2008) Trans. Nonferrous Met. Soc. China, 18, pp. 19-23Choi, Y., Salman, S., Kuroda, K., Okido, M., Enhanced corrosion resistance of AZ31 magnesium alloy by pulse anodization (2013) J. Electrochem. Soc., 160, pp. C364-C368Rasband, W.S., (2018) ImageJMingo, B., Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy (2018) Appl. Surf. Sci., 433, pp. 653-667Atrens, A., Song, G.-L., Cao, F., Shi, Z., Bowen, P.K., Advances in Mg corrosion and research suggestions (2013) J. Magnes. Alloy., 1, pp. 177-200Song, G., Atrens, A., Hryn, J.N., (2016) Essential Readings in Magnesium Technology, pp. 565-572Mingo, B., Arrabal, R., Mohedano, M., Pardo, A., Matykina, E., Corrosion and wear of PEO coated AZ91/SiC composites (2017) Surf. Coatings Technol., 309, pp. 1023-1032B117-18, A., (2018), pp. 1-15ASTM D610-08 2008 1-6 Surfaces.Standard test method for evaluating degree of rusting on painted steelHussein, R.O., Nie, X., Northwood, D.O., Yerokhin, A., Matthews, A., Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process (2010) J. Phys. D: Appl. Phys., 43 (10)Liu, F., Yu, J., Song, Y., Shan, D., Han, E.-H., Effect of potassium fluoride on the in-situ sealing pores of plasma electrolytic oxidation film on AM50 Mg alloy (2015) Mater. Chem. Phys., 162, pp. 452-460Hwang, D.Y., Kim, Y.M., Shin, D.H., Corrosion resistance of plasma-anodized AZ91 Mg alloy in the electrolyte with/without potassium fluoride (2009) Mater. Trans., 50, pp. 671-678Pezzato, L., Brunelli, K., Babbolin, R., Dolcet, P., Dabalà, M., Sealing of PEO coated AZ91 magnesium alloy using la-based solutions (2017) Int. J. Corros., 2017, pp. 1-13Gabor, A.E., Lanthanum separation from aqueous solutions using magnesium silicate functionalized with tetrabutylammonium dihydrogen phosphate (2016) J. Chem. Eng. Data, 61, pp. 535-542Arrabal, R., Matykina, E., Skeldon, P., Thompson, G.E., Pardo, A., Transport of Species during Plasma Electrolytic Oxidation of WE43-T6 Magnesium Alloy (2008) J. Electrochem. Soc., 155, p. C101Bonilla, F.A., Formation of anodic films on magnesium alloys in an alkaline phosphate electrolyte (2002) J. Electrochem. Soc., 149, p. B4Cui, X.-J., Liu, C.-H., Yang, R.-S., Li, M.-T., Lin, X.-Z., Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism (2015) Surf. Coatings Technol., 269, pp. 228-237Salman, S.A., Okido, M., (2013) In Corrosion Prevention of Magnesium Alloys, pp. 197-231Betancur, B., Tratamiento, L., (2017) Superficial Del Magnesio Comercialmente Puro Mediante Electrolítica Por Plasma (PEO) Para Su Aplicación en Implantes Óseos Bioabsorbibles.Duan, H., Yan, C., Wang, F., Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution (2007) Electrochim. Acta, 52, pp. 5002-5009Sabaghi Joni, M., Fattah-Alhosseini, A., Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy (2016) J. Alloys Compd., 661, pp. 237-244Li, J., Zhang, B., Wei, Q., Wang, N., Hou, B., Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5 wt% NaCl solution (2017) Electrochim. Acta, 238, pp. 156-167Delgado, M.C., García-Galvan, F.R., Barranco, V., Aliofkhazraei, M., (2017) Magnesium AlloysYun Xiong, Q., The study of a phosphate conversion coating on magnesium Alloy AZ91D: III. Nano-particle Modification (2017) Int. J. Electrochem. Sci., 12, pp. 4238-4250Feliu, S., Llorente, I., Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability (2015) Appl. Surf. Sci., 347, pp. 736-746Lee, C.D., Kang, C.S., Shin, K.S., Effects of chunk breakage and surface protective film on negative difference effect of magnesium alloys (2001) Met. Mater. Int., 7, pp. 385-391Samaniego Miracle, A., (2014) Profundización en Los Mecanismos de Corrosión de Las Aleaciones de Magnesio: Estrategias Para Mejorar la Resistencia A la Corrosión.Li, W., Zhu, L., Li, Y., Zhao, B., Growth characterization of anodic film on AZ91D magnesium alloy in an electrolyte of Na2SiO3 and KF (2006) J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., 13, pp. 450-455Mori, Y., Koshi, A., Liao, J., Asoh, H., Ono, S., Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate - Silicate mixture electrolytes (2014) Corros. Sci., 88, pp. 254-262Materials Research ExpressanodizingcorrosionMg-Al-Zn alloysplasma electrolytic oxidationsalt fog testAluminum alloysAluminum corrosionAnodic oxidationAtmospheric corrosionCoatingsCorrosionCorrosive effectsElectrochemical impedance spectroscopyElectrolysisEnergy dispersive spectroscopyFourier transform infrared spectroscopyHydrogenMagnesium alloysMorphologyPorosityScanning electron microscopySeawater corrosionSodium FluorideTernary alloysTestingZinc alloysChemical compositionsCorrosion measurementsElectrochemical testEnergy dispersive spectroscopies (EDS)Mg-Al -Zn alloysMorphological characteristicPlasma electrolytic oxidationSalt fog testElectrochemical corrosionNew insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31BArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Toro, L., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia; Zuleta, A.A., Grupo de Investigación de Estudios en Diseo - GED, Facultad de Diseo Industrial, Universidad Pontificia Bolivariana, Circular 1a. N° 70-01, Medellín, Colombia; Correa, E., Grupo de Investigación Materiales Con Impacto - MATandMPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 65, Medellín, Colombia; Calderón, D., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia; Galindez, Y., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia; Calderón, J., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombia; Chacón, P., Grupo de Investigación de Estudios en Diseo - GED, Facultad de Diseo Industrial, Universidad Pontificia Bolivariana, Circular 1a. N° 70-01, Medellín, Colombia; Valencia-Escobar, A., Grupo de Investigación de Estudios en Diseo - GED, Facultad de Diseo Industrial, Universidad Pontificia Bolivariana, Circular 1a. N° 70-01, Medellín, Colombia; Echeverría E, F., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia U. de A., Calle 70 No. 52-21, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecToro L.Zuleta A.A.Correa E.Calderón D.Galindez Y.Calderón J.Chacón P.Valencia-Escobar A.Echeverría E F.11407/5737oai:repository.udem.edu.co:11407/57372020-05-27 18:15:09.017Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |