Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies

Compared to conventional ground heat exchangers that require a separate pump or other mechanical devices to circulate the heat transfer fluid, ground coupled thermosiphons or naturally circulating ground heat exchangers do not require additional equipment for fluid circulation in the loop. This migh...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6082
Acceso en línea:
http://hdl.handle.net/11407/6082
Palabra clave:
Ground-coupled natural circulating devices
Heat pipe
Modeling and experimental
Thermosiphon
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_5ce9e9dec4bed409e318ba8687a27c48
oai_identifier_str oai:repository.udem.edu.co:11407/6082
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies
title Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies
spellingShingle Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies
Ground-coupled natural circulating devices
Heat pipe
Modeling and experimental
Thermosiphon
title_short Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies
title_full Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies
title_fullStr Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies
title_full_unstemmed Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies
title_sort Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies
dc.subject.spa.fl_str_mv Ground-coupled natural circulating devices
Heat pipe
Modeling and experimental
Thermosiphon
topic Ground-coupled natural circulating devices
Heat pipe
Modeling and experimental
Thermosiphon
description Compared to conventional ground heat exchangers that require a separate pump or other mechanical devices to circulate the heat transfer fluid, ground coupled thermosiphons or naturally circulating ground heat exchangers do not require additional equipment for fluid circulation in the loop. This might lead to a better overall efficiency and much simpler operation. This paper provides a review of the current published literature on the different types of existing ground coupled thermosiphons for use in applications requiring moderate and low temperatures. Effort has been focused on their classification according to type, configurations, major designs, and chronological year of apparition. Important technological findings and characteristics are provided in summary tables. Advances are identified in terms of the latest device developments and innovative concepts of thermosiphon technology used for the heat transfer to and from the soil. Applications are presented in a novel, well-defined classification in which major ground coupled thermosiphon applications are categorized in terms of medium and low temperature technologies. Finally, performance evaluation is meticulously discussed in terms of modeling, simulations, parametric, and experimental studies. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:59:15Z
dc.date.available.none.fl_str_mv 2021-02-05T14:59:15Z
dc.date.none.fl_str_mv 2019
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 24115134
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6082
dc.identifier.doi.none.fl_str_mv 10.3390/inventions4010014
identifier_str_mv 24115134
10.3390/inventions4010014
url http://hdl.handle.net/11407/6082
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068054593&doi=10.3390%2finventions4010014&partnerID=40&md5=798a07fe86f92e5dd7a38786d8213b6a
dc.relation.citationvolume.none.fl_str_mv 4
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.references.none.fl_str_mv Julia, R., (2008) Thermosiphon Loops for Heat Extraction from the Ground, , Master’s Thesis, KTH School of Industrial Engineering and Management, Stockholm, Sweden
Kaltschmitt, M., Streicher, W., Wiese, A., (2007) Renewable Energy Technology Economics and Environment
Springer Science & Business Media: Berlin/Heidelberg, p. 564. , Germany, ISBN 978-3-540-70949-7
Franco, A., Vaccaro, M., On the use of heat pipe principle for the exploitation of medium low temperature geothermal resources (2013) Appl. Therm. Eng., 59, pp. 189-199
Aresti, L., Christodoulides, P., Florides, G., A review of the design aspects of ground heat exchangers (2018) Renew. Sustain. Energy Rev., 92, pp. 757-773
Florides, G., Kalogirou, S., Ground heat exchangers—A review of systems, models and applications (2007) Renew. Energy, 32, pp. 2461-2478
Richardson, P., Tough Alaska conditions prove new pile design’s versatility (1979) Alaska Constr. Oil, pp. 20-28
Wu, J., Ma, W., Sun, Z., Wen, Z., In-situ study on cooling effect of the two-phase closed thermosyphon and insulation combinational embankment of the Qinghai-Tibet Railway (2010) Cold Reg. Sci. Technol., 60, pp. 234-244
Wagner, A., (2014) Review of Thermosyphon Applications, , http://acwc.sdp.sirsi.net/client/default, The US Army Engineer Research and Development Center: Hanover, NH, USA ERDC/CRREL-TR-14-1, accessed on 21 September 2018
Long, E.L., Zarling, J.P., Passive Techniques for Ground Temperature Control (2004) Thermal Analysis, Construction, and Monitoring Methods for Frozen Ground, pp. 77-165. , American Society of Civil Engineers: Reston, VA, USA
Mc Fadden, T., (2001) Design Manual for Stabilizing Foundations on Permafrost, 181. , https://www.uaf.edu/ces/energy/housing_energy/resources/Permafrost-design-manual.pdf, Available online, accessed on 21 September 2018
Yarmak, E., Long, E., Recent Developments in Thermosyphon Technology (2002) Proceedings of the 11Th International Conference on Cold Regions Engineering, pp. 656-662. , Anchorage, AK, USA, 20–22 May
McFadden, T.T., Bennett, F.L., (1991) Construction in Cold Regions: A Guide for Planners, Engineers, Contractors, and Managers, , John Wiley & Sons: Hoboken, NJ, USA, ISBN-13: 978-0471525035
Carotenuto, A., Casarosa, C., Martorano, L., The geothermal convector: Experimental and numerical results (1999) Appl. Therm. Eng., 19, pp. 349-374
Bertsch, S., Groll, E.A., Whitacre, K., Modeling of a CO2 thermosyphon for a ground source heat pump application (2005) Proceedings of the 8Th International Energy Agency for Heat Pump Conference, , Las Vegas, NY, USA, 30 May–2 June
Wagner, A.M., Edward, Y., Jr., Using Frozen Barriers for Containment of Contaminants (2017) Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center Hanover United States, , https://apps.dtic.mil/docs/citations/AD1039597, accessed on 21 September 2018
(2014) Thermosyphon Foundations for Buildings in Permafrost Regions, , National Standard of Canada: Ottawa, ON, Canada,
ISBN 9781771396042
Wagner, A.M., Yarmak, E., (2012) Demonstration of an Artificial Frozen Barrier Cold Regions Research Demonstration of an Artificial Frozen Barrier, , https://apps.dtic.mil/docs/citations/ADA571582, Available online, accessed on 21 January 2019
Gaugler, R.S., (1942) Heat Transfer Device, , U.S. Patent US2,350,348A, 21 December
Reay, D., McGlen, R., Kew, P., (2006) Heat Pipes Theory and Design, , 5th ed.
Butterworth Heinemann: Oxford, UK, 9780750667548
Heuer, C.E., The Application of Heat Pipes on the Trans-Alaska Pipeline. (No. CRREL-SR-79-26) (1979) Cold Regions Research and Engineering Lab Hanover NH, p. 34. , http://dtic.mil/dtic/tr/fulltext/u2/a073597.pdf, Available online, (accessed on 21 September 2018)
Nguyen, T., Johnson, P., Akbarzadeh, A., Gibson, K., Mochizuki, M., Design, manufacture and testing of a closed cycle thermosyphonrankine engine (1995) Heat Recov. Syst. CHP, 15, pp. 333-346
Ziapour, B.M., Performance analysis of an enhanced thermosyphon Rankine cycle using impulse turbine (2009) Energy, 34, pp. 1636-1641
Lockett, G., Single borehole geothermal energy extraction system for electrical power generation (1986) Proceedings of the Eleventh Workshop on Geothermal Reservoir Engineering, pp. 215-216. , Stanford, CA, USA, 21–23 January
Holubec, I., Flat Loop Thermosyphon Foundations in Warm Permafrost (2008) Government of Northwest Territories Thermosyphon Foundations in Warm Permafrost—Report, p. 119. , https://pievc.ca/government-northwest-territories-thermosyphon-foundations-warm-permafrost, Available online, accessed on 21 September 2018
Kruse, H., (1998) Terrestrial Heat Probe for Use in Heat Pump System for Heating, , German Patent DE19860328A1, 24 December
Kruse, H., Russmann, H., The Status of Development and Research on CO2 Earth Heat Pipes for Geothermal Heat Pumps International High Performance Buildings Conference, , http://docs.lib.purdue.edu/ihpbc/51, Paper 51. Available online, accessed on 21 September 2018
Ochsner, K., Carbon dioxide heat pipe in conjunction with a ground source heat pump (GSHP) (2008) Appl. Therm. Eng., 28, pp. 2077-2082
Kruse, H., Russmann, H., Novel CO2-heat pipe as earth probe for heat pumps without auxiliary pumping energy (2005) Proceedings of the 8Th International IEA Heat Pump Conference, , Las Vegas, NV, USA, 30 May–2 June
Rieberer, R., Naturally circulating probes and collectors for ground-coupled heat pumps (2005) Int. J. Refrig., 28, pp. 1308-1315
Acuña, J., Palm, B., Khodabandeh, R., Weber, K., Ab, E., Distributed Temperature Measurements on a U-Pipe Thermosyphon Borehole Heat Exchanger with CO2 (2010) Proceedings of the 9Th IIR Gustav Lorentzen Conference, , Sydney, Australia, 12–14 April
Ebeling, J.C., Kabelac, S., Luckmann, S., Kruse, H., Simulation and experimental validation of a 400 m vertical CO2 heat pipe for geothermal application (2017) Heat Mass Transf, 53, pp. 3257-3265
Ebeling, J.C., Luo, X., Kabelac, S., Luckmann, S., Kruse, H., Dynamic simulation and experimental validation of a two-phase closed thermosyphon for geothermal application (2017) Propuls. Power Res., 6, pp. 107-116
Haynes, F.D., Zarling, P., Quinn, F., Sollecito, P.E.M., (1992) Passive-Active Thermosyphon, , U.S. Patent US07, 883, 443, 15 May
Udell, K.S., Jankovich, P., Kekelia, B., Seasonal underground thermal energy storage using smart thermosiphon technology (2009) Proceedings of the Geothermal Resources Council 2009, Annual Meeting, GRC Transactions, 33, pp. 643-647. , Reno, NV, USA, 4–7 October
Kekelia, B., Udell, K.S., Grid-Independent Air Conditioning Using Underground Thermal Energy Storage (UTES) and Reversible Thermosiphon Technology: Experimental Results (2011) Proceedings of the ASME 2011 5Th International Conference on Energy Sustainability, pp. 1245-1254. , Washington, DC, USA, 7–10 August
Jankovich, P.M., (2012) Seasonal Underground Thermal Energy Storage Using Smart Thermosiphon Arrays, , Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA
Rieberer, R., Moser, H., Naturally Circulating Collector for Heat Pumps-Initial Results (2006) Proceedings of the 7Th IIR Gustav Lorentzen Conference on Natural Working Fluids, , Trondheim, Norway, 28–31 May
Vasiliev, L.L., Academy, N., Vassiliev, L.L., Academy, N., Vassiliev, L.L., Heat Pipes and nanotechnologies Microscale and Nanoscale Heat Transfer: Analysis, Design, and Application Edition, p. 505. , CRC Press: Boca Raton, FL, USA, 2016
Chapter 8, ISBN 9781498736312
Vasiliev, L., Grakovich, L.P., Rabetsky, M., Vasiliev, L.J., Heat transfer enhancement in heat pipes and thermosyphons using nanotechnologies (Nanofluids, nanocoatings, and nanocomposites) as an hp envelope (2013) Heat Pipe Sci. Technol. Int. J., 4, pp. 251-275
Wang, X., Fan, H., Zhu, Y., Zhu, M., Heat Transfer Simulation and Analysis of Ice and Snow Melting System Using Geothermy by Super-long Flexible Heat Pipes (2017) Energy Procedia, 105, pp. 4724-4730
Zhuravlyov, A.S., Vasiliev, L.L., Vasiliev, L.L., Jr., Horizontal vapordynamicthermosyphons, fundamentals and practical applications (2013) Heat Pipe Sci. Technol. Int. J., 4, pp. 39-52
Vasiliev, L.L., Kiselev, V.G., Valery, A., Rudnev, E.A., Nesvit, V.A., Dunaevsky, L.M., Tverdokhleb, N.F., Davis, P.E.W., (1985) Heat-Transfer Device, , U.S. Patent 45,554,966, 26 November
Vasiliev, L., Vasiliev, L., Zhuravlyov, A., Shapovalov, A., Rodin, A., Vapordynamicthermosyphon-Heat transfer two-phase device for wide applications (2015) Arch. Thermodyn., 36, pp. 65-76
Vasiliev, L.L., Grakovich, L.P., Rabetsky, M.I., Vassiliev, L.L., Zhuravlyov, A.S., Thermosyphons with innovative technologies (2017) Appl. Therm. Eng., 111, pp. 1647-1654
Vasiliev, L.L., Vaaz, S.L., (1986) Freezing and Heating of Ground by means of Cooling Devices, , NaukaiTekhnika: Minsk, Belarus, (In Russian)
Read, J.P.R.H., Pullen, K.R., Gordon, M., (2010) A Thermosyphon Heat Transfer Device with Bubble Driven Rotor, , WO2011158008A3, 18 June
Long, E.L., Designing friction piles for increased stability at lower installed cost in permafrost (1973) Proceedings of the Permafrost-The North American Contribution to the Second International Conference, , Yakutsk
National Academy of Sciences: Washington, DC, USA
Yarmak, E., Permafrost Foundations Thermally Stabilized Using Thermosyphons (2015) Proceedings of the OTC Arctic Technology Conference, pp. 23-25. , Copenhagen, Denmark, 23–25 March
Acuña, J., (2013) Distributed Thermal Response Tests: New Insights on U-Pipe and Coaxial Heat Exchangers in Groundwater-Filled Boreholes, , Ph.D. Dissertation, KTH Royal Institute of Technology, Stockholm, Sweden
Mashiko, K., Mochizuki, M., Watanabe, Y., Kanai, Y., Eguchi, K., Shiraishi, M., Development of a Large Scale Loop Type Gravity Assisted Heat Pipe Having Showering Nozzles Proceedings of the 4Th International Heat Pipe Symposium, pp. 264-274. , Tsukuba, Japan, 16–18 May 1994
Hayley, D.W., Application of heat pipes to design of shallow foundations on permafrost (1982) Proceedings of the 4Th Canadian Permafrost Conference, pp. 535-544. , National Research Council of Canada: Ottawa, ON, Canada
Wang, X., Zhu, Y., Zhu, M., Zhu, Y., Fan, H., Wang, Y., Thermal analysis and optimization of an ice and snow melting system using geothermy by super-long flexible heat pipes (2017) Appl. Therm. Eng., 112, pp. 1353-1363
Wang, X., Wang, Y., Wang, Z., Liu, Y., Zhu, Y., Chen, H., Simulation-based analysis of a ground source heat pump system using super-long flexible heat pipes coupled borehole heat exchanger during heating season (2018) Energy Convers. Manag., 164, pp. 132-143
Xu, J., Goering, D.J., Experimental validation of passive permafrost cooling systems (2008) Cold Reg. Sci. Technol., 53, pp. 283-297
Zhi, W., Yu, S., Wei, M., Jilin, Q., Wu, J., Analysis on effect of permafrost protection by two-phase closed thermosyphon and insulation jointly in permafrost regions (2005) Cold Reg. Sci. Technol., 43, pp. 150-163
Chan, C.W., Siqueiros, E., Ling-Chin, J., Royapoor, M., Roskilly, A.P., Heat utilisation technologies: A critical review of heat pipes (2015) Renew. Sustain. Energy Rev., 50, pp. 615-627
Vasiliev, L.L., Vasiliev, L.L., Jr., Horizontal vapordynamic thermosyphons, fundamentals and practical applications (2012) Proceedings of the 16Th International Heat Pipe Conference, , Lyon, France, 20–24 May
Grakovich, M.I., Rabetsky, L.L., Vasiliev, L.L.V.J., Polymer flat loop thermosyphons (2014) Heat Pipe Sci. Technol. Int. J., 5, pp. 1-4
Nydahl, J.E., Pell, K., Lee, R., Bridge deck heating with ground-coupled heat pipes: Analysis and design (1987) ASHRAE Trans, 93, pp. 939-958
Zorn, R., Steger, H., Kölbel, T., De-Icing and Snow Melting System with Innovative Heat Pipe Technology (2015) Proceedings of the World Geothermal Congress, pp. 1-6. , Melbourne, Australia, 19–25 April
Vasiliev, L.L., Heat pipes for ground heating and cooling (1988) Heat Recov. Syst. CHP, 8, pp. 125-139
Griffin, R.G., Highway Bridge Deicing Using Passive Heat Sources (1982) Colorado Department of Highways, p. 71. , https://www.codot.gov/programs/research/pdfs/archive/passivedeicing.pdf, Available online, accessed on 21 September 2018
Fukuda, M., Tsuchiya, F., Ryokai, K., Mochizuki, M., Mashiko, K., Development of an artificial permafrost storage using heat pipes (1990) Proceedings of the 7Th International Heat Pipe Conference, 2, pp. 305-317. , Moscow, Russia, 21–25 May 1990
Dussadee, N., Kiatsiriroat, T., Performance analysis and economic evaluation of thermosyphon paddy bulk storage (2004) Appl. Therm. Eng., 24, pp. 401-414
Zorn, R., Steger, H., Kölbel, T., Kruse, H., Deep Borehole Heat Exchanger with a CO2 Gravitational Heat Pipe (2008) Proceedings of the Geocongress 2008: Geosustainability and Geohazard Mitigation, pp. 899-906. , New Orleans, LA, USA, 9–12 March
Rieberer, R., Mittermayr, K., Halozan, H., CO2 Thermosyphons as Heat Source System for Heat Pumps-4 Years of Market Experience (2005) Proceedings of the 8Th IEA Heat Pump Conference, , Las Vegas, NV, USA, 30 May–2 June
Udell, K.S., Kekelia, B., Jankovich, P., Net Zero Energy Air Conditioning Using Smart Thermosiphon Arrays (2011) ASHRAE Trans, 117, pp. 892-898
Kekelia, B., (2012) Heat Transfer to and from a Reversible Thermosiphon Placed in Porous Media, , https://search.proquest.com/openview/d6b0c7ce0d1b891aa8a14e5d07d0e6a3/1?cbl=18750&diss=y&pq-origsite=gscholar, Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA, accessed on 21 September 2018
Mu, Y., Li, G., Yu, Q., Ma, W., Wang, D., Wang, F., Numerical study of long-term cooling effects of thermosyphons around tower footings in permafrost regions along the Qinghai-Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 237-249
Wei, M., Guodong, C., Qingbai, W., Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad (2009) Cold Reg. Sci. Technol., 59, pp. 3-11
Jin, H., Hao, J., Chang, X., Zhang, J., Yu, Q., Qi, J., Lü, L., Wang, S., Zonation and assessment of frozen-ground conditions for engineering geology along the China–Russia crude oil pipeline route from Mo’he to Daqing, Northeastern China (2010) Cold Reg. Sci. Technol., 64, pp. 213-225
Li, G., Yu, Q., Ma, W., Chen, Z., Mu, Y., Guo, L., Wang, F., Freeze–thaw properties and long-term thermal stability of the unprotected tower foundation soils in permafrost regions along the Qinghai–Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 258-274
Wang, H., Zhao, J., Chen, Z., Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water (2008) Energy Convers. Manag., 49, pp. 1538-1546
Wagner, A.M., Creation of an artificial frozen barrier using hybrid thermosyphons (2013) Cold Reg. Sci. Technol., 96, pp. 108-116
Lynn, S.W., Rhodes, C., Evaluation of a vertical frozen soil barrier at oak ridge national laboratory (2000) Remediat. J., 10, pp. 15-33
Eskilson, P., (1987) Thermal Analysis of Heat Extraction Boreholes, , Ph.D. Thesis, Lund University, Department of Mathematical Physics, Lund, Sweden
Li, M., Lai, A.C.K., Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales (2015) Appl. Energy, 151, pp. 178-191
Rees, S., (2016) Advances in Ground-Source Heat Pump Systems, p. 482. , 1st ed.
Woodhead Publishing: Sawston, UK, ISBN 0081003226
Yang, H., Cui, P., Fang, Z., Vertical-borehole ground-coupled heat pumps: A review of models and systems (2010) Appl. Energy, 87, pp. 16-27
Carslaw, H.S., Jaeger, J.C., (1959) Conduction of Heat in Solids, , 2nd ed.
Clarendon Press: Oxford, UK
Ingersoll, L.R., Zabel, O.J., Ingersoll, A.C., (1955) Heat Conduction with Engineering, Geological, and Other Applications, p. 325. , 3rd ed.
Thames and Hudson: London, UK
Zeng, H.Y., Diao, N.R., Fang, Z.H., A finite line-source model for boreholes in geothermal heat exchangers (2002) Heat Transf. Asian Res., 31, pp. 558-567
Zeng, H., Diao, N., Fang, Z., Heat transfer analysis of boreholes in vertical ground heat exchangers (2003) Int. J. Heat Mass Transf., 46, pp. 4467-4481
Yavuzturk, C., Spitler, J.D., Rees, S.J., A Transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers (1999) ASHRAE Trans, 105, pp. 465-474
Bozzoli, F., Pagliarini, G., Rainieri, S., Schiavi, L., Estimation of soil and grout thermal properties through a TSPEP (Two-step parameter estimation procedure) applied to TRT (thermal response test) data (2011) Energy, 36, pp. 839-846
Al-Khoury, R., (2012) Computational Modeling of Shallow Geothermal Systems, , CRC Press: Boca Raton, FL, USA
London, UK, ISBN 0415596270
Beier, R.A., Smith, M.D., Spitler, J.D., Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis (2011) Geothermics, 40, pp. 79-85
Salim Shirazi, A., Bernier, M., A small-scale experimental apparatus to study heat transfer in the vicinity of geothermal boreholes (2014) HVAC&R Res, 20, pp. 819-827
Chen, L., Yu, W., Lu, Y., Liu, W., Numerical simulation on the performance of thermosyphon adopted to mitigate thaw settlement of embankment in sandy permafrost zone (2018) Appl. Therm. Eng., 128, pp. 1624-1633
Paramonov, V.N., Sakharov, I.I., Calculations of thermal stabilization of transport embankments and their bases (2017) Procedia Eng, 189, pp. 472-477
Zhao, X.Y., Wang, J., Wang, Y.Z., The temperature control technology of bridge foundation in permafrost regions (2017) Procedia Eng, 210, pp. 235-239
Pei, W., Zhang, M., Li, S., Lai, Y., Jin, L., Zhai, W., Yu, F., Lu, J., Geotemperature control performance of two-phase closed thermosyphons in the shady and sunny slopes of an embankment in a permafrost region (2017) Appl. Therm. Eng., 112, pp. 986-998
Lim, H., Kim, C., Cho, Y., Kim, M., Energy saving potentials from the application of heat pipes on geothermal heat pump system (2017) Appl. Therm. Eng., 126, pp. 1191-1198
Yu, F., Zhang, M., Lai, Y., Liu, Y., Qi, J., Yao, X., Crack formation of a highway embankment installed with two-phase closed thermosyphons in permafrost regions: Field experiment and geothermal modelling (2017) Appl. Therm. Eng., 115, pp. 670-681
Zhang, M., Pei, W., Lai, Y., Niu, F., Li, S., Numerical study of the thermal characteristics of a shallow tunnel section with a two-phase closed thermosyphon group in a permafrost region under climate warming (2017) Int. J. Heat Mass Transf., 104, pp. 952-963
Lu, Y., Yi, X., Yu, W., Liu, W., Numerical analysis on the thermal regimes of thermosyphon embankment in snowy permafrost area (2017) Sci. Cold Arid Reg., 9, pp. 580-586
Ozsoy, A., Yildirim, R., Prevention of icing with ground source heat pipe: A theoretical analysis for Turkey’s climatic conditions (2016) Cold Reg. Sci. Technol., 125, pp. 65-71
Mu, Y., Wang, G., Yu, Q., Li, G., Ma, W., Zhao, S., Thermal performance of a combined cooling method of thermosyphons and insulation boards for tower foundation soils along the Qinghai–Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 226-236
Hartmann, F., Behrend, R., Hantsch, A., Grab, T., Gross, U., Numerical investigation of the performance of a partially wetted geothermal thermosyphon at various power demand schemes (2015) Geothermics, 55, pp. 99-107
Grab, D.I.T., Storch, D.I.T., Wagner, S., Gross, U., Wechselwirkungen zwischen Heiz-und Kühlkreislauf bei einem geothermischen Direktverdampfer-Sondenfeld (2010) Deutsche Kälte-und Klimatagung, DKV, Magdeburg, , https://tu-freiberg.de/sites/default/files/media/professur-fuer-technische-thermodynamik-15264/Publikationen_Grab/2010-grab-dkv-magdeburg-wechselwirkungen-zw.-heiz-und-kuehlkreislauf.pdf, Available online, (accessed on 20 February 2019)
