Multivector Variate Distributions
A new family of multivariate distributions under elliptical models is proposed in this work. Several particular cases of this multivector variate distributions are obtained and a number of published multivariate distributions in other contexts are found as simple corollaries. An application of inter...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5983
- Acceso en línea:
- http://hdl.handle.net/11407/5983
- Palabra clave:
- 62E15
60E05
62A10
62H12
Bimatrix variate
Kotz distribution
Matrix variate
Multivariate elliptical distributions
Multivector variate
Random vector
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_63f419f316348ccdf17704c6c40f821d |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5983 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
spelling |
20202021-02-05T14:58:24Z2021-02-05T14:58:24Z0976836Xhttp://hdl.handle.net/11407/598310.1007/s13171-020-00202-7A new family of multivariate distributions under elliptical models is proposed in this work. Several particular cases of this multivector variate distributions are obtained and a number of published multivariate distributions in other contexts are found as simple corollaries. An application of interest in finance is full derived and compared with the traditional methods. © 2020, Indian Statistical Institute.engSpringerTronco común IngenieríasIngeniería FinancieraFacultad de Ciencias BásicasFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087506654&doi=10.1007%2fs13171-020-00202-7&partnerID=40&md5=4b09b8750c3271f4a8707041561ecc9cBekker, A., Roux, J.J.J., Ehlers, E., Arashi, M., Bimatrix variate beta type IV distribution: relation to Wilks’s statistics and bimatrix variate Kummer-beta type IV distribution (2001) Comm Statist (T & M), 40, pp. 4165-4178Chen, J.J., Novick, M.R., Bayesian analysis for binomial models with generalized beta prior distributions (1984) J. Educational Statist, 9, pp. 163-175Choi, S., Wette, R., Maximum likelihood estimation of the parameters of the gamma distribution and their bias (1969) Technometrics, 11 (4), pp. 669-683Díaz-García, J.A., Gutiérrez-Jáimez, R., Bimatrix variate generalised beta distributions (2010) South African Statist J, 44, pp. 193-208Díaz-García, J.A., Gutiérrez-Jáimez, R., Complex bimatrix variate generalised beta distributions (2010) Linear Algebra Appl, 432 (2-3), pp. 571-582Díaz-García, J.A., Gutiérrez-Jáimez, R., Noncentral bimatrix variate generalised beta distributions (2011) Metrika, 73 (3), pp. 317-333Dickey, J.M., Matricvariate generalizations of the multivariate t- distribution and the inverted multivariate t-distribution (1967) Ann Math Statist, 38, pp. 511-518Ehlers, R., (2011) Bimatrix Variate Distributions of Wishart Ratios with Application, , http://hdl.handle.net/2263/31284, Doctoral dissertation, Faculty of Natural & Agricultural Sciences University of Pretoria, PretoriaFang, K.T., Kotz, S., Ng, K.W., (1990) Symmetric Multivariate and Related Distributions, , Springer-Science+Business Media, B.V, New DelhiFang, K.T., Zhang, Y.T., (1990) Generalized multivariate analysis science press, , Springer, BeijingLibby, D.L., Novick, M.R., Multivariate Generalized beta distributions with applications to utility assessment (1982) J Educational Statist, 7, pp. 271-294Muirhead, R.J., (2005) Aspects of multivariate statistical theory, , Wiley, New YorkNadarajah, S., A bivariate gamma model for drought (2007) Water Resour Res, 43, p. W08501. , http://dx.doi.org/10.1029/2006WR005641Nadarajah, S., A bivariate distribution with gamma and beta marginals with application to drought data (2013) J App Statist, 36 (3), pp. 277-301Olkin, I., Liu, R., A bivariate beta distribution (2003) Statist Prob Letters, 62, pp. 407-412Sankhya A62E1560E0562A1062H12Bimatrix variateKotz distributionMatrix variateMultivariate elliptical distributionsMultivector variateRandom vectorMultivector Variate DistributionsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Díaz-García, J.A., Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada Km 1, Zootecnia, Chihuahua, 33820, MexicoCaro-Lopera, F.J., Faculty of Basic Sciences, Universidad de Medellín, Carrera 87 No.30-65, of. 4-216, Medellín, ColombiaRamírez, F.O.P., Faculty of Engineering, Universidad de Medellín, Carrera 87 No.30-65, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecDíaz-García J.A.Caro-Lopera F.J.Ramírez F.O.P.11407/5983oai:repository.udem.edu.co:11407/59832021-02-05 09:58:24.943Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |
dc.title.none.fl_str_mv |
Multivector Variate Distributions |
title |
Multivector Variate Distributions |
spellingShingle |
Multivector Variate Distributions 62E15 60E05 62A10 62H12 Bimatrix variate Kotz distribution Matrix variate Multivariate elliptical distributions Multivector variate Random vector |
title_short |
Multivector Variate Distributions |
title_full |
Multivector Variate Distributions |
title_fullStr |
Multivector Variate Distributions |
title_full_unstemmed |
Multivector Variate Distributions |
title_sort |
Multivector Variate Distributions |
dc.subject.spa.fl_str_mv |
62E15 60E05 62A10 62H12 Bimatrix variate Kotz distribution Matrix variate Multivariate elliptical distributions Multivector variate Random vector |
topic |
62E15 60E05 62A10 62H12 Bimatrix variate Kotz distribution Matrix variate Multivariate elliptical distributions Multivector variate Random vector |
description |
A new family of multivariate distributions under elliptical models is proposed in this work. Several particular cases of this multivector variate distributions are obtained and a number of published multivariate distributions in other contexts are found as simple corollaries. An application of interest in finance is full derived and compared with the traditional methods. © 2020, Indian Statistical Institute. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:24Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:24Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
0976836X |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5983 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s13171-020-00202-7 |
identifier_str_mv |
0976836X 10.1007/s13171-020-00202-7 |
url |
http://hdl.handle.net/11407/5983 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087506654&doi=10.1007%2fs13171-020-00202-7&partnerID=40&md5=4b09b8750c3271f4a8707041561ecc9c |
dc.relation.references.none.fl_str_mv |
Bekker, A., Roux, J.J.J., Ehlers, E., Arashi, M., Bimatrix variate beta type IV distribution: relation to Wilks’s statistics and bimatrix variate Kummer-beta type IV distribution (2001) Comm Statist (T & M), 40, pp. 4165-4178 Chen, J.J., Novick, M.R., Bayesian analysis for binomial models with generalized beta prior distributions (1984) J. Educational Statist, 9, pp. 163-175 Choi, S., Wette, R., Maximum likelihood estimation of the parameters of the gamma distribution and their bias (1969) Technometrics, 11 (4), pp. 669-683 Díaz-García, J.A., Gutiérrez-Jáimez, R., Bimatrix variate generalised beta distributions (2010) South African Statist J, 44, pp. 193-208 Díaz-García, J.A., Gutiérrez-Jáimez, R., Complex bimatrix variate generalised beta distributions (2010) Linear Algebra Appl, 432 (2-3), pp. 571-582 Díaz-García, J.A., Gutiérrez-Jáimez, R., Noncentral bimatrix variate generalised beta distributions (2011) Metrika, 73 (3), pp. 317-333 Dickey, J.M., Matricvariate generalizations of the multivariate t- distribution and the inverted multivariate t-distribution (1967) Ann Math Statist, 38, pp. 511-518 Ehlers, R., (2011) Bimatrix Variate Distributions of Wishart Ratios with Application, , http://hdl.handle.net/2263/31284, Doctoral dissertation, Faculty of Natural & Agricultural Sciences University of Pretoria, Pretoria Fang, K.T., Kotz, S., Ng, K.W., (1990) Symmetric Multivariate and Related Distributions, , Springer-Science+Business Media, B.V, New Delhi Fang, K.T., Zhang, Y.T., (1990) Generalized multivariate analysis science press, , Springer, Beijing Libby, D.L., Novick, M.R., Multivariate Generalized beta distributions with applications to utility assessment (1982) J Educational Statist, 7, pp. 271-294 Muirhead, R.J., (2005) Aspects of multivariate statistical theory, , Wiley, New York Nadarajah, S., A bivariate gamma model for drought (2007) Water Resour Res, 43, p. W08501. , http://dx.doi.org/10.1029/2006WR005641 Nadarajah, S., A bivariate distribution with gamma and beta marginals with application to drought data (2013) J App Statist, 36 (3), pp. 277-301 Olkin, I., Liu, R., A bivariate beta distribution (2003) Statist Prob Letters, 62, pp. 407-412 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Springer |
dc.publisher.program.spa.fl_str_mv |
Tronco común Ingenierías Ingeniería Financiera |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas Facultad de Ingenierías |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Sankhya A |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159100919939072 |