Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields
In the present work, some optical properties related to intersubband transitions in finite depth asymmetric hyperbolic-type quantum wells are theoretically investigated. The use of a hyperbolic potential configuration would account for the actual – non abrupt – confinement potential in the heterostr...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5988
- Acceso en línea:
- http://hdl.handle.net/11407/5988
- Palabra clave:
- Asymmetric quantum well
Electric field
Magnetic field
Nonlinear optical response
Electromagnetic fields
Electronic structure
Light absorption
Magnetic fields
Refractive index
Compact-density-matrix approach
Compositional diffusion
Effective mass approximation
Electric and magnetic fields
External electromagnetic field
Intersubband transitions
Refractive index changes
Structural configurations
Semiconductor quantum wells
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_638fc1ee76d142caa0972560f83c24ac |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5988 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields |
title |
Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields |
spellingShingle |
Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields Asymmetric quantum well Electric field Magnetic field Nonlinear optical response Electromagnetic fields Electronic structure Light absorption Magnetic fields Refractive index Compact-density-matrix approach Compositional diffusion Effective mass approximation Electric and magnetic fields External electromagnetic field Intersubband transitions Refractive index changes Structural configurations Semiconductor quantum wells |
title_short |
Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields |
title_full |
Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields |
title_fullStr |
Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields |
title_full_unstemmed |
Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields |
title_sort |
Optical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fields |
dc.subject.spa.fl_str_mv |
Asymmetric quantum well Electric field Magnetic field Nonlinear optical response |
topic |
Asymmetric quantum well Electric field Magnetic field Nonlinear optical response Electromagnetic fields Electronic structure Light absorption Magnetic fields Refractive index Compact-density-matrix approach Compositional diffusion Effective mass approximation Electric and magnetic fields External electromagnetic field Intersubband transitions Refractive index changes Structural configurations Semiconductor quantum wells |
dc.subject.keyword.eng.fl_str_mv |
Electromagnetic fields Electronic structure Light absorption Magnetic fields Refractive index Compact-density-matrix approach Compositional diffusion Effective mass approximation Electric and magnetic fields External electromagnetic field Intersubband transitions Refractive index changes Structural configurations Semiconductor quantum wells |
description |
In the present work, some optical properties related to intersubband transitions in finite depth asymmetric hyperbolic-type quantum wells are theoretically investigated. The use of a hyperbolic potential configuration would account for the actual – non abrupt – confinement potential in the heterostructure, in the case of modulated growing or when compositional diffusion across the interfaces turns out to be relevant. In the investigation, the presence of externally applied electromagnetic fields is considered. Electron conduction band states are determined within the parabolic band an effective mass approximation. With the electronic structure information at hand, it is possible to evaluate the linear and third-order nonlinear light absorption and relative refractive index change coefficients, from expression arising in the framework of the compact density matrix approach. According to the theoretical outcome, it is found that: (i) There is a significant influence of the structural configuration on the magnitude and resonant peak position of the total optical coefficients. (ii) Under the effect of increasing external electric and magnetic fields, the peak energy positions are shifted towards higher values, whereas their amplitude decrease for the optical absorption case, and that of the refractive index relative variation is reduced. From these results it can be concluded that both the modification of the confinement profile and the presence of electric and/or magnetic fields are suitable tool to control the optical response of asymmetric hyperbolic-type semiconductor quantum wells. © 2020 Elsevier B.V. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:26Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:26Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Review |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_efa0 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/review |
dc.identifier.issn.none.fl_str_mv |
15694410 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5988 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.photonics.2020.100833 |
identifier_str_mv |
15694410 10.1016/j.photonics.2020.100833 |
url |
http://hdl.handle.net/11407/5988 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089952313&doi=10.1016%2fj.photonics.2020.100833&partnerID=40&md5=bf1c2db627e5b07dcdbbb2ab2a4ab673 |
dc.relation.citationvolume.none.fl_str_mv |
41 |
dc.relation.references.none.fl_str_mv |
Karabulut, I., Paspalakis, E., (2016) Physica E, 81, pp. 294-301 Li, K., Guo, K., Jiang, X., Hu, M., (2017) Optik, 132, pp. 375-381 Diroll, B.T., Chen, M., Coropceanu, I., Williams, K.R., Talapin, D.V., Sionnest, P.G., Schaller, R.D., (2019) Nat. Commun., 10, p. 4511 Dakhlaoui, H., Nefzi, M., (2019) Results Phys., 15, p. 102618 Noverola-Gamas, H., Gaggero-Sager, L.M., Oubram, O., (2019) Chin. Phys. B, 28, p. 124207 Zhao, Q., Aqiqi, S., You, J.F., Kria, M., Guo, K.X., Feddi, E., Zhang, Z.H., Yuan, J.H., (2020) Physica E, 115, p. 113707 Rojas-Briseño, J.G., Del Río-De Santiago, A., Mora-Ramos, M.E., Martínez-Orozco, J.C., (2020) Optik, 201, p. 163431 Ri Betancourt-Riera, Re Betancourt-Riera, L.A., Ferrer-Moreno, A.D., Sanu-Ginerte, (2019) Physica B, 575, p. 411700 Amiri, B., Belghachi, A., (2020) Optik, 202, p. 163554 Yildirim, H., (2019) Physica B, 571, pp. 26-31 Chen, Y.Y., Li, Y.N., Wan, R.G., Yan, H.W., (2019) Phys. Lett. A, 383, p. 125921 Panda, S., Das, T., Panda, B.K., (2019) Superlattices Microstruct., 135, p. 106238 Massoudi, I., (2019) Superlattices Microstruct., 136, p. 106299 Hien, N.D., Duque, C.A., Feddi, E., Hieu, N.V., Trien, H.D., Phuong, L.T.T., Hoi, B.D., Phuc, H.V., (2019) Thin Solid Films, 682, pp. 10-17 Zhang, Z.H.J., Guo, K.X., Yuan, J.H., (2019) Physica E, 108, pp. 238-243 Almansour, S., (2019) J. Korean Phys. Soc., 75, pp. 806-810 You, J.F., Zhao, Q., Zhang, Z.H., Yuan, J.H., Guo, K.X., Feddi, E., (2019) Int. J. Mod. Phys. B, 33, p. 1950325 Zhang, C., Min, C., Zhao, B., (2019) Phys. Lett. A, 383, p. 125983 Pham, K.D., Dinh, L., Vinh, P.T., Duque, C.A., Phuc, H.V., Nguyen, C.V., (2018) Superlattices Microstruct., 120, p. 738 Guang-Hui, W., Kang-Xian, G., Qi, G., (2003) Commun. Theor. Phys., 39, p. 377 Xia, J.-B., Fan, W.-J., (1989) Phys. Rev. B, 40, pp. 8508-8515 Ungan, F., Pal, S., Bahar, M.K., Mora-Ramos, M.E., (2019) Superlattices Microstruct., 130, pp. 76-86 Ungan, F., Martinez-Orozco, J.C., Restrepo, R.L., Mora-Ramos, M.E., (2019) Optik, 185, pp. 881-887 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Photonics and Nanostructures - Fundamentals and Applications |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159224597381120 |
spelling |
20202021-02-05T14:58:26Z2021-02-05T14:58:26Z15694410http://hdl.handle.net/11407/598810.1016/j.photonics.2020.100833In the present work, some optical properties related to intersubband transitions in finite depth asymmetric hyperbolic-type quantum wells are theoretically investigated. The use of a hyperbolic potential configuration would account for the actual – non abrupt – confinement potential in the heterostructure, in the case of modulated growing or when compositional diffusion across the interfaces turns out to be relevant. In the investigation, the presence of externally applied electromagnetic fields is considered. Electron conduction band states are determined within the parabolic band an effective mass approximation. With the electronic structure information at hand, it is possible to evaluate the linear and third-order nonlinear light