Abdalla, B., Fan, C., McKinnon, C., Gaffard, V., Numerical Study of Thermosyphon Protection for Frost Heave (2015) Proceedings of the ASME 2015 34Th International Conference on Ocean, Offshore and Arctic Engineering, , St. John’s, NL, Canada, 31 May–5 June
Mu, Y., Li, G., Yu, Q., Ma, W., Zhang, Q., Guo, L., Chen, Z., Numerical simulation of heat transfer processes of cone-cylinder pile and cooling effects of thermosyphon along the Qinghai–Tibet DC Interconnection project (2014) J. Glaciol. Geocryol., 36, pp. 106-117
Ma, C., Wu, X., Gao, S., Analysis and applications of a two-phase closed thermosyphon for improving the fluid temperature distribution in wellbores (2013) Appl. Therm. Eng., 55, pp. 1-6
Filippeschi, S., Su, Y., Riffat, S.B., Lucio, L., Feasibility of periodic thermosyphons for environmentally friendly ground source cooling applications (2013) Int. J. Low-Carbon Technol., 8, pp. 117-123
Hantsch, A., Gross, U., Numerical investigation of partially-wetted geothermal heat pipe performance (2013) Geothermics, 47, pp. 97-103
Nakaoka, J., (2012) Heat Transfer Analysis of Thermosiphons and U-Tube Ground Source Heat Pumps, , Masters’s Thesis, The University of Utah, Salt Lake City, UT, USA
Dong, Y., Lai, Y., Chen, W., Cooling effect of combined L-shaped thermosyphon, crushed-rock revetment and insulation for high-grade highways in permafrost regions (2012) Chin. J. Geotechn. Eng., 34, pp. 1043-1049
Zhang, M., Lai, Y., Zhang, J., Sun, Z., Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions (2011) Cold Reg. Sci. Technol., 65, pp. 203-210
Wang, Z., McClure, M.W., Horne, R.N., A single-well EGS configuration using a thermosyphon (2009) In Proceedings of the 34Th Workshop on Geothermal Reservoir Engineering, , Stanford, CA, USA, 9–11 February , . Paper SGP-TR-187
Jardine, J.D., Long, E.L., Yarmak, E., Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion: Discussion (1992) Can. Geotech. J., 29, pp. 998-1001
Smith, L.B., Graham, J.P., Nixon, J.F., Washuta, A.S., Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion (1991) Can. Geotech. J., 28, pp. 399-409
Cui, P., Yang, H., Fang, Z., Numerical analysis and experimental validation of heat transfer in ground heat exchangers in alternative operation modes (2008) Energy Build, 40, pp. 1060-1066
Yavuzturk, C., Spitler, J.D., Field validation of a short time step model for vertical ground-loop heat exchangers/Discussion (2001) ASHRAE Trans, 107, p. 617
Javed, S., New Analytical and Numerical Solutions for the Short-term Analysis of Vertical Ground Heat Exchangers (2011) ASHRAE Trans, 117, pp. 3-12
Li, M., Lai, A.C.K., Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation (2013) Appl. Energy, 104, pp. 510-516
Viskanta, R., Phase change heat transfer in porous media (1991) Proceedings of the 3Rd International Symposium on Cold Region Heat Transfer, pp. 1-24. , Fairbanks, AK, USA
Bazri, S., Anjum, I., Sajad, M., A review of numerical studies on solar collectors integrated with latent heat storage systems employing fi ns or nanoparticles (2018) Renew. Energy, 118, pp. 761-778
Yang, W., Kong, L., Chen, Y., Numerical evaluation on the effects of soil freezing on underground temperature variations of soil around ground heat exchangers (2015) Appl. Therm. Eng., 75, pp. 259-269
Eslami-Nejad, P., Bernier, M., Freezing of geothermal borehole surroundings: A numerical and experimental assessment with applications (2012) Appl. Energy, 98, pp. 333-345
Sheshukov, A.Y., Egorov, A.G., Frozen barrier evolution in saturated porous media (2002) Adv. Water Resour., 25, pp. 591-599
Zhang, G.G., Horne, W.B.T., Applications of numerical thermal analysis in engineering designs and evaluations for northern mines (2010) Proceedings of the 63Rd Canadian Geotechnical Conference & 6Th Canadian Permafrost Conference, pp. 617-624. , Calgary, AB, Canada, 12–16 September
Yu, F., Qi, J., Zhang, M., Lai, Y., Yao, X., Liu, Y., Wu, G., Cooling performance of two-phase closed thermosyphons installed at a highway embankment in permafrost regions (2016) Appl. Therm. Eng., 98, pp. 220-227
Ho, I.-H., Dickson, M., Numerical modeling of heat production using geothermal energy for a snow-melting system (2017) Geomech. Energy Environ., 10, pp. 42-51
Duffie, J.A., Beckman, W.A., (2013) Solar Engineering of Thermal Processes, , John Wiley & Sons: Hoboken, NJ, USA, ISBN 0470873663
Givoni, B., Mostrel, M., Passive solar journal (1982) Passive Sol. J., 1, pp. 229-238
Rao, K.G., Estimation of the exchange coefficient of heat during low wind convective conditions (2004) Bound.-Lay. Meteorol., 111, pp. 247-273
McAdams, W.H., (1954) Heat Transmission, p. 330. , McGraw-Hill: New York, NY, USA
Palyvos, J.A., A survey of wind convection coefficient correlations for building envelope energy systems’ modeling (2008) Appl. Therm. Eng., 28, pp. 801-808
Faghri, A., (1995) Heat Pipe Science and Technology, , 2nd ed.
Global Digital Press: Kanpur, India, 1560323833
Jafari, D., Franco, A., Filippeschi, S., Di Marco, P., Two-phase closed thermosyphons: A review of studies and solar applications (2016) Renew. Sustain. Energy Rev., 53, pp. 575-593
Dobran, F., Steady-state characteristics and stability thresholds of a closed two-phase thermosyphon (1985) Int. J. Heat Mass Transf., 28, pp. 949-957
Mirzaei, B., Hadi, Z., Heat transfer characteristics of a two-phase closed thermosyphon using different working fluids (2010) Heat Mass Transf, 46, pp. 307-314
El-Genk, M.S., Saber, H.H., Flooding limit in closed, two-phase flow thermosyphons (1997) Int. J. Heat Mass Transf., 40, pp. 2147-2164
Pan, Y., Condensation heat transfer characteristics and concept of sub-flooding limit in a two-phase closed thermosyphon (2001) Int. Commun. Heat Mass Transf., 28, pp. 311-322
Fadhl, B., Wrobel, L.C., Jouhara, H., CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a (2015) Appl. Therm. Eng., 78, pp. 482-490
Jouhara, H., Fadhl, B., Wrobel, L.C., Three-dimensional CFD simulation of geyser boiling in a two-phase closed thermosyphon (2016) Int. J. Hydrogen Energy, 41, pp. 16463-16476
Pan, Y., Wu, C. Numerical investigations and engineering applications on freezing expansion of soil restrained two-phase closed thermosyphons (2002) Int. J. Therm. Sci, 41, pp. 341-347
Hemmingway, P., Tolooiyan, A.P., Numerical and finite element analysis of heat transfer in a closed loop geothermal system (2013) Int. J. Green Energy, 11, pp. 206-223
Frost Evolution in Tailings Final Report. the Atomic Energy Control Board., , https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/007/24007807.pdf, Available online, accessed on 21 January 2019
Greenslade, J., Nixon, J.F.D., Lewkowicz, A.G., Allard, M., Design aspect of a buried oil pipeline on the Alaskan north slope (1998) Proceedings of the 7Th International Conference on Permafrost, pp. 23-27. , Yellowknife, NT, Canada, 23–27 June
(2018) Simmakers Frost 3D Universal, , http://frost3d.ru/eng/thermosyphon-technology-ground-freezing/, Available online, accessed on 20 August
Thermal Analysis in Engineering. Parallel Computing. Frost 3D Universal., , https://www.capterra.com/p/147397/Frost-3D-Universal/, Available online, accessed on 10 January 2019
Plaxix Modelling of Thermosyphons Foundation System Using Plaxis 2D, , https://www.plaxis.com/support/verifications/modelling-thermosyphons-foundation-system/, Available online, accessed on 21 September 2018
PLAXIS 3D Manuals, , https://www.plaxis.com/support/manuals/plaxis-3d-manuals, Available online, accessed on 10 January 2019
Ebeling, J.-C., Kabelac, S., Luckmann, S., Kruse, H., Quasi-dynamic model for simulation of a 400 m vertical CO2 heat pipe for geothermal application (2016) Proceedings of the 9Th International Symposium on Heat Transfer (ISHT9-Q0358), pp. 15-19. , Beijing, China, August
Rohsenow, W.M., Hartnett, J.P., Ganic, E.N., (1985) Handbook of Heat Transfer Fundamentals, p. 1440. , 2nd ed.
McGraw-Hill Book Co.: New York, NY, USA
Imura, H., Kusuda, H., Ogata, J.-I., Miyazaki, T., Sakamoto, N., Heat transfer in two-phase closed-type thermosyphons (1979) JSME Trans, 45, pp. 712-722
Yong-Ping, Y., Shumhua, Z., Qing-Chao, W.E.I., Effect simulation of different declining angles of thermosyphons used in Qinghai-Tibet railway permafrost embankment (2006) China Civ. Eng. J., 39, pp. 108-113
Hegab, H.E., Colwell, G.T., Thermal performance of heat pipe arrays in soil (1994) Numer. Heat Transf., 26, pp. 619-630
Zarling, J.P., Hansen, P., Kozisekl, L., Design and performance experience of foundations stabilized with thermosyphons (1990) Proceedings of the Fifth Canadian Permafrost Conference, pp. 365-370. , Quebec, QC, Canada, 6–8 June
Feldman, K.T., Jr., Munje, S., Experiments with gravity-assisted heat pipes with and without circumferential grooves (1979) J. Energy, 3, pp. 211-216
Zarling, J.P., Haynes, F.D., (1985) Thermosyphon Devices and Slab-On-Grade Foundation Design, , https://trid.trb.org/view/273606, State of Alaska, Department of Transportation and Public Facilities, Research Section, Available online, accessed on 21 September 2018
Haynes, F.D., Zarling, J.P., Thermosyphons and foundation design in cold regions (1988) Cold Reg. Sci. Technol., 15, pp. 251-259
Haynes, F.D., Zarling, J.P., Gooch, G.E., Performance of a thermosyphon with a 37-m-long, horizontal evaporator (1992) Cold Reg. Sci. Technol., 20, pp. 261-269
Guo, L., Yu, Q., You, Y., Wang, X., Li, X., Yuan, C., Cooling effects of thermosyphons in tower foundation soils in permafrost regions along the Qinghai–Tibet Power Transmission Line from Golmud, Qinghai Province to Lhasa, Tibet Autonomous Region, China (2016) Cold Reg. Sci. Technol., 121, pp. 196-204
Yamada, N., Minami, T., Anuar Mohamad, M.N., Fundamental experiment of pumpless Rankine-type cycle for low-temperature heat recovery (2011) Energy, 36, pp. 1010-1017
Heuer, C.E., Passive techniques for ground temperature control (1985) Therm. Des. Consid. Frozen Ground Eng., pp. 72-154
Eidan, A.A., Najim, S.E., Jalil, J.M., Experimental and numerical investigation of thermosyphon performance in HVAC system applications (2016) Heat Mass Transf, 52, pp. 2879-2893
Nemec, P., Čaja, A., Malcho, M., Mathematical model for heat transfer limitations of heat pipe (2013) Math. Comput. Model., 57, pp. 126-136
Qiu, B.J.L.M., Zhang, Z.H.G.X.B., Determination of the operation range of a vertical two-phase closed thermosyphon (2012) Heat Mass Transf, 48, pp. 1043-1055
Ma, W., Wen, Z., Sheng, Y., Wu, Q., Wang, D., Feng, W., Remedying embankment thaw settlement in a warm permafrost region with thermosyphons and crushed rock revetment (2012) Can. Geotech. J., 49, pp. 1005-1014
Kusaba, S., Suzuki, H., Hirowatari, K., Mochizuki, M., Mashiko, K., Nguyen, T., Akbarzadeh, A., Extraction of geothermal energy and electric power generation using a large heat pipe (2000) Proceedings of the World Geothermal Congress, Kyushu-Tohoku, pp. 3489-3494. , Japan, 28 May–10 June
Lund, J.W., Pavement snow melting (2000) Geo-Heat Center Q. Bull., 21, pp. 12-19
Lorentzen, G., Revival of carbon dioxide as a refrigerant (1994) Int. J. Refrig., 17, pp. 292-301
Storch, T., Gross, U., Wagner, S., Performance of geothermal heat pipe using propane (2011) Proceedings of the 8Th Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators, Power Sources, , Minsk, Belarus, 12–15 September
Jouhara, H., Chauhan, A., Nannou, T., Almahmoud, S., Delpech, B., Wrobel, L.C., Heat pipe based systems— Advances and applications (2017) Energy, 128, pp. 729-754
Narendra Babu, N., Kamath, H.C., Materials used in Heat Pipe (2015) Mater. Today Proc., 2, pp. 1469-1478
ACT Advanced Cooling Technologies, , https://www.1-act.com/compatible-fluids-and-materials/, Available online, accessed on 21 September 2018
Lyazgin, A.L., Bayasan, R.M., Chisnik, S.A., Cheverev, V.G., Pustovoit, G.P., Stabilization of pile foundations subjected to frost heave and in thawing permafrost (2003) Proceedings of the 8Th International Conference on Permafrost, pp. 707-711. , Zurich, Switzerland, 21–25 July
Lyazgin, A.L., Ostroborodov, S.V., Pustovoit, G.P., Shevtsov, K.P., Leveling of pile foundations supporting electric transmission lines by temperature control of bed soils (2004) Soil Mech. Found. Eng., 41, pp. 23-26
Bayasan, R.M., Korotchenko, A.G., Volkov, N.G., Pustovoit, G.P., Lobanov, A.D., Use of two-phase heat pipes with the enlarged heat-exchange surface for thermal stabilization of permafrost soils at the bases of structures (2008) Appl. Therm. Eng., 28, pp. 274-277
Bayasan, R.M., Korotchenko, A.G., Lobanov, A.D., Using of minor diameter thermo-stabilizers in the North construction engineering (2001)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
Ingeniería en Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.none.fl_str_mv Inventions
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159219373375488
spelling 20192021-02-05T14:59:15Z2021-02-05T14:59:15Z24115134http://hdl.handle.net/11407/608210.3390/inventions4010014Compared to conventional ground heat exchangers that require a separate pump or other mechanical devices to circulate the heat transfer fluid, ground coupled thermosiphons or naturally circulating ground heat exchangers do not require additional equipment for fluid circulation in the loop. This might lead to a better overall efficiency and much simpler operation. This paper provides a review of the current published literature on the different types of existing ground coupled thermosiphons for use in applications requiring moderate and low temperatures. Effort has been focused on their classification according to type, configurations, major designs, and chronological year of apparition. Important technological findings and characteristics are provided in summary tables. Advances are identified in terms of the latest device developments and innovative concepts of thermosiphon technology used for the heat transfer to and from the soil. Applications are presented in a novel, well-defined classification in which major ground coupled thermosiphon applications are categorized in terms of medium and low temperature technologies. Finally, performance evaluation is meticulously discussed in terms of modeling, simulations, parametric, and experimental studies. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.enghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068054593&doi=10.3390%2finventions4010014&partnerID=40&md5=798a07fe86f92e5dd7a38786d8213b6a41Julia, R., (2008) Thermosiphon Loops for Heat Extraction from the Ground, , Master’s Thesis, KTH School of Industrial Engineering and Management, Stockholm, SwedenKaltschmitt, M., Streicher, W., Wiese, A., (2007) Renewable Energy Technology Economics and EnvironmentSpringer Science & Business Media: Berlin/Heidelberg, p. 564. , Germany, ISBN 978-3-540-70949-7Franco, A., Vaccaro, M., On the use of heat pipe principle for the exploitation of medium low temperature geothermal resources (2013) Appl. Therm. Eng., 59, pp. 189-199Aresti, L., Christodoulides, P., Florides, G., A review of the design aspects of ground heat exchangers (2018) Renew. Sustain. Energy Rev., 92, pp. 757-773Florides, G., Kalogirou, S., Ground heat exchangers—A review of systems, models and applications (2007) Renew. Energy, 32, pp. 2461-2478Richardson, P., Tough Alaska conditions prove new pile design’s versatility (1979) Alaska Constr. Oil, pp. 20-28Wu, J., Ma, W., Sun, Z., Wen, Z., In-situ study on cooling effect of the two-phase closed thermosyphon and insulation combinational embankment of the Qinghai-Tibet Railway (2010) Cold Reg. Sci. Technol., 60, pp. 234-244Wagner, A., (2014) Review of Thermosyphon Applications, , http://acwc.sdp.sirsi.net/client/default, The US Army Engineer Research and Development Center: Hanover, NH, USA ERDC/CRREL-TR-14-1, accessed on 21 September 2018Long, E.L., Zarling, J.P., Passive Techniques for Ground Temperature Control (2004) Thermal Analysis, Construction, and Monitoring Methods for Frozen Ground, pp. 77-165. , American Society of Civil Engineers: Reston, VA, USAMc Fadden, T., (2001) Design Manual for Stabilizing Foundations on Permafrost, 181. , https://www.uaf.edu/ces/energy/housing_energy/resources/Permafrost-design-manual.pdf, Available online, accessed on 21 September 2018Yarmak, E., Long, E., Recent Developments in Thermosyphon Technology (2002) Proceedings of the 11Th International Conference on Cold Regions Engineering, pp. 656-662. , Anchorage, AK, USA, 20–22 MayMcFadden, T.T., Bennett, F.L., (1991) Construction in Cold Regions: A Guide for Planners, Engineers, Contractors, and Managers, , John Wiley & Sons: Hoboken, NJ, USA, ISBN-13: 978-0471525035Carotenuto, A., Casarosa, C., Martorano, L., The geothermal convector: Experimental and numerical results (1999) Appl. Therm. Eng., 19, pp. 349-374Bertsch, S., Groll, E.A., Whitacre, K., Modeling of a CO2 thermosyphon for a ground source heat pump application (2005) Proceedings of the 8Th International Energy Agency for Heat Pump Conference, , Las Vegas, NY, USA, 30 May–2 JuneWagner, A.M., Edward, Y., Jr., Using Frozen Barriers for Containment of Contaminants (2017) Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center Hanover United States, , https://apps.dtic.mil/docs/citations/AD1039597, accessed on 21 September 2018(2014) Thermosyphon Foundations for Buildings in Permafrost Regions, , National Standard of Canada: Ottawa, ON, Canada,ISBN 9781771396042Wagner, A.M., Yarmak, E., (2012) Demonstration of an Artificial Frozen Barrier Cold Regions Research Demonstration of an Artificial Frozen Barrier, , https://apps.dtic.mil/docs/citations/ADA571582, Available online, accessed on 21 January 2019Gaugler, R.S., (1942) Heat Transfer Device, , U.S. Patent US2,350,348A, 21 DecemberReay, D., McGlen, R., Kew, P., (2006) Heat Pipes Theory and Design, , 5th ed.Butterworth Heinemann: Oxford, UK, 9780750667548Heuer, C.E., The Application of Heat Pipes on the Trans-Alaska Pipeline. (No. CRREL-SR-79-26) (1979) Cold Regions Research and Engineering Lab Hanover NH, p. 34. , http://dtic.mil/dtic/tr/fulltext/u2/a073597.pdf, Available online, (accessed on 21 September 2018)Nguyen, T., Johnson, P., Akbarzadeh, A., Gibson, K., Mochizuki, M., Design, manufacture and testing of a closed cycle thermosyphonrankine engine (1995) Heat Recov. Syst. CHP, 15, pp. 333-346Ziapour, B.M., Performance analysis of an enhanced thermosyphon Rankine cycle using impulse turbine (2009) Energy, 34, pp. 1636-1641Lockett, G., Single borehole geothermal energy extraction system for electrical power generation (1986) Proceedings of the Eleventh Workshop on Geothermal Reservoir Engineering, pp. 215-216. , Stanford, CA, USA, 21–23 JanuaryHolubec, I., Flat Loop Thermosyphon Foundations in Warm Permafrost (2008) Government of Northwest Territories Thermosyphon Foundations in Warm Permafrost—Report, p. 119. , https://pievc.ca/government-northwest-territories-thermosyphon-foundations-warm-permafrost, Available online, accessed on 21 September 2018Kruse, H., (1998) Terrestrial Heat Probe for Use in Heat Pump System for Heating, , German Patent DE19860328A1, 24 DecemberKruse, H., Russmann, H., The Status of Development and Research on CO2 Earth Heat Pipes for Geothermal Heat Pumps International High Performance Buildings Conference, , http://docs.lib.purdue.edu/ihpbc/51, Paper 51. Available online, accessed on 21 September 2018Ochsner, K., Carbon dioxide heat pipe in conjunction with a ground source heat pump (GSHP) (2008) Appl. Therm. Eng., 28, pp. 2077-2082Kruse, H., Russmann, H., Novel CO2-heat pipe as earth probe for heat pumps without auxiliary pumping energy (2005) Proceedings of the 8Th International IEA Heat Pump Conference, , Las Vegas, NV, USA, 30 May–2 JuneRieberer, R., Naturally circulating probes and collectors for ground-coupled heat pumps (2005) Int. J. Refrig., 28, pp. 1308-1315Acuña, J., Palm, B., Khodabandeh, R., Weber, K., Ab, E., Distributed Temperature Measurements on a U-Pipe Thermosyphon Borehole Heat Exchanger with CO2 (2010) Proceedings of the 9Th IIR Gustav Lorentzen Conference, , Sydney, Australia, 12–14 AprilEbeling, J.C., Kabelac, S., Luckmann, S., Kruse, H., Simulation and experimental validation of a 400 m vertical CO2 heat pipe for geothermal application (2017) Heat Mass Transf, 53, pp. 3257-3265Ebeling, J.C., Luo, X., Kabelac, S., Luckmann, S., Kruse, H., Dynamic simulation and experimental validation of a two-phase closed thermosyphon for geothermal application (2017) Propuls. Power Res., 6, pp. 107-116Haynes, F.D., Zarling, P., Quinn, F., Sollecito, P.E.M., (1992) Passive-Active Thermosyphon, , U.S. Patent US07, 883, 443, 15 MayUdell, K.S., Jankovich, P., Kekelia, B., Seasonal underground thermal energy storage using smart thermosiphon technology (2009) Proceedings of the Geothermal Resources Council 2009, Annual Meeting, GRC Transactions, 33, pp. 643-647. , Reno, NV, USA, 4–7 OctoberKekelia, B., Udell, K.S., Grid-Independent Air Conditioning Using Underground Thermal Energy Storage (UTES) and Reversible Thermosiphon Technology: Experimental Results (2011) Proceedings of the ASME 2011 5Th International Conference on Energy Sustainability, pp. 1245-1254. , Washington, DC, USA, 7–10 AugustJankovich, P.M., (2012) Seasonal Underground Thermal Energy Storage Using Smart Thermosiphon Arrays, , Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USARieberer, R., Moser, H., Naturally Circulating Collector for Heat Pumps-Initial Results (2006) Proceedings of the 7Th IIR Gustav Lorentzen Conference on Natural Working Fluids, , Trondheim, Norway, 28–31 MayVasiliev, L.L., Academy, N., Vassiliev, L.L., Academy, N., Vassiliev, L.L., Heat Pipes and nanotechnologies Microscale and Nanoscale Heat Transfer: Analysis, Design, and Application Edition, p. 505. , CRC Press: Boca Raton, FL, USA, 2016Chapter 8, ISBN 9781498736312Vasiliev, L., Grakovich, L.P., Rabetsky, M., Vasiliev, L.J., Heat transfer enhancement in heat pipes and thermosyphons using nanotechnologies (Nanofluids, nanocoatings, and nanocomposites) as an hp envelope (2013) Heat Pipe Sci. Technol. Int. J., 4, pp. 251-275Wang, X., Fan, H., Zhu, Y., Zhu, M., Heat Transfer Simulation and Analysis of Ice and Snow Melting System Using Geothermy by Super-long Flexible Heat Pipes (2017) Energy Procedia, 105, pp. 4724-4730Zhuravlyov, A.S., Vasiliev, L.L., Vasiliev, L.L., Jr., Horizontal vapordynamicthermosyphons, fundamentals and practical applications (2013) Heat Pipe Sci. Technol. Int. J., 4, pp. 39-52Vasiliev, L.L., Kiselev, V.G., Valery, A., Rudnev, E.A., Nesvit, V.A., Dunaevsky, L.M., Tverdokhleb, N.F., Davis, P.E.W., (1985) Heat-Transfer Device, , U.S. Patent 45,554,966, 26 NovemberVasiliev, L., Vasiliev, L., Zhuravlyov, A., Shapovalov, A., Rodin, A., Vapordynamicthermosyphon-Heat transfer two-phase device for wide applications (2015) Arch. Thermodyn., 36, pp. 65-76Vasiliev, L.L., Grakovich, L.P., Rabetsky, M.I., Vassiliev, L.L., Zhuravlyov, A.S., Thermosyphons with innovative technologies (2017) Appl. Therm. Eng., 111, pp. 1647-1654Vasiliev, L.L., Vaaz, S.L., (1986) Freezing and Heating of Ground by means of Cooling Devices, , NaukaiTekhnika: Minsk, Belarus, (In Russian)Read, J.P.R.H., Pullen, K.R., Gordon, M., (2010) A Thermosyphon Heat Transfer Device with Bubble Driven Rotor, , WO2011158008A3, 18 JuneLong, E.L., Designing friction piles for increased stability at lower installed cost in permafrost (1973) Proceedings of the Permafrost-The North American Contribution to the Second International Conference, , YakutskNational Academy of Sciences: Washington, DC, USAYarmak, E., Permafrost Foundations Thermally Stabilized Using Thermosyphons (2015) Proceedings of the OTC Arctic Technology Conference, pp. 23-25. , Copenhagen, Denmark, 23–25 MarchAcuña, J., (2013) Distributed Thermal Response Tests: New Insights on U-Pipe and Coaxial Heat Exchangers in Groundwater-Filled Boreholes, , Ph.D. Dissertation, KTH Royal Institute of Technology, Stockholm, SwedenMashiko, K., Mochizuki, M., Watanabe, Y., Kanai, Y., Eguchi, K., Shiraishi, M., Development of a Large Scale Loop Type Gravity Assisted Heat Pipe Having Showering Nozzles Proceedings of the 4Th International Heat Pipe Symposium, pp. 264-274. , Tsukuba, Japan, 16–18 May 1994Hayley, D.W., Application of heat pipes to design of shallow foundations on permafrost (1982) Proceedings of the 4Th Canadian Permafrost Conference, pp. 535-544. , National Research Council of Canada: Ottawa, ON, CanadaWang, X., Zhu, Y., Zhu, M., Zhu, Y., Fan, H., Wang, Y., Thermal analysis and optimization of an ice and snow melting system using geothermy by super-long flexible heat pipes (2017) Appl. Therm. Eng., 112, pp. 1353-1363Wang, X., Wang, Y., Wang, Z., Liu, Y., Zhu, Y., Chen, H., Simulation-based analysis of a ground source heat pump system using super-long flexible heat pipes coupled borehole heat exchanger during heating season (2018) Energy Convers. Manag., 164, pp. 132-143Xu, J., Goering, D.J., Experimental validation of passive permafrost cooling systems (2008) Cold Reg. Sci. Technol., 53, pp. 283-297Zhi, W., Yu, S., Wei, M., Jilin, Q., Wu, J., Analysis on effect of permafrost protection by two-phase closed thermosyphon and insulation jointly in permafrost regions (2005) Cold Reg. Sci. Technol., 43, pp. 150-163Chan, C.W., Siqueiros, E., Ling-Chin, J., Royapoor, M., Roskilly, A.P., Heat utilisation technologies: A critical review of heat pipes (2015) Renew. Sustain. Energy Rev., 50, pp. 615-627Vasiliev, L.L., Vasiliev, L.L., Jr., Horizontal vapordynamic thermosyphons, fundamentals and practical applications (2012) Proceedings of the 16Th International Heat Pipe Conference, , Lyon, France, 20–24 MayGrakovich, M.I., Rabetsky, L.L., Vasiliev, L.L.V.J., Polymer flat loop thermosyphons (2014) Heat Pipe Sci. Technol. Int. J., 5, pp. 1-4Nydahl, J.E., Pell, K., Lee, R., Bridge deck heating with ground-coupled heat pipes: Analysis and design (1987) ASHRAE Trans, 93, pp. 939-958Zorn, R., Steger, H., Kölbel, T., De-Icing and Snow Melting System with Innovative Heat Pipe Technology (2015) Proceedings of the World Geothermal Congress, pp. 1-6. , Melbourne, Australia, 19–25 AprilVasiliev, L.L., Heat pipes for ground heating and cooling (1988) Heat Recov. Syst. CHP, 8, pp. 125-139Griffin, R.G., Highway Bridge Deicing Using Passive Heat Sources (1982) Colorado Department of Highways, p. 71. , https://www.codot.gov/programs/research/pdfs/archive/passivedeicing.pdf, Available online, accessed on 21 September 2018Fukuda, M., Tsuchiya, F., Ryokai, K., Mochizuki, M., Mashiko, K., Development of an artificial permafrost storage using heat pipes (1990) Proceedings of the 7Th International Heat Pipe Conference, 2, pp. 305-317. , Moscow, Russia, 21–25 May 1990Dussadee, N., Kiatsiriroat, T., Performance analysis and economic evaluation of thermosyphon paddy bulk storage (2004) Appl. Therm. Eng., 24, pp. 401-414Zorn, R., Steger, H., Kölbel, T., Kruse, H., Deep Borehole Heat Exchanger with a CO2 Gravitational Heat Pipe (2008) Proceedings of the Geocongress 2008: Geosustainability and Geohazard Mitigation, pp. 899-906. , New Orleans, LA, USA, 9–12 MarchRieberer, R., Mittermayr, K., Halozan, H., CO2 Thermosyphons as Heat Source System for Heat Pumps-4 Years of Market Experience (2005) Proceedings of the 8Th IEA Heat Pump Conference, , Las Vegas, NV, USA, 30 May–2 JuneUdell, K.S., Kekelia, B., Jankovich, P., Net Zero Energy Air Conditioning Using Smart Thermosiphon Arrays (2011) ASHRAE Trans, 117, pp. 892-898Kekelia, B., (2012) Heat Transfer to and from a Reversible Thermosiphon Placed in Porous Media, , https://search.proquest.com/openview/d6b0c7ce0d1b891aa8a14e5d07d0e6a3/1?cbl=18750&diss=y&pq-origsite=gscholar, Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA, accessed on 21 September 2018Mu, Y., Li, G., Yu, Q., Ma, W., Wang, D., Wang, F., Numerical study of long-term cooling effects of thermosyphons around tower footings in permafrost regions along the Qinghai-Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 237-249Wei, M., Guodong, C., Qingbai, W., Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad (2009) Cold Reg. Sci. Technol., 59, pp. 3-11Jin, H., Hao, J., Chang, X., Zhang, J., Yu, Q., Qi, J., Lü, L., Wang, S., Zonation and assessment of frozen-ground conditions for engineering geology along the China–Russia crude oil pipeline route from Mo’he to Daqing, Northeastern China (2010) Cold Reg. Sci. Technol., 64, pp. 