Data fusion from multiple stations for estimation of PM2.5 in specific geographical location

Nowadays, an important decrease in the quality of the air has been observed, due to the presence of contamination levels that can change the natural composition of the air. This fact represents a problem not only for the environment, but also for the public health. Consequently, this paper presents...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4277
Acceso en línea:
http://hdl.handle.net/11407/4277
Palabra clave:
ANFIS
PM2.5 estimation
Support vector regression
Air quality
Data fusion
Location
Pattern recognition
Public health
Adaptive neural fuzzy inference system (ANFIS)
Air quality networks
ANFIS
Contamination levels
Environmental database
Geographical locations
Meteorological variables
Support vector regression (SVR)
Fuzzy inference
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_5d3aa1887c40b95837e8bec8fbb6a311
oai_identifier_str oai:repository.udem.edu.co:11407/4277
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Data fusion from multiple stations for estimation of PM2.5 in specific geographical location
title Data fusion from multiple stations for estimation of PM2.5 in specific geographical location
spellingShingle Data fusion from multiple stations for estimation of PM2.5 in specific geographical location
ANFIS
PM2.5 estimation
Support vector regression
Air quality
Data fusion
Location
Pattern recognition
Public health
Adaptive neural fuzzy inference system (ANFIS)
Air quality networks
ANFIS
Contamination levels
Environmental database
Geographical locations
Meteorological variables
Support vector regression (SVR)
Fuzzy inference
title_short Data fusion from multiple stations for estimation of PM2.5 in specific geographical location
title_full Data fusion from multiple stations for estimation of PM2.5 in specific geographical location
title_fullStr Data fusion from multiple stations for estimation of PM2.5 in specific geographical location
title_full_unstemmed Data fusion from multiple stations for estimation of PM2.5 in specific geographical location
title_sort Data fusion from multiple stations for estimation of PM2.5 in specific geographical location
dc.contributor.affiliation.spa.fl_str_mv Becerra, M.A., GEA Research Group, Institución Universitaria Salazar y Herrera, Medellín, Colombia, SINTELWEB Research Group, Universidad Nacional de Colombia, Medellín, Colombia
Sánchez, M.B., GEA Research Group, Institución Universitaria Salazar y Herrera, Medellín, Colombia
Carvajal, J.G., GEA Research Group, Institución Universitaria Salazar y Herrera, Medellín, Colombia
Luna, J.A.G., SINTELWEB Research Group, Universidad Nacional de Colombia, Medellín, Colombia
Peluffo-Ordóñez, D.H., Facultad de Ingeniería en Ciencias Aplicadas-FICA, Universidad Técnica del Norte, Ibarra, Ecuador, Department of Electronics, Universidad de Nariño, Pasto, Colombia
Tobón, C., Universidad de Medellín, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv ANFIS
PM2.5 estimation
Support vector regression
Air quality
Data fusion
Location
Pattern recognition
Public health
Adaptive neural fuzzy inference system (ANFIS)
Air quality networks
ANFIS
Contamination levels
Environmental database
Geographical locations
Meteorological variables
Support vector regression (SVR)
Fuzzy inference
topic ANFIS
PM2.5 estimation
Support vector regression
Air quality
Data fusion
Location
Pattern recognition
Public health
Adaptive neural fuzzy inference system (ANFIS)
Air quality networks
ANFIS
Contamination levels
Environmental database
Geographical locations
Meteorological variables
Support vector regression (SVR)
Fuzzy inference
description Nowadays, an important decrease in the quality of the air has been observed, due to the presence of contamination levels that can change the natural composition of the air. This fact represents a problem not only for the environment, but also for the public health. Consequently, this paper presents a comparison among approaches based on Adaptive Neural Fuzzy Inference System (ANFIS) and Support Vector Regression (SVR) for the estimation level of PM2.5 (Particle Material 2.5) in specific geographic locations based on nearby stations. The systems were validated using an environmental database that belongs to air quality network of Valle de Aburrá (AMVA) of Medellin Colombia, which has the registration of 5 meteorological variables and 2 pollutants that are from 3 nearby measurement stations. Therefore, this project analyses the relevance of the characteristics obtained in every single station to estimate the levels of PM2.5 in the target station, using four different selectors based on Rough Set Feature Selection (RSFS) algorithms. Additionally, five systems to estimate the PM2.5 were compared: three based on ANFIS, and two based on SVR to obtain an aim and an efficient mechanism to estimate the levels of PM2.5 in specific geographic locations fusing data obtained from the near monitoring stations. © Springer International Publishing AG 2017.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:44Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:44Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.identifier.isbn.none.fl_str_mv 9783319522760
dc.identifier.issn.none.fl_str_mv 3029743
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4277
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-52277-7_52
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 9783319522760
3029743
10.1007/978-3-319-52277-7_52
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4277
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013471394&doi=10.1007%2f978-3-319-52277-7_52&partnerID=40&md5=668dac684d7746221537a90a90404d13
dc.relation.ispartofes.spa.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Volume 10125 LNCS, 2017, Pages 426-433
dc.relation.references.spa.fl_str_mv Antanasijević, D. Z., Pocajt, V. V., Povrenović, D. S., Ristić, M. T., & Perić-Grujić, A. A. (2013). PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Science of the Total Environment, 443, 511-519. doi:10.1016/j.scitotenv.2012.10.110
Behrang, M. A., Assareh, E., Ghanbarzadeh, A., & Noghrehabadi, A. R. (2010). The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy, 84(8), 1468-1480. doi:10.1016/j.solener.2010.05.009
Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2(3), 267-278. doi:10.3233/IFS-1994-2306
Deo, R. C., Wen, X., & Qi, F. (2016). A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Applied Energy, 168, 568-593. doi:10.1016/j.apenergy.2016.01.130
Dong, M., Yang, D., Kuang, Y., He, D., Erdal, S., & Kenski, D. (2009). PM2.5 concentration prediction using hidden semi-markov model-based times series data mining. Expert Systems with Applications, 36(5), 9046-9055. doi:10.1016/j.eswa.2008.12.017
Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., & Wang, J. (2015). Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment, 107, 118-128. doi:10.1016/j.atmosenv.2015.02.030
Gardner, M. W., & Dorling, S. R. (1999). Neural network modelling and prediction of hourly NO(x) and NO2 concentrations in urban air in london. Atmospheric Environment, 33(5), 709-719. doi:10.1016/S1352-2310(98)00230-1
Hrust, L., Klaić, Z. B., Križan, J., Antonić, O., & Hercog, P. (2009). Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations. Atmospheric Environment, 43(35), 5588-5596. doi:10.1016/j.atmosenv.2009.07.048
Jang, J. -. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665-685. doi:10.1109/21.256541
Kumar, A., & Goyal, P. (2011). Forecasting of daily air quality index in delhi. Science of the Total Environment, 409(24), 5517-5523. doi:10.1016/j.scitotenv.2011.08.069
Lohani, A. K., Goel, N. K., & Bhatia, K. K. S. (2014). Improving real time flood forecasting using fuzzy inference system. Journal of Hydrology, 509, 25-41. doi:10.1016/j.jhydrol.2013.11.021
Mishra, D., Goyal, P., & Upadhyay, A. (2015). Artificial intelligence based approach to forecast PM2.5 during haze episodes: A case study of delhi, india. Atmospheric Environment, 102, 239-248. doi:10.1016/j.atmosenv.2014.11.050
Noori, R., Hoshyaripour, G., Ashrafi, K., & Araabi, B. N. (2010). Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment, 44(4), 476-482. doi:10.1016/j.atmosenv.2009.11.005
Orrego, D. A., Becerra, M. A., & Delgado-Trejos, E. (2012). Dimensionality reduction based on fuzzy rough sets oriented to ischemia detection. Paper presented at the Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 5282-5285. doi:10.1109/EMBC.2012.6347186
Pai, T. -., Hanaki, K., Su, H. -., & Yu, L. -. (2013). A 24-h forecast of oxidant concentration in tokyo using neural network and fuzzy learning approach. Clean - Soil, Air, Water, 41(8), 729-736. doi:10.1002/clen.201000067
Perez, P., & Gramsch, E. (2016). Forecasting hourly PM2.5 in santiago de chile with emphasis on night episodes. Atmospheric Environment, 124, 22-27. doi:10.1016/j.atmosenv.2015.11.016
Polat, K. (2001). A novel data preprocessing method to estimate the air pollution (SO2): Neighbor-based feature scaling (NBFS). Neural Comput.Appl, 21(8), 1-8.
Popoola, O., Munda, J., Mpanda, A., & Popoola, A. P. I. (2015). Comparative analysis and assessment of ANFIS-based domestic lighting profile modelling. Energy and Buildings, 107, 294-306. doi:10.1016/j.enbuild.2015.08.028
Qin, S., Liu, F., Wang, J., & Sun, B. (2014). Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of china using hybrid models. Atmospheric Environment, 98, 665-675. doi:10.1016/j.atmosenv.2014.09.046
Sun, W., Zhang, H., Palazoglu, A., Singh, A., Zhang, W., & Liu, S. (2013). Prediction of 24-hour-average PM2.5 concentrations using a hidden markov model with different emission distributions in northern california. Science of the Total Environment, 443, 93-103. doi:10.1016/j.scitotenv.2012.10.070
Vapnik, V. (1995). The Nature of Statistical Learning Theory.
Velásquez, J. D., Olaya, Y., & Franco, C. J. (2010). Time series prediction using support vector machines. [Predicción de series temporales usando máquinas de vectores de soporte] Ingeniare, 18(1), 64-75.
Yildirim, Y., & Bayramoglu, M. (2006). Adaptive neuro-fuzzy based modelling for prediction of air pollution daily levels in city of zonguldak. Chemosphere, 63(9), 1575-1582. doi:10.1016/j.chemosphere.2005.08.070
Zhou, Q., Jiang, H., Wang, J., & Zhou, J. (2014). A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Science of the Total Environment, 496, 264-274. doi:10.1016/j.scitotenv.2014.07.051
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Springer Verlag
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481171299893248
spelling 2017-12-19T19:36:44Z2017-12-19T19:36:44Z201797833195227603029743http://hdl.handle.net/11407/427710.1007/978-3-319-52277-7_52reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínNowadays, an important decrease in the quality of the air has been observed, due to the presence of contamination levels that can change the natural composition of the air. This fact represents a problem not only for the environment, but also for the public health. Consequently, this paper presents a comparison among approaches based on Adaptive Neural Fuzzy Inference System (ANFIS) and Support Vector Regression (SVR) for the estimation level of PM2.5 (Particle Material 2.5) in specific geographic locations based on nearby stations. The systems were validated using an environmental database that belongs to air quality network of Valle de Aburrá (AMVA) of Medellin Colombia, which has the registration of 5 meteorological variables and 2 pollutants that are from 3 nearby measurement stations. Therefore, this project analyses the relevance of the characteristics obtained in every single station to estimate the levels of PM2.5 in the target station, using four different selectors based on Rough Set Feature Selection (RSFS) algorithms. Additionally, five systems to estimate the PM2.5 were compared: three based on ANFIS, and two based on SVR to obtain an aim and an efficient mechanism to estimate the levels of PM2.5 in specific geographic locations fusing data obtained from the near monitoring stations. © Springer International Publishing AG 2017.engSpringer VerlagFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85013471394&doi=10.1007%2f978-3-319-52277-7_52&partnerID=40&md5=668dac684d7746221537a90a90404d13Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Volume 10125 LNCS, 2017, Pages 426-433Antanasijević, D. Z., Pocajt, V. V., Povrenović, D. S., Ristić, M. T., & Perić-Grujić, A. A. (2013). PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Science of the Total Environment, 443, 511-519. doi:10.1016/j.scitotenv.2012.10.110Behrang, M. A., Assareh, E., Ghanbarzadeh, A., & Noghrehabadi, A. R. (2010). The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy, 