absorption and relative refractive index change coefficients, from expression arising in the framework of the compact density matrix approach. According to the theoretical outcome, it is found that: (i) There is a significant influence of the structural configuration on the magnitude and resonant peak position of the total optical coefficients. (ii) Under the effect of increasing external electric and magnetic fields, the peak energy positions are shifted towards higher values, whereas their amplitude decrease for the optical absorption case, and that of the refractive index relative variation is reduced. From these results it can be concluded that both the modification of the confinement profile and the presence of electric and/or magnetic fields are suitable tool to control the optical response of asymmetric hyperbolic-type semiconductor quantum wells. © 2020 Elsevier B.V.engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089952313&doi=10.1016%2fj.photonics.2020.100833&partnerID=40&md5=bf1c2db627e5b07dcdbbb2ab2a4ab67341Karabulut, I., Paspalakis, E., (2016) Physica E, 81, pp. 294-301Li, K., Guo, K., Jiang, X., Hu, M., (2017) Optik, 132, pp. 375-381Diroll, B.T., Chen, M., Coropceanu, I., Williams, K.R., Talapin, D.V., Sionnest, P.G., Schaller, R.D., (2019) Nat. Commun., 10, p. 4511Dakhlaoui, H., Nefzi, M., (2019) Results Phys., 15, p. 102618Noverola-Gamas, H., Gaggero-Sager, L.M., Oubram, O., (2019) Chin. Phys. B, 28, p. 124207Zhao, Q., Aqiqi, S., You, J.F., Kria, M., Guo, K.X., Feddi, E., Zhang, Z.H., Yuan, J.H., (2020) Physica E, 115, p. 113707Rojas-Briseño, J.G., Del Río-De Santiago, A., Mora-Ramos, M.E., Martínez-Orozco, J.C., (2020) Optik, 201, p. 163431Ri Betancourt-Riera, Re Betancourt-Riera, L.A., Ferrer-Moreno, A.D., Sanu-Ginerte, (2019) Physica B, 575, p. 411700Amiri, B., Belghachi, A., (2020) Optik, 202, p. 163554Yildirim, H., (2019) Physica B, 571, pp. 26-31Chen, Y.Y., Li, Y.N., Wan, R.G., Yan, H.W., (2019) Phys. Lett. A, 383, p. 125921Panda, S., Das, T., Panda, B.K., (2019) Superlattices Microstruct., 135, p. 106238Massoudi, I., (2019) Superlattices Microstruct., 136, p. 106299Hien, N.D., Duque, C.A., Feddi, E., Hieu, N.V., Trien, H.D., Phuong, L.T.T., Hoi, B.D., Phuc, H.V., (2019) Thin Solid Films, 682, pp. 10-17Zhang, Z.H.J., Guo, K.X., Yuan, J.H., (2019) Physica E, 108, pp. 238-243Almansour, S., (2019) J. Korean Phys. Soc., 75, pp. 806-810You, J.F., Zhao, Q., Zhang, Z.H., Yuan, J.H., Guo, K.X., Feddi, E., (2019) Int. J. Mod. Phys. B, 33, p. 1950325Zhang, C., Min, C., Zhao, B., (2019) Phys. Lett. A, 383, p. 125983Pham, K.D., Dinh, L., Vinh, P.T., Duque, C.A., Phuc, H.V., Nguyen, C.V., (2018) Superlattices Microstruct., 120, p. 738Guang-Hui, W., Kang-Xian, G., Qi, G., (2003) Commun. Theor. Phys., 39, p. 377Xia, J.-B., Fan, W.-J., (1989) Phys. Rev. B, 40, pp. 8508-8515Ungan, F., Pal, S., Bahar, M.K., Mora-Ramos, M.E., (2019) Superlattices Microstruct., 130, pp. 76-86Ungan, F., Martinez-Orozco, J.C., Restrepo, R.L., Mora-Ramos, M.E., (2019) Optik, 185, pp. 881-887Photonics and Nanostructures - Fundamentals and ApplicationsAsymmetric quantum wellElectric fieldMagnetic fieldNonlinear optical responseElectromagnetic fieldsElectronic structureLight absorptionMagnetic fieldsRefractive indexCompact-density-matrix approachCompositional diffusionEffective mass approximationElectric and magnetic fieldsExternal electromagnetic fieldIntersubband transitionsRefractive index changesStructural configurationsSemiconductor quantum wellsOptical responses in asymmetric hyperbolic-type quantum wells under the effect of external electromagnetic fieldsReviewinfo:eu-repo/semantics/reviewhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_efa0Ungan, F., Faculty of Technology, Department of Optical Engineering, Sivas Cumhuriyet University, Sivas, 58140, TurkeyBahar, M.K., Faculty of Science, Department of Physics, Sivas Cumhuriyet University, Sivas, 58140, TurkeyMartinez-Orozco, J.C., Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, Zacatecas, Zac. C.P. 98060, MexicoMora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecUngan F.Bahar M.K.Martinez-Orozco J.C.Mora-Ramos M.E.11407/5988oai:repository.udem.edu.co:11407/59882021-02-05 09:58:27.037Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |