Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields

In the present work, some optical properties related to intersubband transitions in finite depth asymmetric hyperbolic-type quantum wells are theoretically investigated. The use of a hyperbolic potential configuration would account for the actual – non abrupt – confinement potential in the heterostr...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5988
Acceso en línea:
http://hdl.handle.net/11407/5988
Palabra clave:
Asymmetric quantum well
Electric field
Magnetic field
Nonlinear optical response
Electromagnetic fields
Electronic structure
Light absorption
Magnetic fields
Refractive index
Compact-density-matrix approach
Compositional diffusion
Effective mass approximation
Electric and magnetic fields
External electromagnetic field
Intersubband transitions
Refractive index changes
Structural configurations
Semiconductor quantum wells
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_638fc1ee76d142caa0972560f83c24ac
oai_identifier_str oai:repository.udem.edu.co:11407/5988
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields
title Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields
spellingShingle Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields
Asymmetric quantum well
Electric field
Magnetic field
Nonlinear optical response
Electromagnetic fields
Electronic structure
Light absorption
Magnetic fields
Refractive index
Compact-density-matrix approach
Compositional diffusion
Effective mass approximation
Electric and magnetic fields
External electromagnetic field
Intersubband transitions
Refractive index changes
Structural configurations
Semiconductor quantum wells
title_short Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields
title_full Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields
title_fullStr Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields
title_full_unstemmed Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields
title_sort Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields
dc.subject.spa.fl_str_mv Asymmetric quantum well
Electric field
Magnetic field
Nonlinear optical response
topic Asymmetric quantum well
Electric field
Magnetic field
Nonlinear optical response
Electromagnetic fields
Electronic structure
Light absorption
Magnetic fields
Refractive index
Compact-density-matrix approach
Compositional diffusion
Effective mass approximation
Electric and magnetic fields
External electromagnetic field
Intersubband transitions
Refractive index changes
Structural configurations
Semiconductor quantum wells
dc.subject.keyword.eng.fl_str_mv Electromagnetic fields
Electronic structure
Light absorption
Magnetic fields
Refractive index
Compact-density-matrix approach
Compositional diffusion
Effective mass approximation
Electric and magnetic fields
External electromagnetic field
Intersubband transitions
Refractive index changes
Structural configurations
Semiconductor quantum wells
description In the present work, some optical properties related to intersubband transitions in finite depth asymmetric hyperbolic-type quantum wells are theoretically investigated. The use of a hyperbolic potential configuration would account for the actual – non abrupt – confinement potential in the heterostructure, in the case of modulated growing or when compositional diffusion across the interfaces turns out to be relevant. In the investigation, the presence of externally applied electromagnetic fields is considered. Electron conduction band states are determined within the parabolic band an effective mass approximation. With the electronic structure information at hand, it is possible to evaluate the linear and third-order nonlinear light absorption and relative refractive index change coefficients, from expression arising in the framework of the compact density matrix approach. According to the theoretical outcome, it is found that: (i) There is a significant influence of the structural configuration on the magnitude and resonant peak position of the total optical coefficients. (ii) Under the effect of increasing external electric and magnetic fields, the peak energy positions are shifted towards higher values, whereas their amplitude decrease for the optical absorption case, and that of the refractive index relative variation is reduced. From these results it can be concluded that both the modification of the confinement profile and the presence of electric and/or magnetic fields are suitable tool to control the optical response of asymmetric hyperbolic-type semiconductor quantum wells. © 2020 Elsevier B.V.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:26Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:26Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Review
