Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NO

Structural properties of AgnRh (n ≤ 15) clusters are investigated using a successive growth algorithm coupled with density functional theory computations. The structures of the clusters are revisited, including a detailed discussion of their electronic properties. In contrast to these previous contr...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4250
Acceso en línea:
http://hdl.handle.net/11407/4250
Palabra clave:
Adsorption
Binary alloys
Density functional theory
Electronic properties
Isomers
Rhodium
Adsorption of no
Adsorption site
Growth algorithms
Lowest energy structure
Silver cluster
Size-dependent reactivity
Stable isomers
Structural evolution
Rhodium alloys
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_636d43b04f246c4298da69e668fc1806
oai_identifier_str oai:repository.udem.edu.co:11407/4250
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NO
title Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NO
spellingShingle Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NO
Adsorption
Binary alloys
Density functional theory
Electronic properties
Isomers
Rhodium
Adsorption of no
Adsorption site
Growth algorithms
Lowest energy structure
Silver cluster
Size-dependent reactivity
Stable isomers
Structural evolution
Rhodium alloys
title_short Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NO
title_full Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NO
title_fullStr Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NO
title_full_unstemmed Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NO
title_sort Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NO
dc.contributor.affiliation.spa.fl_str_mv Rodríguez-Kessler, P.L., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico
Pan, S., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico
Florez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
Cabellos, J.L., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico
Merino, G., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, Mexico
dc.subject.keyword.eng.fl_str_mv Adsorption
Binary alloys
Density functional theory
Electronic properties
Isomers
Rhodium
Adsorption of no
Adsorption site
Growth algorithms
Lowest energy structure
Silver cluster
Size-dependent reactivity
Stable isomers
Structural evolution
Rhodium alloys
topic Adsorption
Binary alloys
Density functional theory
Electronic properties
Isomers
Rhodium
Adsorption of no
Adsorption site
Growth algorithms
Lowest energy structure
Silver cluster
Size-dependent reactivity
Stable isomers
Structural evolution
Rhodium alloys
description Structural properties of AgnRh (n ≤ 15) clusters are investigated using a successive growth algorithm coupled with density functional theory computations. The structures of the clusters are revisited, including a detailed discussion of their electronic properties. In contrast to these previous contributions, the lowest energy structures of the clusters are planar for n = 3-6, while three-dimensional for n = 7 onward. Our present searches identify new lowest energy structures for n = 3-6 and 9-13. The most stable isomers are selected to study the adsorption of NO. The size-dependent reactivity of the clusters indicates that Rh atom acts as a more effective adsorption site for NO than Ag. Since the transition from Rh-exposed to Rh-encapsulated structures occurs at n = 9, the reactivity toward NO for AgnRh clusters with n ≤ 8 is considerably higher than that for the larger homologues. Further, the results show that doping Agn clusters with Rh increases the reactivity toward NO adsorption. © 2017 American Chemical Society.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:41Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:41Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 19327447
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4250
dc.identifier.doi.none.fl_str_mv 10.1021/acs.jpcc.7b05048
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 19327447
10.1021/acs.jpcc.7b05048
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4250
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029376158&doi=10.1021%2facs.jpcc.7b05048&partnerID=40&md5=f446b3c3841d966d659f442e128b9a24
dc.relation.ispartofes.spa.fl_str_mv Journal of Physical Chemistry C
Journal of Physical Chemistry C Volume 121, Issue 35, 7 September 2017, Pages 19420-19427
dc.relation.references.spa.fl_str_mv Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. Journal of Chemical Physics, 110(13), 6158-6170.
Bandyopadhyay, D., & Sen, P. (2010). Density functional investigation of structure and stability of ge n and GenNi (n = 1-20) clusters: Validity of the electron counting rule. Journal of Physical Chemistry A, 114(4), 1835-1842. doi:10.1021/jp905561n
Becerril, D., & Noguez, C. (2015). Adsorption of a methylthio radical on silver nanoparticles: Size dependence. Journal of Physical Chemistry C, 119(20), 10824-10835. doi:10.1021/jp509727q
Bernhardt, T. M., Socaciu-Siebert, L. D., Hagen, J., & Wöste, L. (2005). Size and composition dependence in CO oxidation reaction on small free gold, silver, and binary silver-gold cluster anions. Applied Catalysis A: General, 291(1-2), 170-178. doi:10.1016/j.apcata.2005.02.041
Chen, M., Dyer, J. E., Li, K., & Dixon, D. A. (2013). Prediction of structures and atomization energies of small silver clusters, (ag)n, n < 100. Journal of Physical Chemistry A, 117(34), 8298-8313. doi:10.1021/jp404493w
Dong, R., Chen, X., Zhao, H., Wang, X., Shu, H., Ding, Z., & Wei, L. (2011). Structural, electronic and magnetic properties of AgnFe clusters (n ≤ 15): Local magnetic moment interacting with delocalized electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 44(3) doi:10.1088/0953-4075/44/3/035102
Duarte, H. A., & Salahub, D. R. (1999). NO adsorption on pd clusters. A density functional study. Topics in Catalysis, 9(3-4), 123-133.
Fournier, R. (2001). Theoretical study of the structure of silver clusters. Journal of Chemical Physics, 115(5), 2165-2177. doi:10.1063/1.1383288
Frisch, M. J. (2009). Gaussian 09.
Gong, X., Ju, W., Li, T., Feng, Z., & Wang, Y. (2015). Spin–orbit splitting and magnetism of icosahedral M@Ag12 clusters (M = 3d and 4d atoms). Journal of Cluster Science, 26(3), 759-773. doi:10.1007/s10876-014-0737-x
Grönbeck, H., Hellman, A., & Gavrin, A. (2007). Structural, energetic, and vibrational properties of NOx adsorption on agn, n = 1-8. Journal of Physical Chemistry A, 111(27), 6062-6067. doi:10.1021/jp071117d
Gutsev, G. L., Mochena, M. D., Johnson, E., & Bauschlicher Jr., C. W. (2006). Dissociative and associative attachment of NO to iron clusters. Journal of Chemical Physics, 125(19) doi:10.1063/1.2378831
Harb, M., Rabilloud, F., Simon, D., Rydlo, A., Lecoultre, S., Conus, F., . . . Félix, C. (2008). Optical absorption of small silver clusters: Agn, (n=4-22). Journal of Chemical Physics, 129(19) doi:10.1063/1.3013557
Harding, D., Mackenzie, S. R., & Walsh, T. R. (2006). Structural isomers and reactivity for Rh6 and rhe 6+. Journal of Physical Chemistry B, 110(37), 18272-18277. doi:10.1021/jp062603o
Hirabayashi, S., & Ichihashi, M. (2016). Reactions of ti- and V-doped cu cluster cations with nitric oxide and oxygen: Size dependence and preferential NO adsorption. Journal of Physical Chemistry A, 120(10), 1637-1643. doi:10.1021/acs.jpca.6b00206
Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), B864-B871. doi:10.1103/PhysRev.136.B864
Itoh, M., Kumar, V., Adschiri, T., & Kawazoe, Y. (2009). Comprehensive study of sodium, copper, and silver clusters over a wide range of sizes 2≤N≤75. Journal of Chemical Physics, 131(17) doi:10.1063/1.3187934
Jackschath, C., Rabin, I., & Schulze, W. (1992). Electron impact ionization of silver clusters agn, n≦36. Zeitschrift Für Physik D Atoms, Molecules and Clusters, 22(2), 517-520. doi:10.1007/BF01426093
Janssens, E., Neukermans, S., Nguyen, H. M. T., Nguyen, M. T., & Lievens, P. (2005). Quenching of the magnetic moment of a transition metal dopant in silver clusters. Physical Review Letters, 94(11) doi:10.1103/PhysRevLett.94.113401
Janssens, E., Neukermans, S., Wang, X., Veldeman, N., Silverans, R. E., & Lievens, P. (2005). Stability patterns of transition metal doped silver clusters: Dopant- and size-dependent electron delocalization.European Physical Journal D, 34(1-3), 23-27. doi:10.1140/epjd/e2005-00106-9
Jensen, W. B. (2005). The origin of the 18-electron rule. Journal of Chemical Education, 82(1), 28.