84(8), 1468-1480. doi:10.1016/j.solener.2010.05.009Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2(3), 267-278. doi:10.3233/IFS-1994-2306Deo, R. C., Wen, X., & Qi, F. (2016). A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Applied Energy, 168, 568-593. doi:10.1016/j.apenergy.2016.01.130Dong, M., Yang, D., Kuang, Y., He, D., Erdal, S., & Kenski, D. (2009). PM2.5 concentration prediction using hidden semi-markov model-based times series data mining. Expert Systems with Applications, 36(5), 9046-9055. doi:10.1016/j.eswa.2008.12.017Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., & Wang, J. (2015). Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment, 107, 118-128. doi:10.1016/j.atmosenv.2015.02.030Gardner, M. W., & Dorling, S. R. (1999). Neural network modelling and prediction of hourly NO(x) and NO2 concentrations in urban air in london. Atmospheric Environment, 33(5), 709-719. doi:10.1016/S1352-2310(98)00230-1Hrust, L., Klaić, Z. B., Križan, J., Antonić, O., & Hercog, P. (2009). Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations. Atmospheric Environment, 43(35), 5588-5596. doi:10.1016/j.atmosenv.2009.07.048Jang, J. -. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665-685. doi:10.1109/21.256541Kumar, A., & Goyal, P. (2011). Forecasting of daily air quality index in delhi. Science of the Total Environment, 409(24), 5517-5523. doi:10.1016/j.scitotenv.2011.08.069Lohani, A. K., Goel, N. K., & Bhatia, K. K. S. (2014). Improving real time flood forecasting using fuzzy inference system. Journal of Hydrology, 509, 25-41. doi:10.1016/j.jhydrol.2013.11.021Mishra, D., Goyal, P., & Upadhyay, A. (2015). Artificial intelligence based approach to forecast PM2.5 during haze episodes: A case study of delhi, india. Atmospheric Environment, 102, 239-248. doi:10.1016/j.atmosenv.2014.11.050Noori, R., Hoshyaripour, G., Ashrafi, K., & Araabi, B. N. (2010). Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment, 44(4), 476-482. doi:10.1016/j.atmosenv.2009.11.005Orrego, D. A., Becerra, M. A., & Delgado-Trejos, E. (2012). Dimensionality reduction based on fuzzy rough sets oriented to ischemia detection. Paper presented at the Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 5282-5285. doi:10.1109/EMBC.2012.6347186Pai, T. -., Hanaki, K., Su, H. -., & Yu, L. -. (2013). A 24-h forecast of oxidant concentration in tokyo using neural network and fuzzy learning approach. Clean - Soil, Air, Water, 41(8), 729-736. doi:10.1002/clen.201000067Perez, P., & Gramsch, E. (2016). Forecasting hourly PM2.5 in santiago de chile with emphasis on night episodes. Atmospheric Environment, 124, 22-27. doi:10.1016/j.atmosenv.2015.11.016Polat, K. (2001). A novel data preprocessing method to estimate the air pollution (SO2): Neighbor-based feature scaling (NBFS). Neural Comput.Appl, 21(8), 1-8.Popoola, O., Munda, J., Mpanda, A., & Popoola, A. P. I. (2015). Comparative analysis and assessment of ANFIS-based domestic lighting profile modelling. Energy and Buildings, 107, 294-306. doi:10.1016/j.enbuild.2015.08.028Qin, S., Liu, F., Wang, J., & Sun, B. (2014). Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of china using hybrid models. Atmospheric Environment, 98, 665-675. doi:10.1016/j.atmosenv.2014.09.046Sun, W., Zhang, H., Palazoglu, A., Singh, A., Zhang, W., & Liu, S. (2013). Prediction of 24-hour-average PM2.5 concentrations using a hidden markov model with different emission distributions in northern california. Science of the Total Environment, 443, 93-103. doi:10.1016/j.scitotenv.2012.10.070Vapnik, V. (1995). The Nature of Statistical Learning Theory.Velásquez, J. D., Olaya, Y., & Franco, C. J. (2010). Time