Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films

Atomic/molecular layer deposition (ALD/MLD) offers unique possibilities in the fabrication of inorganic-organic thin films with novel functionalities. Especially, incorporating nucleobases in the thin-film structures could open new avenues in the development of bio-electronic and photonic devices. H...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4269
Acceso en línea:
http://hdl.handle.net/11407/4269
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_6415119519e4c22c38b9a2ef62a7163f
oai_identifier_str oai:repository.udem.edu.co:11407/4269
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films
title Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films
spellingShingle Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films
title_short Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films
title_full Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films
title_fullStr Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films
title_full_unstemmed Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films
title_sort Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films
dc.contributor.affiliation.spa.fl_str_mv Pale, V., Department of Electronics and Nanoengineering, Aalto University, Aalto, Finland
Giedraityte, Z., Department of Chemistry and Materials Science, Aalto University, Aalto, Finland
Chen, X., COMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Aalto, Finland
Lopez-Acevedo, O., COMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Aalto, Finland, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 # 30-65, Medellín, Colombia
Tittonen, I., Department of Electronics and Nanoengineering, Aalto University, Aalto, Finland
Karppinen, M., Department of Chemistry and Materials Science, Aalto University, Aalto, Finland
description Atomic/molecular layer deposition (ALD/MLD) offers unique possibilities in the fabrication of inorganic-organic thin films with novel functionalities. Especially, incorporating nucleobases in the thin-film structures could open new avenues in the development of bio-electronic and photonic devices. Here we report an intense blue and widely excitation-dependent fluorescence in the visible region for ALD/MLD fabricated sodium-uracil thin films, where the crystalline network is formed from hydrogen-bonded uracil molecules linked via Na atoms. The excitation-dependent fluorescence is caused by the red-edge excitation shift (REES) effect taking place in the red-edge of the absorption spectrum, where the spectral relaxation occurs in continuous manner as demonstrated by the time-resolved measurements. © 2017 The Author(s).
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:43Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:43Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 20452322
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4269
dc.identifier.doi.none.fl_str_mv 10.1038/s41598-017-07456-6
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 20452322
10.1038/s41598-017-07456-6
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4269
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026758688&doi=10.1038%2fs41598-017-07456-6&partnerID=40&md5=3cc11f20b262a5fa60a9cba265a7b6df
dc.relation.ispartofes.spa.fl_str_mv Scientific Reports
Scientific Reports Volume 7, Issue 1, 1 December 2017
dc.relation.references.spa.fl_str_mv Ahvenniemi, E., & Karppinen, M. (2016). Atomic/molecular layer deposition: A direct gas-phase route to crystalline metal-organic framework thin films. Chemical Communications, 52(6), 1139-1142. doi:10.1039/c5cc08538a
Ahvenniemi, E., & Karppinen, M. (2016). In situ Atomic/Molecular layer-by-layer deposition of inorganic-organic coordination network thin films from gaseous precursors. Chemistry of Materials, 28(17), 6260-6265. doi:10.1021/acs.chemmater.6b02496
Al‐Hassan, K. A., & El‐Bayoumi, M. A. (1987). Large edge‐excitation red shift for a merocyanine dye in poly(vinyl alcohol) polymer matrix. Journal of Polymer Science Part B: Polymer Physics, 25(3), 495-500. doi:10.1002/polb.1987.090250303
Andréasson, J., Holmén, A., & Albinsson, B. (1999). The photophysical properties of the adenine chromophore. Journal of Physical Chemistry B, 103(44), 9782-9789.
Bandekar, J., & Zundel, G. (1982). High sensitivity of amide V bands in uracil and its derivatives to the strengths of hydrogen bonding. Spectrochimica Acta Part A: Molecular Spectroscopy, 38(7), 815-819. doi:10.1016/0584-8539(82)80073-1
Becke, A. D. (1993). Density-functional thermochemistry. III. the role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652.
Berger, O., Adler-Abramovich, L., Levy-Sakin, M., Grunwald, A., Liebes-Peer, Y., Bachar, M., . . . Gazit, E. (2015). Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and watson-crick base pairing. Nature Nanotechnology, 10(4), 353-360. doi:10.1038/nnano.2015.27
Butler, R. S., Cohn, P., Tenzel, P., Abboud, K. A., & Castellano, R. K. (2009). Synthesis, photophysical behavior, and electronic structure of push - pull purines. Journal of the American Chemical Society, 131(2), 623-633. doi:10.1021/ja806348z
Cartwright, B. A., Goodgame, M., Johns, K. W., & Skapski, A. C. (1978). Strong metal-oxygen interaction in uracils. X-ray crystal structure of bis-(1,3-dimethyluracil)dichlorocopper(II). Biochemical Journal, 175(1), 337-339.