Jin, Y., Maroulis, G., Kuang, X., Ding, L., Lu, C., Wang, J., . . . Ju, M. (2015). Geometries, stabilities and fragmental channels of neutral and charged sulfur clusters: SnQ (n = 3-20, Q = 0, ±1). Physical Chemistry Chemical Physics, 17(20), 13590-13597. doi:10.1039/c5cp00728c
Jin, Y., Tian, Y., Kuang, X., Zhang, C., Lu, C., Wang, J., . . . Ju, M. (2015). Ab initio search for global minimum structures of pure and boron doped silver clusters. Journal of Physical Chemistry A, 119(25), 6738-6745. doi:10.1021/acs.jpca.5b03542
Kohaut, S., & Springborg, M. (2016). Structural, energetic, and magnetic properties of agn-mRhm and agm rhn-m clusters with n ≤ 20 and m = 0,1. Journal of Cluster Science, 27(3), 913-933. doi:10.1007/s10876-016-1003-1
Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133-A1138. doi:10.1103/PhysRev.140.A1133
Kotsifa, A., Halkides, T. I., Kondarides, D. I., & Verykios, X. E. (2002). Activity enhancement of bimetallic rh-Ag/Al2O3 catalysts for selective catalytic reduction of NO by C3H6. Catalysis Letters, 79(1-4), 113-117. doi:10.1023/A:1015308408840
Koyasu, K., Akutsu, M., Mitsui, M., & Nakajima, A. (2005). Selective formation of MSi16 (M = sc, ti, and V). Journal of the American Chemical Society, 127(14), 4998-4999. doi:10.1021/ja045380t
Li, Y., Lyon, J. T., Woodham, A. P., Fielicke, A., & Janssens, E. (2014). The geometric structure of silver-doped silicon clusters. ChemPhysChem, 15(2), 328-336. doi:10.1002/cphc.201300944
Liu, X., Tian, D., Ren, S., & Meng, C. (2015). Structure sensitivity of NO adsorption-dissociation on pdn (n = 8, 13, 19, 25) clusters. Journal of Physical Chemistry C, 119(23), 12941-12948. doi:10.1021/acs.jpcc.5b01141
Matulis, V. E., & Ivaskevich, O. A. (2006). Comparative DFT study of electronic structure and geometry of copper and silver clusters: Interaction with NO molecule. Computational Materials Science, 35(3), 268-271. doi:10.1016/j.commatsci.2004.08.011
Mokkath, J. H., & Schwingenschlögl, U. (2014). Structural and optical properties of si-doped ag clusters. Journal of Physical Chemistry C, 118(9), 4885-4889. doi:10.1021/jp4112958
Nhat, P. V., & Nguyen, M. T. (2011). Trends in structural, electronic and energetic properties of bimetallic vanadium-gold clusters AunV with n = 1-14. Physical Chemistry Chemical Physics, 13(36), 16254-16264. doi:10.1039/c1cp22078k
Nhat, P. V., & Nguyen, M. T. (2011). Trends in structural, electronic and energetic properties of bimetallic vanadium-gold clusters AunV with n = 1-14. Physical Chemistry Chemical Physics, 13(36), 16254-16264. doi:10.1039/c1cp22078k
Pereiro, M., & Baldomir, D. (2007). Structure of small silver clusters and static response to an external electric field. Physical Review A - Atomic, Molecular, and Optical Physics, 75(3) doi:10.1103/PhysRevA.75.033202
Peyser, L. A., Vinson, A. E., Bartko, A. P., & Dickson, R. M. (2001). Photoactivated fluorescence from individual silver nanoclusters. Science, 291(5501), 103-106. doi:10.1126/science.291.5501.103
Piotrowski, M. J., Piquini, P., Zeng, Z., & Da Silva, J. L. F. (2012). Adsorption of NO on the rh 13, pd 13, ir 13, and pt 13 clusters: A density functional theory investigation. Journal of Physical Chemistry C, 116(38), 20540-20549. doi:10.1021/jp303167b
Ran, Q., Schmude Jr., R. W., Gingerich, K. A., Wilhite, D. W., & Kingcade Jr., J. E. (1993). Dissociation energy and enthalpy of formation of gaseous silver dimer. Journal of Physical Chemistry, 97(32), 8535-8540.
Rao, B. K., & Jena, P. (1999). Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis. Journal of Chemical Physics, 111(5), 1890-1904.
Rodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2015). Stability of ni clusters and the adsorption of CH4: First-principles calculations. Journal of Physical Chemistry C, 119(22), 12378-12384. doi:10.1021/acs.jpcc.5b01738
Rodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2015). Structural, electronic, and magnetic properties of AgnCo (n=1-9) clusters: A first-principles study. Computational and Theoretical Chemistry, 1066, 55-61. doi:10.1016/j.comptc.2015.05.009
Rodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2016). Structures and electronic properties of TinV (n = 1-16) clusters: First-principles calculations. Journal of Physical Chemistry A, 120(15), 2401-2407. doi:10.1021/acs.jpca.6b00224
Romo-Ávila, S. L., & Guirado-López, R. A. (2012). Adsorption of nitric oxide on small rh n± clusters: Role of the local atomic environment on the dissociation of the N-O bond. Journal of Physical Chemistry A, 116(3), 1059-1068. doi:10.1021/jp208847r
Sazama, P., Čapek, L., Drobná, H., Sobalík, Z., Dědeček, J., Arve, K., & Wichterlová, B. (2005). Enhancement of decane-SCR-NOx over Ag/alumina by hydrogen. reaction kinetics and in situ FTIR and UV-vis study. Journal of Catalysis, 232(2), 302-317. doi:10.1016/j.jcat.2005.03.013
Shimizu, K. -., Sugino, K., Sawabe, K., & Satsuma, A. (2009). Oxidant-free dehydrogenation of alcohols heterogeneously catalyzed by cooperation of silver clusters and acid-base sites on alumina. Chemistry - A European Journal, 15(10), 2341-2351. doi:10.1002/chem.200802222
Simard, B., Hackett, P. A., James, A. M., & Langridge-Smith, P. R. R. (1991). The bond length of silver dimer. Chemical Physics Letters, 186(4-5), 415-422. doi:10.1016/0009-2614(91)90201-J
Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302
Sun, W. G., Wang, J. J., Lu, C., Xia, X. X., Kuang, X. Y., & Hermann, A. (2017). Evolution of the structural and electronic properties of medium-sized sodium clusters: A honeycomb-like Na20 cluster. Inorganic Chemistry, 56(3), 1241-1248. doi:10.1021/acs.inorgchem.6b02340
Tian, D., Zhang, H., & Zhao, J. (2007). Structure and structural evolution of agn (n = 3 - 22) clusters using a genetic algorithm and density functional theory method. Solid State Communications, 144(3-4), 174-179. doi:10.1016/j.ssc.2007.05.020
Torres, M. B., Aguilera-Granja, F., Balbás, L. C., & Vega, A. (2011). Ab initio study of the adsorption of NO on the rh 6 + cluster. Journal of Physical Chemistry A, 115(30), 8350-8360. doi:10.1021/jp202511w
Wang, Y., George, T. F., Lindsay, D. M., & Beri, A. C. (1987). The hückel model for small metal clusters. I. geometry, stability, and relationship to graph theory. The Journal of Chemical Physics, 86(6), 3493-3499.
Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297-3305. doi:10.1039/b508541a
Xia, X., Kuang, X., Lu, C., Jin, Y., Xing, X., Merino, G., & Hermann, A. (2016). Deciphering the structural evolution and electronic properties of magnesium clusters: An aromatic homonuclear metal Mg17 cluster. Journal of Physical Chemistry A, 120(40), 7947-7954. doi:10.1021/acs.jpca.6b07322
Yang, M., Jackson, K. A., & Jellinek, J. (2006). First-principles study of intermediate size silver clusters: Shape evolution and its impact on cluster properties. Journal of Chemical Physics, 125(14) doi:10.1063/1.2351818
Zhang, M., Gu, X. -., Zhang, W. -., Zhao, L. -., He, L. -., & Luo, Y. -. (2010). Probing the magnetic and structural properties of the 3d, 4d, 5d impurities encapsulated in an icosahedral Ag12 cage. Physica B: Condensed Matter, 405(2), 642-648. doi:10.1016/j.physb.2009.09.080
Zhang, W., Yan, S. -., Zhao, Z. -., & Zhang, H. -. (2012). Stabilities and fragmentation behaviors of ag nclusters(n = 234). Journal of Theoretical and Computational Chemistry, 11(5), 953-964. doi:10.1142/S0219633612500642
Zibordi-Besse, L., Tereshchuk, P., Chaves, A. S., & Da Silva, J. L. F. (2016). Ethanol and water adsorption on transition-metal 13-atom clusters: A density functional theory investigation within van der waals corrections. Journal of Physical Chemistry A, 120(24), 4231-4240. doi:10.1021/acs.jpca.6b03467
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv American Chemical Society
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159139758145536
spelling 2017-12-19T19:36:41Z2017-12-19T19:36:41Z201719327447http://hdl.handle.net/11407/425010.1021/acs.jpcc.7b05048reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínStructural properties of AgnRh (n ≤ 15) clusters are investigated using a successive growth algorithm coupled with density functional theory computations. The structures of the clusters are revisited, including a detailed discussion of their electronic properties. In contrast to these previous contributions, the lowest energy structures of the clusters are planar for n = 3-6, while three-dimensional for n = 7 onward. Our present searches identify new lowest energy structures for n = 3-6 and 9-13. The most stable isomers are selected to study the adsorption of NO. The size-dependent reactivity of the clusters indicates that Rh atom acts as a more effective adsorption site for NO than Ag. Since the transition from Rh-exposed to Rh-encapsulated structures occurs at n = 9, the reactivity toward NO for AgnRh clusters with n ≤ 8 is considerably higher than that for the larger homologues. Further, the results show that doping Agn clusters with Rh increases the reactivity toward NO adsorption. © 2017 American Chemical Society.engAmerican Chemical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85029376158&doi=10.1021%2facs.jpcc.7b05048&partnerID=40&md5=f446b3c3841d966d659f442e128b9a24Journal of Physical Chemistry CJournal of Physical Chemistry C Volume 121, Issue 35, 7 September 2017, Pages 19420-19427Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. Journal of Chemical Physics, 110(13), 6158-6170.Bandyopadhyay, D., & Sen, P. (2010). Density functional investigation of structure and stability of ge n and GenNi (n = 1-20) clusters: Validity of the electron counting rule. Journal of Physical Chemistry A, 114(4), 1835-1842. doi:10.1021/jp905561nBecerril, D., & Noguez, C. (2015). Adsorption of a methylthio radical on silver nanoparticles: Size dependence. Journal of Physical Chemistry C, 119(20), 10824-10835. doi:10.1021/jp509727qBernhardt, T. M., Socaciu-Siebert, L. D., Hagen, J., & Wöste, L. (2005). Size and composition dependence in CO oxidation reaction on small free gold, silver, and binary silver-gold cluster anions. Applied Catalysis A: General, 291(1-2), 170-178. doi:10.1016/j.apcata.2005.02.041Chen, M., Dyer, J. E., Li, K., & Dixon, D. A. (2013). Prediction of structures and atomization energies of small silver clusters, (ag)n, n < 100. Journal of Physical Chemistry A, 117(34), 8298-8313. doi:10.1021/jp404493wDong, R., Chen, X., Zhao, H., Wang, X., Shu, H., Ding, Z., & Wei, L. (2011). Structural, electronic and magnetic properties of AgnFe clusters (n ≤ 15): Local magnetic moment interacting with delocalized electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 44(3) doi:10.1088/0953-4075/44/3/035102Duarte, H. A., & Salahub, D. R. (1999). NO adsorption on pd clusters. A density functional study. Topics in Catalysis, 9(3-4), 123-133.Fournier, R. (2001). Theoretical study of the structure of silver clusters. Journal of Chemical Physics, 115(5), 2165-2177. doi:10.1063/1.1383288Frisch, M. J. (2009). Gaussian 09.Gong, X., Ju, W., Li, T., Feng, Z., & Wang, Y. (2015). Spin–orbit splitting and magnetism of icosahedral M@Ag12 clusters (M = 3d and 4d atoms). Journal of Cluster Science, 26(3), 759-773. doi:10.1007/s10876-014-0737-xGrönbeck, H., Hellman, A., & Gavrin, A. (2007). Structural, energetic, and vibrational properties of NOx adsorption on agn, n = 1-8. Journal of Physical Chemistry A, 111(27), 6062-6067. doi:10.1021/jp071117dGutsev, G. L., Mochena, M. D., Johnson, E., & Bauschlicher Jr., C. W. (2006). Dissociative and associative attachment of NO to iron clusters. Journal of Chemical Physics, 125(19) doi:10.1063/1.2378831Harb, M., Rabilloud, F., Simon, D., Rydlo, A., Lecoultre, S., Conus, F., . . . Félix, C. (2008). Optical absorption of small silver clusters: Agn, (n=4-22). Journal of Chemical Physics, 129(19) doi:10.1063/1.3013557Harding, D., Mackenzie, S. R., & Walsh, T. R. (2006). Structural isomers and reactivity for Rh6 and rhe 6+. Journal of Physical Chemistry B, 110(37), 18272-18277. doi:10.1021/jp062603oHirabayashi, S., & Ichihashi, M. (2016). Reactions of ti- and V-doped cu cluster cations with nitric oxide and oxygen: Size dependence and preferential NO adsorption. Journal of Physical Chemistry A, 120(10), 1637-1643. doi:10.1021/acs.jpca.6b00206Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), B864-B871. doi:10.1103/PhysRev.136.B864Itoh, M., Kumar, V., Adschiri, T., & Kawazoe, Y. (2009). Comprehensive study of sodium, copper, and silver clusters over a wide range of sizes 2≤N≤75. Journal of Chemical Physics, 131(17) doi:10.1063/1.3187934Jackschath, C., Rabin, I., & Schulze, W. (1992). Electron impact ionization of silver clusters agn, n≦36. Zeitschrift Für Physik D Atoms, Molecules and Clusters, 22(2), 517-520. doi:10.1007/BF01426093Janssens, E., Neukermans, S., Nguyen, H. M. T., Nguyen, M. T., & Lievens, P. (2005). Quenching of the magnetic moment of a transition metal dopant in silver clusters. Physical Review Letters, 94(11) doi:10.1103/PhysRevLett.94.113401Janssens, E., Neukermans, S., Wang, X., Veldeman, N., Silverans, R. E., & Lievens, P. (2005). Stability patterns of transition metal doped silver clusters: Dopant- and size-dependent electron delocalization.European Physical Journal D, 34(1-3), 23-27. doi:10.1140/epjd/e2005-00106-9Jensen, W. B. (2005). The origin of the 18-electron rule. Journal of Chemical Education, 82(1), 28.Jin, Y., Maroulis, G., Kuang, X., Ding, L., Lu, C., Wang, J., . . . Ju, M. (2015). Geometries, stabilities and fragmental channels of neutral and charged sulfur clusters: SnQ (n = 3-20, Q = 0, ±1). Physical Chemistry Chemical Physics, 17(20), 13590-13597. doi:10.1039/c5cp00728cJin, Y., Tian, Y., Kuang, X., Zhang, C., Lu, C., Wang, J., . . . Ju, M. (2015). Ab initio search for global minimum structures of pure and boron doped silver clusters. Journal of Physical Chemistry A, 119(25), 6738-6745. doi:10.1021/acs.jpca.5b03542Kohaut, S., & Springborg, M. (2016). Structural, energetic, and magnetic properties of agn-mRhm and agm rhn-m clusters with n ≤ 20 and m = 0,1. Journal of Cluster Science, 27(3), 913-933. doi:10.1007/s10876-016-1003-1Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133-A1138. doi:10.1103/PhysRev.140.A1133Kotsifa, A., Halkides, T. I., Kondarides, D. I., & Verykios, X. E. (2002). Activity enhancement of bimetallic rh-Ag/Al2O3 catalysts for selective catalytic reduction of NO by C3H6. Catalysis Letters, 79(1-4), 113-117. doi:10.1023/A:1015308408840Koyasu, K., Akutsu, M., Mitsui, M., & Nakajima, A. (2005). Selective formation of MSi16 (M = sc, ti, and V). Journal of the American Chemical Society, 127(14), 4998-4999. doi:10.1021/ja045380tLi, Y., Lyon, J. T., Woodham, A. P., Fielicke, A., & Janssens, E. (2014). The geometric structure of silver-doped silicon clusters. ChemPhysChem, 15(2), 328-336. doi:10.1002/cphc.201300944Liu, X., Tian, D., Ren, S., & Meng, C. (2015). Structure sensitivity of NO adsorption-dissociation on pdn (n = 8, 13, 19, 25) clusters. Journal of Physical Chemistry C, 119(23), 12941-12948. doi:10.1021/acs.jpcc.5b01141Matulis, V. E., & Ivaskevich, O. A. (2006). Comparative DFT study of electronic structure and geometry of copper and silver clusters: Interaction with NO molecule. Computational Materials Science, 35(3), 268-271. doi:10.1016/j.commatsci.2004.08.011Mokkath, J. H., & Schwingenschlögl, U. (2014). Structural and optical properties of si-doped ag clusters. Journal of Physical Chemistry C, 118(9), 4885-4889. doi:10.1021/jp4112958Nhat, P. V., & Nguyen, M. T. (2011). Trends in structural, electronic and energetic properties of bimetallic vanadium-gold clusters AunV with n = 1-14. Physical Chemistry Chemical Physics, 13(36), 16254-16264. doi:10.1039/c1cp22078kNhat, P. V., & Nguyen, M. T. (2011). Trends in structural, electronic and energetic properties of bimetallic vanadium-gold clusters AunV with n = 1-14. Physical Chemistry Chemical Physics, 13(36), 16254-16264. doi:10.1039/c1cp22078kPereiro, M., & Baldomir, D. (2007). Structure of small silver clusters and static response to an external electric field. Physical Review A - Atomic, Molecular, and Optical Physics, 75(3) doi:10.1103/PhysRevA.75.033202Peyser, L. A., Vinson, A. E., Bartko, A. P., & Dickson, R. M. (2001). Photoactivated fluorescence from individual silver nanoclusters. Science, 291(5501), 103-106. doi:10.1126/science.291.5501.103Piotrowski, M. J., Piquini, P., Zeng, Z., & Da Silva, J. L. F. (2012). Adsorption of NO on the rh 13, pd 13, ir 13, and pt 13 clusters: A density functional theory investigation. Journal of Physical Chemistry C, 116(38), 20540-20549. doi:10.1021/jp303167bRan, Q., Schmude Jr., R. W., Gingerich, K. A., Wilhite, D. W., & Kingcade Jr., J. E. (1993). Dissociation energy and enthalpy of formation of gaseous silver dimer. Journal of Physical Chemistry, 97(32), 8535-8540.Rao, B. K., & Jena, P. (1999). Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis. Journal of Chemical Physics, 111(5), 1890-1904.Rodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2015). Stability of ni clusters and the adsorption of CH4: First-principles calculations. Journal of Physical Chemistry C, 119(22), 12378-12384. doi:10.1021/acs.jpcc.5b01738Rodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2015). Structural, electronic, and magnetic properties of AgnCo (n=1-9) clusters: A first-principles study. Computational and Theoretical Chemistry, 1066, 55-61. doi:10.1016/j.comptc.2015.05.009Rodríguez-Kessler, P. L., & Rodríguez-Domínguez, A. R. (2016). Structures and electronic properties of TinV (n = 1-16) clusters: First-principles calculations. Journal of Physical Chemistry A, 120(15), 2401-2407. doi:10.1021/acs.jpca.6b00224Romo-Ávila, S. L., & Guirado-López, R. A. (2012). Adsorption of nitric oxide on small rh n± clusters: Role of the local atomic environment on the dissociation of the N-O bond. Journal of Physical Chemistry A, 116(3), 1059-1068. doi:10.1021/jp208847rSazama, P., Čapek, L., Drobná, H., Sobalík, Z., Dědeček, J., Arve, K., & Wichterlová, B. (2005). Enhancement of decane-SCR-NOx over Ag/alumina by hydrogen. reaction kinetics and in situ FTIR and UV-vis study. Journal of Catalysis, 232(2), 302-317. doi:10.1016/j.jcat.2005.03.013Shimizu, K. -., Sugino, K., Sawabe, K., & Satsuma, A. (2009). Oxidant-free dehydrogenation of alcohols heterogeneously catalyzed by cooperation of silver clusters and acid-base sites on alumina. Chemistry - A European Journal, 15(10), 2341-2351. doi:10.1002/chem.200802222Simard, B., Hackett, P. A., James, A. M., & Langridge-Smith, P. R. R. (1991). The bond length of silver dimer. Chemical Physics Letters, 186(4-5), 415-422. doi:10.1016/0009-2614(91)90201-JSoler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302Sun, W. G., Wang, J. J., Lu, C., Xia, X. X., Kuang, X. Y., & Hermann, A. (2017). Evolution of the structural and electronic properties of medium-sized sodium clusters: A honeycomb-like Na20 cluster. Inorganic Chemistry, 56(3), 1241-1248. doi:10.1021/acs.inorgchem.6b02340Tian, D., Zhang, H., & Zhao, J. (2007). Structure and structural evolution of agn (n = 3 - 22) clusters using a genetic algorithm and density functional theory method. Solid State Communications, 144(3-4), 174-179. doi:10.1016/j.ssc.2007.05.020Torres, M. B., Aguilera-Granja, F., Balbás, L. C., & Vega, A. (2011). Ab initio study of the adsorption of NO on the rh 6 + cluster. Journal of Physical Chemistry A, 115(30), 8350-8360. doi:10.1021/jp202511wWang, Y., George, T. F., Lindsay, D. M., & Beri, A. C. (1987). The hückel model for small metal clusters. I. geometry, stability, and relationship to graph theory. The Journal of Chemical Physics, 86(6), 3493-3499.Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297-3305. doi:10.1039/b508541aXia, X., Kuang, X., Lu, C., Jin, Y., Xing, X., Merino, G., & Hermann, A. (2016). Deciphering the structural evolution and electronic properties of magnesium clusters: An aromatic homonuclear metal Mg17 cluster. Journal of Physical Chemistry A, 120(40), 7947-7954. doi:10.1021/acs.jpca.6b07322Yang, M., Jackson, K. A., & Jellinek, J. (2006). First-principles study of intermediate size silver clusters: Shape evolution and its impact on cluster properties. Journal of Chemical Physics, 125(14) doi:10.1063/1.2351818Zhang, M., Gu, X. -., Zhang, W. -., Zhao, L. -., He, L. -., & Luo, Y. -. (2010). Probing the magnetic and structural properties of the 3d, 4d, 5d impurities encapsulated in an icosahedral Ag12 cage. Physica B: Condensed Matter, 405(2), 642-648. doi:10.1016/j.physb.2009.09.080Zhang, W., Yan, S. -., Zhao, Z. -., & Zhang, H. -. (2012). Stabilities and fragmentation behaviors of ag nclusters(n = 234). Journal of Theoretical and Computational Chemistry, 11(5), 953-964. doi:10.1142/S0219633612500642Zibordi-Besse, L., Tereshchuk, P., Chaves, A. S., & Da Silva, J. L. F. (2016). Ethanol and water adsorption on transition-metal 13-atom clusters: A density functional theory investigation within van der waals corrections. Journal of Physical Chemistry A, 120(24), 4231-4240. doi:10.1021/acs.jpca.6b03467ScopusStructural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NOArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Rodríguez-Kessler, P.L., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, MexicoPan, S., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, MexicoFlorez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaCabellos, J.L., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, MexicoMerino, G., Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, MexicoRodríguez-Kessler P.L.Pan S.Florez E.Cabellos J.L.Merino G.Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Apdo. Postal 73, Cordemex, Mérida, Yucatán, MexicoDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaAdsorptionBinary alloysDensity functional theoryElectronic propertiesIsomersRhodiumAdsorption of noAdsorption siteGrowth algorithmsLowest energy structureSilver clusterSize-dependent reactivityStable isomersStructural evolutionRhodium alloysStructural properties of AgnRh (n ≤ 15) clusters are investigated using a successive growth algorithm coupled with density functional theory computations. The structures of the clusters are revisited, including a detailed discussion of their electronic properties. In contrast to these previous contributions, the lowest energy structures of the clusters are planar for n = 3-6, while three-dimensional for n = 7 onward. Our present searches identify new lowest energy structures for n = 3-6 and 9-13. The most stable isomers are selected to study the adsorption of NO. The size-dependent reactivity of the clusters indicates that Rh atom acts as a more effective adsorption site for NO than Ag. Since the transition from Rh-exposed to Rh-encapsulated structures occurs at n = 9, the reactivity toward NO for AgnRh clusters with n ≤ 8 is considerably higher than that for the larger homologues. Further, the results show that doping Agn clusters with Rh increases the reactivity toward NO adsorption. © 2017 American Chemical Society.http://purl.org/coar/access_right/c_16ec11407/4250oai:repository.udem.edu.co:11407/42502020-05-27 16:26:52.366Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co