series prediction using support vector machines. [Predicción de series temporales usando máquinas de vectores de soporte] Ingeniare, 18(1), 64-75.Yildirim, Y., & Bayramoglu, M. (2006). Adaptive neuro-fuzzy based modelling for prediction of air pollution daily levels in city of zonguldak. Chemosphere, 63(9), 1575-1582. doi:10.1016/j.chemosphere.2005.08.070Zhou, Q., Jiang, H., Wang, J., & Zhou, J. (2014). A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Science of the Total Environment, 496, 264-274. doi:10.1016/j.scitotenv.2014.07.051ScopusData fusion from multiple stations for estimation of PM2.5 in specific geographical locationConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBecerra, M.A., GEA Research Group, Institución Universitaria Salazar y Herrera, Medellín, Colombia, SINTELWEB Research Group, Universidad Nacional de Colombia, Medellín, ColombiaSánchez, M.B., GEA Research Group, Institución Universitaria Salazar y Herrera, Medellín, ColombiaCarvajal, J.G., GEA Research Group, Institución Universitaria Salazar y Herrera, Medellín, ColombiaLuna, J.A.G., SINTELWEB Research Group, Universidad Nacional de Colombia, Medellín, ColombiaPeluffo-Ordóñez, D.H., Facultad de Ingeniería en Ciencias Aplicadas-FICA, Universidad Técnica del Norte, Ibarra, Ecuador, Department of Electronics, Universidad de Nariño, Pasto, ColombiaTobón, C., Universidad de Medellín, Medellín, ColombiaBecerra M.A.Sánchez M.B.Carvajal J.G.Luna J.A.G.Peluffo-Ordóñez D.H.Tobón C.GEA Research Group, Institución Universitaria Salazar y Herrera, Medellín, ColombiaSINTELWEB Research Group, Universidad Nacional de Colombia, Medellín, ColombiaFacultad de Ingeniería en Ciencias Aplicadas-FICA, Universidad Técnica del Norte, Ibarra, EcuadorDepartment of Electronics, Universidad de Nariño, Pasto, ColombiaUniversidad de Medellín, Medellín, ColombiaANFISPM2.5 estimationSupport vector regressionAir qualityData fusionLocationPattern recognitionPublic healthAdaptive neural fuzzy inference system (ANFIS)Air quality networksANFISContamination levelsEnvironmental databaseGeographical locationsMeteorological variablesSupport vector regression (SVR)Fuzzy inferenceNowadays, an important decrease in the quality of the air has been observed, due to the presence of contamination levels that can change the natural composition of the air. This fact represents a problem not only for the environment, but also for the public health. Consequently, this paper presents a comparison among approaches based on Adaptive Neural Fuzzy Inference System (ANFIS) and Support Vector Regression (SVR) for the estimation level of PM2.5 (Particle Material 2.5) in specific geographic locations based on nearby stations. The systems were validated using an environmental database that belongs to air quality network of Valle de Aburrá (AMVA) of Medellin Colombia, which has the registration of 5 meteorological variables and 2 pollutants that are from 3 nearby measurement stations. Therefore, this project analyses the relevance of the characteristics obtained in every single station to estimate the levels of PM2.5 in the target station, using four different selectors based on Rough Set Feature Selection (RSFS) algorithms. Additionally, five systems to estimate the PM2.5 were compared: three based on ANFIS, and two based on SVR to obtain an aim and an efficient mechanism to estimate the levels of PM2.5 in specific geographic locations fusing data obtained from the near monitoring stations. © Springer International Publishing AG 2017.http://purl.org/coar/access_right/c_16ec11407/4277oai:repository.udem.edu.co:11407/42772020-05-27 17:48:56.191Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co