CHARGAFF, E., LIPSHITZ, R., GREEN, C., & HODES, M. E. (1951). The composition of the deoxyribonucleic acid of salmon sperm. The Journal of Biological Chemistry, 192(1), 223-230.
Cragg, P. J. (1993). Supramolecular chemistry. From Biological Inspiration to Biomedical Applications, 260.
Cushing, S. K., Ding, W., Chen, G., Wang, C., Yang, F., Huang, F., & Wu, N. (2017). Excitation wavelength dependent fluorescence of graphene oxide controlled by strain. Nanoscale, 9(6), 2240-2245. doi:10.1039/c6nr08286f
Cushing, S. K., Li, M., Huang, F., & Wu, N. (2014). Origin of strong excitation wavelength dependent fluorescence of graphene oxide. ACS Nano, 8(1), 1002-1013. doi:10.1021/nn405843d
Demchenko, A. P. (2002). The red-edge effects: 30 years of exploration. Luminescence, 17(1), 19-42. doi:10.1002/bio.671
Enkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dułak, M., Ferrighi, L., . . . Jacobsen, K. W. (2010). Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. Journal of Physics Condensed Matter, 22(25) doi:10.1088/0953-8984/22/25/253202
Galley, W. C., & Purkey, R. M. (1970). Role of heterogeneity of the solvation site in electronic spectra in solution. Proc.Natl.Acad.Sci.U.S.A., 67(3), 1116-1121.
Giedraityte, Z., Lopez-Acevedo, O., Espinosa Leal, L. A., Pale, V., Sainio, J., Tripathi, T. S., & Karppinen, M. (2016). Three-dimensional uracil network with sodium as a linker. J.Phys.Chem.C, 120, 26342-26349.
Gomez, E. F., Venkatraman, V., Grote, J. G., & Steckl, A. J. (2015). Exploring the potential of nucleic acid bases in organic light emitting diodes. Advanced Materials, 27(46), 7552-7562. doi:10.1002/adma.201403532
Goodgame, M., & Johns, K. W. (1977). Metal complexes of uracil and thymine. Journal of the Chemical Society, Dalton Transactions, (17), 1680-1683. doi:10.1039/DT9770001680
Greco, N. J., & Tor, Y. (2007). Furan decorated nucleoside analogues as fluorescent probes: Synthesis, photophysical evaluation, and site-specific incorporation. Tetrahedron, 63(17), 3515-3527. doi:10.1016/j.tet.2007.01.073
Grote, J. G., Heckman, E. M., Diggs, D. E., Hagen, J. A., Yaney, P. P., Steckl, A. J., . . . Kenneth Hopkins, F. (2005). DNA-based materials for electro-optic applications: Current status. Paper presented at the Proceedings of SPIE - the International Society for Optical Engineering, 5934 1-6. doi:10.1117/12.615206
Gustavsson, T., Bányász, Á., Lazzarotto, E., Markovitsi, D., Scalmani, G., Frisch, M. J., . . . Improta, R. (2006). Singlet excited-state behavior of uracil and thymine in aqueous solution: A combined experimental and computational study of 11 uracil derivatives. Journal of the American Chemical Society, 128(2), 607-619. doi:10.1021/ja056181s
Hagen, J. A., Li, W., Steckl, A. J., & Grote, J. G. (2006). Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Applied Physics Letters, 88(17) doi:10.1063/1.2197973
Hammond, G. S., Nonhebel, D. C., & Wu, C. -. S. (1963). Chelates of β-diketones. V. preparation and properties of chelates containing sterically hindered ligands. Inorganic Chemistry, 2(1), 73-76. doi:10.1021/ic50005a021
Heckman, E. M., Hagen, J. A., Yaney, P. P., Grote, J. G., & Hopkins, F. K. (2005). Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications. Applied Physics Letters, 87(21), 1-3. doi:10.1063/1.2135205
Improta, R., & Barone, V. (2004). Absorption and fluorescence spectra of uracil in the gas phase and in aqueous solution: A TD-DFT quantum mechanical study. Journal of the American Chemical Society, 126(44), 14320-14321. doi:10.1021/ja0460561
Irimia-Vladu, M. (2014). "Green" electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chemical Society Reviews, 43(2), 588-610. doi:10.1039/c3cs60235d
Irimia-Vladu, M., Głowacki, E. D., Voss, G., Bauer, S., & Sariciftci, N. S. (2012). Green and biodegradable electronics. Materials Today, 15(7-8), 340-346. doi:10.1016/S1369-7021(12)70139-6
Irimia-Vladu, M., Sariciftci, N. S., & Bauer, S. (2011). Exotic materials for bio-organic electronics. Journal of Materials Chemistry, 21(5), 1350-1361. doi:10.1039/c0jm02444a
Irimia-Vladu, M., Troshin, P. A., Reisinger, M., Schwabegger, G., Ullah, M., Schwoediauer, R., . . . Sariciftci, N. S. (2010). Environmentally sustainable organic field effect transistors. Organic Electronics: Physics, Materials, Applications, 11(12), 1974-1990. doi:10.1016/j.orgel.2010.09.007
Irimia-Vladu, M., Troshin, P. A., Reisinger, M., Shmygleva, L., Kanbur, Y., Schwabegger, G., . . . Bauer, S. (2010). Biocompatible and biodegradable materials for organic field-effect transistors. Advanced Functional Materials, 20(23), 4069-4076. doi:10.1002/adfm.201001031
Kasha, M. (1950). Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society, 9, 14-19. doi:10.1039/DF9500900014
Kwon, Y. -., Lee, C. H., Choi, D. -., & Jin, J. -. (2009). Materials science of DNA. Journal of Materials Chemistry, 19(10), 1353-1380. doi:10.1039/b808030e
Lagoja, I. M. (2005). Pyrimidine as constituent of natural biologically active compounds. Chemistry and Biodiversity, 2(1), 1-50. doi:10.1002/cbdv.200490173
Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy. Principles of fluorescence spectroscopy (pp. 1-954) doi:10.1007/978-0-387-46312-4
Larsen, A. H., Vanin, M., Mortensen, J. J., Thygesen, K. S., & Jacobsen, K. W. (2009). Localized atomic basis set in the projector augmented wave method. Physical Review B - Condensed Matter and Materials Physics, 80(19) doi:10.1103/PhysRevB.80.195112
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/PhysRevB.37.785
Lee, K. -., Cheng, W. -., Chen, C. -., Shyue, J. -., Nieh, C. -., Chou, C. -., . . . Lin, B. -. (2013). Excitation-dependent visible fluorescence in decameric nanoparticles with monoacylglycerol cluster chromophores. Nature Communications, 4 doi:10.1038/ncomms2563
Nisula, M., & Karppinen, M. (2016). Atomic/Molecular layer deposition of lithium terephthalate thin films as high rate capability li-ion battery anodes. Nano Letters, 16(2), 1276-1281. doi:10.1021/acs.nanolett.5b04604
Pale, V., Kauppinen, C., Selin, J., Sopanen, M., & Tittonen, I. (2016). Fluorescence-enhancing plasmonic silver nanostructures using azopolymer lithography. RSC Advances, 6(53), 48129-48136. doi:10.1039/c6ra04202c
Pale, V., Nikkonen, T., Helaja, J., & Tittonen, I. (2014). Light-harvesting zinc chlorin-poly(4-vinylpyridine) complexes. Paper presented at the 14th IEEE International Conference on Nanotechnology, IEEE-NANO 2014, 225-228. doi:10.1109/NANO.2014.6968052
Pale, V., Nikkonen, T., Vapaavuori, J., Kostiainen, M., Kavakka, J., Selin, J., . . . Helaja, J. (2013). Biomimetic zinc chlorin-poly(4-vinylpyridine) assemblies: Doping level dependent emission-absorption regimes. Journal of Materials Chemistry C, 1(11), 2166-2173. doi:10.1039/c3tc00499f
Parry, G. S. (1954). The crystal structure of uracil. Acta Crystallogr., 7 Retrieved from www.scopus.com
Rosemeyer, H. (2004). The chemodiversity of purine as a constituent of natural products. Chemistry and Biodiversity, 1(3), 361-401. doi:10.1002/cbdv.200490033
Samanta, A. (2006). Dynamic stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. Journal of Physical Chemistry B, 110(28), 13704-13716. doi:10.1021/jp060441q
Steckl, A. J. (2007). DNA - A new material for photonics? Nature Photonics, 1(1), 3-5. doi:10.1038/nphoton.2006.56
Stewart, R. F., & Jensen, L. H. (1967). Acta Crystallogr., 23, 1102-1105.