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_efa0
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/review
dc.identifier.issn.none.fl_str_mv 15694410
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5988
dc.identifier.doi.none.fl_str_mv 10.1016/j.photonics.2020.100833
identifier_str_mv 15694410
10.1016/j.photonics.2020.100833
url http://hdl.handle.net/11407/5988
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089952313&doi=10.1016%2fj.photonics.2020.100833&partnerID=40&md5=bf1c2db627e5b07dcdbbb2ab2a4ab673
dc.relation.citationvolume.none.fl_str_mv 41
dc.relation.references.none.fl_str_mv Karabulut, I., Paspalakis, E., (2016) Physica E, 81, pp. 294-301
Li, K., Guo, K., Jiang, X., Hu, M., (2017) Optik, 132, pp. 375-381
Diroll, B.T., Chen, M., Coropceanu, I., Williams, K.R., Talapin, D.V., Sionnest, P.G., Schaller, R.D., (2019) Nat. Commun., 10, p. 4511
Dakhlaoui, H., Nefzi, M., (2019) Results Phys., 15, p. 102618
Noverola-Gamas, H., Gaggero-Sager, L.M., Oubram, O., (2019) Chin. Phys. B, 28, p. 124207
Zhao, Q., Aqiqi, S., You, J.F., Kria, M., Guo, K.X., Feddi, E., Zhang, Z.H., Yuan, J.H., (2020) Physica E, 115, p. 113707
Rojas-Briseño, J.G., Del Río-De Santiago, A., Mora-Ramos, M.E., Martínez-Orozco, J.C., (2020) Optik, 201, p. 163431
Ri Betancourt-Riera, Re Betancourt-Riera, L.A., Ferrer-Moreno, A.D., Sanu-Ginerte, (2019) Physica B, 575, p. 411700
Amiri, B., Belghachi, A., (2020) Optik, 202, p. 163554
Yildirim, H., (2019) Physica B, 571, pp. 26-31
Chen, Y.Y., Li, Y.N., Wan, R.G., Yan, H.W., (2019) Phys. Lett. A, 383, p. 125921
Panda, S., Das, T., Panda, B.K., (2019) Superlattices Microstruct., 135, p. 106238
Massoudi, I., (2019) Superlattices Microstruct., 136, p. 106299
Hien, N.D., Duque, C.A., Feddi, E., Hieu, N.V., Trien, H.D., Phuong, L.T.T., Hoi, B.D., Phuc, H.V., (2019) Thin Solid Films, 682, pp. 10-17
Zhang, Z.H.J., Guo, K.X., Yuan, J.H., (2019) Physica E, 108, pp. 238-243
Almansour, S., (2019) J. Korean Phys. Soc., 75, pp. 806-810
You, J.F., Zhao, Q., Zhang, Z.H., Yuan, J.H., Guo, K.X., Feddi, E., (2019) Int. J. Mod. Phys. B, 33, p. 1950325
Zhang, C., Min, C., Zhao, B., (2019) Phys. Lett. A, 383, p. 125983
Pham, K.D., Dinh, L., Vinh, P.T., Duque, C.A., Phuc, H.V., Nguyen, C.V., (2018) Superlattices Microstruct., 120, p. 738
Guang-Hui, W., Kang-Xian, G., Qi, G., (2003) Commun. Theor. Phys., 39, p. 377
Xia, J.-B., Fan, W.-J., (1989) Phys. Rev. B, 40, pp. 8508-8515
Ungan, F., Pal, S., Bahar, M.K., Mora-Ramos, M.E., (2019) Superlattices Microstruct., 130, pp. 76-86
Ungan, F., Martinez-Orozco, J.C., Restrepo, R.L., Mora-Ramos, M.E., (2019) Optik, 185, pp. 881-887
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Photonics and Nanostructures - Fundamentals and Applications
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481178249854976
spelling 20202021-02-05T14:58:26Z2021-02-05T14:58:26Z15694410http://hdl.handle.net/11407/598810.1016/j.photonics.2020.100833In the present work, some optical properties related to intersubband transitions in finite depth asymmetric hyperbolic-type quantum wells are theoretically investigated. The use of a hyperbolic potential configuration would account for the actual – non abrupt – confinement potential in the heterostructure, in the case of modulated growing or when compositional diffusion across the interfaces turns out to be relevant. In the investigation, the presence of externally applied electromagnetic fields is considered. Electron conduction band states are determined within the parabolic band an effective mass approximation. With the electronic structure information at hand, it is possible to evaluate the linear and third-order nonlinear light absorption and relative refractive index change coefficients, from expression arising in the framework of the compact density matrix approach. According to the theoretical outcome, it is found that: (i) There is a significant influence of the structural configuration on the magnitude and resonant peak position of the total optical coefficients. (ii) Under the effect of increasing external electric and magnetic fields, the peak energy positions are shifted towards higher values, whereas their amplitude decrease for the optical absorption case, and that of the refractive index relative variation is reduced. From these results it can be concluded that both the modification of the confinement profile and the presence of electric and/or magnetic fields are suitable tool to control the optical response of asymmetric hyperbolic-type semiconductor quantum wells. © 2020 Elsevier B.V.engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089952313&doi=10.1016%2fj.photonics.2020.100833&partnerID=40&md5=bf1c2db627e5b07dcdbbb2ab2a4ab67341Karabulut, I., Paspalakis, E., (2016) Physica E, 81, pp. 294-301Li, K., Guo, K., Jiang, X., Hu, M., (2017) Optik, 132, pp. 375-381Diroll, B.T., Chen, M., Coropceanu, I., Williams, K.R., Talapin, D.V., Sionnest, P.G., Schaller, R.D., (2019) Nat. Commun., 10, p. 4511Dakhlaoui, H., Nefzi, M., (2019) Results Phys., 15, p. 102618Noverola-Gamas, H., Gaggero-Sager, L.M., Oubram, O., (2019) Chin. Phys. B, 28, p. 124207Zhao, Q., Aqiqi, S., You, J.F., Kria, M., Guo, K.X., Feddi, E., Zhang, Z.H., Yuan, J.H., (2020) Physica E, 115, p. 113707Rojas-Briseño, J.G., Del Río-De Santiago, A., Mora-Ramos, M.E., Martínez-Orozco, J.C., (2020) Optik, 201, p. 163431Ri Betancourt-Riera, Re Betancourt-Riera, L.A., Ferrer-Moreno, A.D., Sanu-Ginerte, (2019) Physica B, 575, p. 411700Amiri, B., Belghachi, A., (2020) Optik, 202, p. 163554Yildirim, H., (2019) Physica B, 571, pp. 26-31Chen, Y.Y., Li, Y.N., Wan, R.G., Yan, H.W., (2019) Phys. Lett. A, 383, p. 125921Panda, S., Das, T., Panda, B.K., (2019) Superlattices Microstruct., 135, p. 106238Massoudi, I., (2019) Superlattices Microstruct., 136, p. 106299Hien, N.D., Duque, C.A., Feddi, E., Hieu, N.V., Trien, H.D., Phuong, L.T.T., Hoi, B.D., Phuc, H.V., (2019) Thin Solid Films, 682, pp. 10-17Zhang, Z.H.J., Guo, K.X., Yuan, J.H., (2019) Physica E, 108, pp. 238-243Almansour, S., (2019) J. Korean Phys. Soc., 75, pp. 806-810You, J.F., Zhao, Q., Zhang, Z.H., Yuan, J.H., Guo, K.X., Feddi, E., (2019) Int. J. Mod. Phys. B, 33, p. 1950325Zhang, C., Min, C., Zhao, B., (2019) Phys. Lett. A, 383, p. 125983Pham, K.D., Dinh, L., Vinh, P.T., Duque, C.A., Phuc, H.V., Nguyen, C.V., (2018) Superlattices Microstruct., 120, p. 738Guang-Hui, W., Kang-Xian, G., Qi, G., (2003) Commun. Theor. Phys., 39, p. 377Xia, J.-B., Fan, W.-J., (1989) Phys. Rev. B, 40, pp. 8508-8515Ungan, F., Pal, S., Bahar, M.K., Mora-Ramos, M.E., (2019) Superlattices Microstruct., 130, pp. 76-86Ungan, F., Martinez-Orozco, J.C., Restrepo, R.L., Mora-Ramos, M.E., (2019) Optik, 185, pp. 881-887Photonics and Nanostructures - Fundamentals and ApplicationsAsymmetric quantum wellElectric fieldMagnetic fieldNonlinear optical responseElectromagnetic fieldsElectronic structureLight absorptionMagnetic fieldsRefractive indexCompact-density-matrix approachCompositional diffusionEffective mass approximationElectric and magnetic fieldsExternal electromagnetic fieldIntersubband transitionsRefractive index changesStructural configurationsSemiconductor quantum wellsOptical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fieldsReviewinfo:eu-repo/semantics/reviewhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_efa0Ungan, F., Faculty of Technology, Department of Optical Engineering, Sivas Cumhuriyet University, Sivas, 58140, TurkeyBahar, M.K., Faculty of Science, Department of Physics, Sivas Cumhuriyet University, Sivas, 58140, TurkeyMartinez-Orozco, J.C., Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, Zacatecas, Zac. C.P. 98060, MexicoMora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecUngan F.Bahar M.K.Martinez-Orozco J.C.Mora-Ramos M.E.11407/5988oai:repository.udem.edu.co:11407/59882021-02-05 09:58:27.037Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co