Su, W., Bonnard, V., & Burley, G. A. (2011). DNA-templated photonic arrays and assemblies: Design principles and future opportunities. Chemistry - A European Journal, 17(29), 7982-7991. doi:10.1002/chem.201100924
Sundberg, P., & Karppinen, M. (2014). Organic and inorganic-organic thin film structures by molecular layer deposition: A review. Beilstein Journal of Nanotechnology, 5(1), 1104-1136. doi:10.3762/bjnano.5.123
Walter, M., Häkkinen, H., Lehtovaara, L., Puska, M., Enkovaara, J., Rostgaard, C., & Mortensen, J. J. (2008). Time-dependent density-functional theory in the projector augmented-wave method. Journal of Chemical Physics, 128(24) doi:10.1063/1.2943138
WASYLEWSKI, Z., KOŁOCZEK, H., WAŚNIOWSKA, A., & ŚIZOWSKA, K. (1992). Red‐edge excitation fluorescence measurements of several two‐tryptophan‐containing proteins. European Journal of Biochemistry, 206(1), 235-242. doi:10.1111/j.1432-1033.1992.tb16921.x
Zhang, H. ‐., Zhao, X., Ding, X., Paterson, A. H., & Wing, R. A. (1995). Preparation of megabase‐size DNA from plant nuclei. The Plant Journal, 7(1), 175-184. doi:10.1046/j.1365-313X.1995.07010175.x
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Nature Publishing Group
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159154047090688
spelling 2017-12-19T19:36:43Z2017-12-19T19:36:43Z201720452322http://hdl.handle.net/11407/426910.1038/s41598-017-07456-6reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínAtomic/molecular layer deposition (ALD/MLD) offers unique possibilities in the fabrication of inorganic-organic thin films with novel functionalities. Especially, incorporating nucleobases in the thin-film structures could open new avenues in the development of bio-electronic and photonic devices. Here we report an intense blue and widely excitation-dependent fluorescence in the visible region for ALD/MLD fabricated sodium-uracil thin films, where the crystalline network is formed from hydrogen-bonded uracil molecules linked via Na atoms. The excitation-dependent fluorescence is caused by the red-edge excitation shift (REES) effect taking place in the red-edge of the absorption spectrum, where the spectral relaxation occurs in continuous manner as demonstrated by the time-resolved measurements. © 2017 The Author(s).engNature Publishing GroupFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85026758688&doi=10.1038%2fs41598-017-07456-6&partnerID=40&md5=3cc11f20b262a5fa60a9cba265a7b6dfScientific ReportsScientific Reports Volume 7, Issue 1, 1 December 2017Ahvenniemi, E., & Karppinen, M. (2016). Atomic/molecular layer deposition: A direct gas-phase route to crystalline metal-organic framework thin films. Chemical Communications, 52(6), 1139-1142. doi:10.1039/c5cc08538aAhvenniemi, E., & Karppinen, M. (2016). In situ Atomic/Molecular layer-by-layer deposition of inorganic-organic coordination network thin films from gaseous precursors. Chemistry of Materials, 28(17), 6260-6265. doi:10.1021/acs.chemmater.6b02496Al‐Hassan, K. A., & El‐Bayoumi, M. A. (1987). Large edge‐excitation red shift for a merocyanine dye in poly(vinyl alcohol) polymer matrix. Journal of Polymer Science Part B: Polymer Physics, 25(3), 495-500. doi:10.1002/polb.1987.090250303Andréasson, J., Holmén, A., & Albinsson, B. (1999). The photophysical properties of the adenine chromophore. Journal of Physical Chemistry B, 103(44), 9782-9789.Bandekar, J., & Zundel, G. (1982). High sensitivity of amide V bands in uracil and its derivatives to the strengths of hydrogen bonding. Spectrochimica Acta Part A: Molecular Spectroscopy, 38(7), 815-819. doi:10.1016/0584-8539(82)80073-1Becke, A. D. (1993). Density-functional thermochemistry. III. the role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652.Berger, O., Adler-Abramovich, L., Levy-Sakin, M., Grunwald, A., Liebes-Peer, Y., Bachar, M., . . . Gazit, E. (2015). Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and watson-crick base pairing. Nature Nanotechnology, 10(4), 353-360. doi:10.1038/nnano.2015.27Butler, R. S., Cohn, P., Tenzel, P., Abboud, K. A., & Castellano, R. K. (2009). Synthesis, photophysical behavior, and electronic structure of push - pull purines. Journal of the American Chemical Society, 131(2), 623-633. doi:10.1021/ja806348zCartwright, B. A., Goodgame, M., Johns, K. W., & Skapski, A. C. (1978). Strong metal-oxygen interaction in uracils. X-ray crystal structure of bis-(1,3-dimethyluracil)dichlorocopper(II). Biochemical Journal, 175(1), 337-339.CHARGAFF, E., LIPSHITZ, R., GREEN, C., & HODES, M. E. (1951). The composition of the deoxyribonucleic acid of salmon sperm. The Journal of Biological Chemistry, 192(1), 223-230.Cragg, P. J. (1993). Supramolecular chemistry. From Biological Inspiration to Biomedical Applications, 260.Cushing, S. K., Ding, W., Chen, G., Wang, C., Yang, F., Huang, F., & Wu, N. (2017). Excitation wavelength dependent fluorescence of graphene oxide controlled by strain. Nanoscale, 9(6), 2240-2245. doi:10.1039/c6nr08286fCushing, S. K., Li, M., Huang, F., & Wu, N. (2014). Origin of strong excitation wavelength dependent fluorescence of graphene oxide. ACS Nano, 8(1), 1002-1013. doi:10.1021/nn405843dDemchenko, A. P. (2002). The red-edge effects: 30 years of exploration. Luminescence, 17(1), 19-42. doi:10.1002/bio.671Enkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dułak, M., Ferrighi, L., . . . Jacobsen, K. W. (2010). Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. Journal of Physics Condensed Matter, 22(25) doi:10.1088/0953-8984/22/25/253202Galley, W. C., & Purkey, R. M. (1970). Role of heterogeneity of the solvation site in electronic spectra in solution. Proc.Natl.Acad.Sci.U.S.A., 67(3), 1116-1121.Giedraityte, Z., Lopez-Acevedo, O., Espinosa Leal, L. A., Pale, V., Sainio, J., Tripathi, T. S., & Karppinen, M. (2016). Three-dimensional uracil network with sodium as a linker. J.Phys.Chem.C, 120, 26342-26349.Gomez, E. F., Venkatraman, V., Grote, J. G., & Steckl, A. J. (2015). Exploring the potential of nucleic acid bases in organic light emitting diodes. Advanced Materials, 27(46), 7552-7562. doi:10.1002/adma.201403532Goodgame, M., & Johns, K. W. (1977). Metal complexes of uracil and thymine. Journal of the Chemical Society, Dalton Transactions, (17), 1680-1683. doi:10.1039/DT9770001680Greco, N. J., & Tor, Y. (2007). Furan decorated nucleoside analogues as fluorescent probes: Synthesis, photophysical evaluation, and site-specific incorporation. Tetrahedron, 63(17), 3515-3527. doi:10.1016/j.tet.2007.01.073Grote, J. G., Heckman, E. M., Diggs, D. E., Hagen, J. A., Yaney, P. P., Steckl, A. J., . . . Kenneth Hopkins, F. (2005). DNA-based materials for electro-optic applications: Current status. Paper presented at the Proceedings of SPIE - the International Society for Optical Engineering, 5934 1-6. doi:10.1117/12.615206Gustavsson, T., Bányász, Á., Lazzarotto, E., Markovitsi, D., Scalmani, G., Frisch, M. J., . . . Improta, R. (2006). Singlet excited-state behavior of uracil and thymine in aqueous solution: A combined experimental and computational study of 11 uracil derivatives. Journal of the American Chemical Society, 128(2), 607-619. doi:10.1021/ja056181sHagen, J. A., Li, W., Steckl, A. J., & Grote, J. G. (2006). Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Applied Physics Letters, 88(17) doi:10.1063/1.2197973Hammond, G. S., Nonhebel, D. C., & Wu, C. -. S. (1963). Chelates of β-diketones. V. preparation and properties of chelates containing sterically hindered ligands. Inorganic Chemistry, 2(1), 73-76. doi:10.1021/ic50005a021Heckman, E. M., Hagen, J. A., Yaney, P. P., Grote, J. G., & Hopkins, F. K. (2005). Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications. Applied Physics Letters, 87(21), 1-3. doi:10.1063/1.2135205Improta, R., & Barone, V. (2004). Absorption and fluorescence spectra of uracil in the gas phase and in aqueous solution: A TD-DFT quantum mechanical study. Journal of the American Chemical Society, 126(44), 14320-14321. doi:10.1021/ja0460561Irimia-Vladu, M. (2014). "Green" electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chemical Society Reviews, 43(2), 588-610. doi:10.1039/c3cs60235dIrimia-Vladu, M., Głowacki, E. D., Voss, G., Bauer, S., & Sariciftci, N. S. (2012). Green and biodegradable electronics. Materials Today, 15(7-8), 340-346. doi:10.1016/S1369-7021(12)70139-6Irimia-Vladu, M., Sariciftci, N. S., & Bauer, S. (2011). Exotic materials for bio-organic electronics. Journal of Materials Chemistry, 21(5), 1350-1361. doi:10.1039/c0jm02444aIrimia-Vladu, M., Troshin, P. A., Reisinger, M., Schwabegger, G., Ullah, M., Schwoediauer, R., . . . Sariciftci, N. S. (2010). Environmentally sustainable organic field effect transistors. Organic Electronics: Physics, Materials, Applications, 11(12), 1974-1990. doi:10.1016/j.orgel.2010.09.007Irimia-Vladu, M., Troshin, P. A., Reisinger, M., Shmygleva, L., Kanbur, Y., Schwabegger, G., . . . Bauer, S. (2010). Biocompatible and biodegradable materials for organic field-effect transistors. Advanced Functional Materials, 20(23), 4069-4076. doi:10.1002/adfm.201001031Kasha, M. (1950). Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society, 9, 14-19. doi:10.1039/DF9500900014Kwon, Y. -., Lee, C. H., Choi, D. -., & Jin, J. -. (2009). Materials science of DNA. Journal of Materials Chemistry, 19(10), 1353-1380. doi:10.1039/b808030eLagoja, I. M. (2005). Pyrimidine as constituent of natural biologically active compounds. Chemistry and Biodiversity, 2(1), 1-50. doi:10.1002/cbdv.200490173Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy. Principles of fluorescence spectroscopy (pp. 1-954) doi:10.1007/978-0-387-46312-4Larsen, A. H., Vanin, M., Mortensen, J. J., Thygesen, K. S., & Jacobsen, K. W. (2009). Localized atomic basis set in the projector augmented wave method. Physical Review B - Condensed Matter and Materials Physics, 80(19) doi:10.1103/PhysRevB.80.195112Lee, C., Yang, W., & Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/PhysRevB.37.785Lee, K. -., Cheng, W. -., Chen, C. -., Shyue, J. -., Nieh, C. -., Chou, C. -., . . . Lin, B. -. (2013). Excitation-dependent visible fluorescence in decameric nanoparticles with monoacylglycerol cluster chromophores. Nature Communications, 4 doi:10.1038/ncomms2563Nisula, M., & Karppinen, M. (2016). Atomic/Molecular layer deposition of lithium terephthalate thin films as high rate capability li-ion battery anodes. Nano Letters, 16(2), 1276-1281. doi:10.1021/acs.nanolett.5b04604Pale, V., Kauppinen, C., Selin, J., Sopanen, M., & Tittonen, I. (2016). Fluorescence-enhancing plasmonic silver nanostructures using azopolymer lithography. RSC Advances, 6(53), 48129-48136. doi:10.1039/c6ra04202cPale, V., Nikkonen, T., Helaja, J., & Tittonen, I. (2014). Light-harvesting zinc chlorin-poly(4-vinylpyridine) complexes. Paper presented at the 14th IEEE International Conference on Nanotechnology, IEEE-NANO 2014, 225-228. doi:10.1109/NANO.2014.6968052Pale, V., Nikkonen, T., Vapaavuori, J., Kostiainen, M., Kavakka, J., Selin, J., . . . Helaja, J. (2013). Biomimetic zinc chlorin-poly(4-vinylpyridine) assemblies: Doping level dependent emission-absorption regimes. Journal of Materials Chemistry C, 1(11), 2166-2173. doi:10.1039/c3tc00499fParry, G. S. (1954). The crystal structure of uracil. Acta Crystallogr., 7 Retrieved from www.scopus.comRosemeyer, H. (2004). The chemodiversity of purine as a constituent of natural products. Chemistry and Biodiversity, 1(3), 361-401. doi:10.1002/cbdv.200490033Samanta, A. (2006). Dynamic stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. Journal of Physical Chemistry B, 110(28), 13704-13716. doi:10.1021/jp060441qSteckl, A. J. (2007). DNA - A new material for photonics? Nature Photonics, 1(1), 3-5. doi:10.1038/nphoton.2006.56Stewart, R. F., & Jensen, L. H. (1967). Acta Crystallogr., 23, 1102-1105.Su, W., Bonnard, V., & Burley, G. A. (2011). DNA-templated photonic arrays and assemblies: Design principles and future opportunities. Chemistry - A European Journal, 17(29), 7982-7991. doi:10.1002/chem.201100924Sundberg, P., & Karppinen, M. (2014). Organic and inorganic-organic thin film structures by molecular layer deposition: A review. Beilstein Journal of Nanotechnology, 5(1), 1104-1136. doi:10.3762/bjnano.5.123Walter, M., Häkkinen, H., Lehtovaara, L., Puska, M., Enkovaara, J., Rostgaard, C., & Mortensen, J. J. (2008). Time-dependent density-functional theory in the projector augmented-wave method. Journal of Chemical Physics, 128(24) doi:10.1063/1.2943138WASYLEWSKI, Z., KOŁOCZEK, H., WAŚNIOWSKA, A., & ŚIZOWSKA, K. (1992). Red‐edge excitation fluorescence measurements of several two‐tryptophan‐containing proteins. European Journal of Biochemistry, 206(1), 235-242. doi:10.1111/j.1432-1033.1992.tb16921.xZhang, H. ‐., Zhao, X., Ding, X., Paterson, A. H., & Wing, R. A. (1995). Preparation of megabase‐size DNA from plant nuclei. The Plant Journal, 7(1), 175-184. doi:10.1046/j.1365-313X.1995.07010175.xScopusExcitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin filmsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Pale, V., Department of Electronics and Nanoengineering, Aalto University, Aalto, FinlandGiedraityte, Z., Department of Chemistry and Materials Science, Aalto University, Aalto, FinlandChen, X., COMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Aalto, FinlandLopez-Acevedo, O., COMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Aalto, Finland, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 # 30-65, Medellín, ColombiaTittonen, I., Department of Electronics and Nanoengineering, Aalto University, Aalto, FinlandKarppinen, M., Department of Chemistry and Materials Science, Aalto University, Aalto, FinlandPale V.Giedraityte Z.Chen X.Lopez-Acevedo O.Tittonen I.Karppinen M.Department of Electronics and Nanoengineering, Aalto University, Aalto, FinlandDepartment of Chemistry and Materials Science, Aalto University, Aalto, FinlandCOMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Aalto, FinlandDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 # 30-65, Medellín, ColombiaAtomic/molecular layer deposition (ALD/MLD) offers unique possibilities in the fabrication of inorganic-organic thin films with novel functionalities. Especially, incorporating nucleobases in the thin-film structures could open new avenues in the development of bio-electronic and photonic devices. Here we report an intense blue and widely excitation-dependent fluorescence in the visible region for ALD/MLD fabricated sodium-uracil thin films, where the crystalline network is formed from hydrogen-bonded uracil molecules linked via Na atoms. The excitation-dependent fluorescence is caused by the red-edge excitation shift (REES) effect taking place in the red-edge of the absorption spectrum, where the spectral relaxation occurs in continuous manner as demonstrated by the time-resolved measurements. © 2017 The Author(s).http://purl.org/coar/access_right/c_16ec11407/4269oai:repository.udem.edu.co:11407/42692020-05-27 16:36:05.057Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co