213-225Li, G., Yu, Q., Ma, W., Chen, Z., Mu, Y., Guo, L., Wang, F., Freeze–thaw properties and long-term thermal stability of the unprotected tower foundation soils in permafrost regions along the Qinghai–Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 258-274Wang, H., Zhao, J., Chen, Z., Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water (2008) Energy Convers. Manag., 49, pp. 1538-1546Wagner, A.M., Creation of an artificial frozen barrier using hybrid thermosyphons (2013) Cold Reg. Sci. Technol., 96, pp. 108-116Lynn, S.W., Rhodes, C., Evaluation of a vertical frozen soil barrier at oak ridge national laboratory (2000) Remediat. J., 10, pp. 15-33Eskilson, P., (1987) Thermal Analysis of Heat Extraction Boreholes, , Ph.D. Thesis, Lund University, Department of Mathematical Physics, Lund, SwedenLi, M., Lai, A.C.K., Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales (2015) Appl. Energy, 151, pp. 178-191Rees, S., (2016) Advances in Ground-Source Heat Pump Systems, p. 482. , 1st ed.Woodhead Publishing: Sawston, UK, ISBN 0081003226Yang, H., Cui, P., Fang, Z., Vertical-borehole ground-coupled heat pumps: A review of models and systems (2010) Appl. Energy, 87, pp. 16-27Carslaw, H.S., Jaeger, J.C., (1959) Conduction of Heat in Solids, , 2nd ed.Clarendon Press: Oxford, UKIngersoll, L.R., Zabel, O.J., Ingersoll, A.C., (1955) Heat Conduction with Engineering, Geological, and Other Applications, p. 325. , 3rd ed.Thames and Hudson: London, UKZeng, H.Y., Diao, N.R., Fang, Z.H., A finite line-source model for boreholes in geothermal heat exchangers (2002) Heat Transf. Asian Res., 31, pp. 558-567Zeng, H., Diao, N., Fang, Z., Heat transfer analysis of boreholes in vertical ground heat exchangers (2003) Int. J. Heat Mass Transf., 46, pp. 4467-4481Yavuzturk, C., Spitler, J.D., Rees, S.J., A Transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers (1999) ASHRAE Trans, 105, pp. 465-474Bozzoli, F., Pagliarini, G., Rainieri, S., Schiavi, L., Estimation of soil and grout thermal properties through a TSPEP (Two-step parameter estimation procedure) applied to TRT (thermal response test) data (2011) Energy, 36, pp. 839-846Al-Khoury, R., (2012) Computational Modeling of Shallow Geothermal Systems, , CRC Press: Boca Raton, FL, USALondon, UK, ISBN 0415596270Beier, R.A., Smith, M.D., Spitler, J.D., Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis (2011) Geothermics, 40, pp. 79-85Salim Shirazi, A., Bernier, M., A small-scale experimental apparatus to study heat transfer in the vicinity of geothermal boreholes (2014) HVAC&R Res, 20, pp. 819-827Chen, L., Yu, W., Lu, Y., Liu, W., Numerical simulation on the performance of thermosyphon adopted to mitigate thaw settlement of embankment in sandy permafrost zone (2018) Appl. Therm. Eng., 128, pp. 1624-1633Paramonov, V.N., Sakharov, I.I., Calculations of thermal stabilization of transport embankments and their bases (2017) Procedia Eng, 189, pp. 472-477Zhao, X.Y., Wang, J., Wang, Y.Z., The temperature control technology of bridge foundation in permafrost regions (2017) Procedia Eng, 210, pp. 235-239Pei, W., Zhang, M., Li, S., Lai, Y., Jin, L., Zhai, W., Yu, F., Lu, J., Geotemperature control performance of two-phase closed thermosyphons in the shady and sunny slopes of an embankment in a permafrost region (2017) Appl. Therm. Eng., 112, pp. 986-998Lim, H., Kim, C., Cho, Y., Kim, M., Energy saving potentials from the application of heat pipes on geothermal heat pump system (2017) Appl. Therm. Eng., 126, pp. 1191-1198Yu, F., Zhang, M., Lai, Y., Liu, Y., Qi, J., Yao, X., Crack formation of a highway embankment installed with two-phase closed thermosyphons in permafrost regions: Field experiment and geothermal modelling (2017) Appl. Therm. Eng., 115, pp. 670-681Zhang, M., Pei, W., Lai, Y., Niu, F., Li, S., Numerical study of the thermal characteristics of a shallow tunnel section with a two-phase closed thermosyphon group in a permafrost region under climate warming (2017) Int. J. Heat Mass Transf., 104, pp. 952-963Lu, Y., Yi, X., Yu, W., Liu, W., Numerical analysis on the thermal regimes of thermosyphon embankment in snowy permafrost area (2017) Sci. Cold Arid Reg., 9, pp. 580-586Ozsoy, A., Yildirim, R., Prevention of icing with ground source heat pipe: A theoretical analysis for Turkey’s climatic conditions (2016) Cold Reg. Sci. Technol., 125, pp. 65-71Mu, Y., Wang, G., Yu, Q., Li, G., Ma, W., Zhao, S., Thermal performance of a combined cooling method of thermosyphons and insulation boards for tower foundation soils along the Qinghai–Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 226-236Hartmann, F., Behrend, R., Hantsch, A., Grab, T., Gross, U., Numerical investigation of the performance of a partially wetted geothermal thermosyphon at various power demand schemes (2015) Geothermics, 55, pp. 99-107Grab, D.I.T., Storch, D.I.T., Wagner, S., Gross, U., Wechselwirkungen zwischen Heiz-und Kühlkreislauf bei einem geothermischen Direktverdampfer-Sondenfeld (2010) Deutsche Kälte-und Klimatagung, DKV, Magdeburg, , https://tu-freiberg.de/sites/default/files/media/professur-fuer-technische-thermodynamik-15264/Publikationen_Grab/2010-grab-dkv-magdeburg-wechselwirkungen-zw.-heiz-und-kuehlkreislauf.pdf, Available online, (accessed on 20 February 2019)Abdalla, B., Fan, C., McKinnon, C., Gaffard, V., Numerical Study of Thermosyphon Protection for Frost Heave (2015) Proceedings of the ASME 2015 34Th International Conference on Ocean, Offshore and Arctic Engineering, , St. John’s, NL, Canada, 31 May–5 JuneMu, Y., Li, G., Yu, Q., Ma, W., Zhang, Q., Guo, L., Chen, Z., Numerical simulation of heat transfer processes of cone-cylinder pile and cooling effects of thermosyphon along the Qinghai–Tibet DC Interconnection project (2014) J. Glaciol. Geocryol., 36, pp. 106-117Ma, C., Wu, X., Gao, S., Analysis and applications of a two-phase closed thermosyphon for improving the fluid temperature distribution in wellbores (2013) Appl. Therm. Eng., 55, pp. 1-6Filippeschi, S., Su, Y., Riffat, S.B., Lucio, L., Feasibility of periodic thermosyphons for environmentally friendly ground source cooling applications (2013) Int. J. Low-Carbon Technol., 8, pp. 117-123Hantsch, A., Gross, U., Numerical investigation of partially-wetted geothermal heat pipe performance (2013) Geothermics, 47, pp. 97-103Nakaoka, J., (2012) Heat Transfer Analysis of Thermosiphons and U-Tube Ground Source Heat Pumps, , Masters’s Thesis, The University of Utah, Salt Lake City, UT, USADong, Y., Lai, Y., Chen, W., Cooling effect of combined L-shaped thermosyphon, crushed-rock revetment and insulation for high-grade highways in permafrost regions (2012) Chin. J. Geotechn. Eng., 34, pp. 1043-1049Zhang, M., Lai, Y., Zhang, J., Sun, Z., Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions (2011) Cold Reg. Sci. Technol., 65, pp. 203-210Wang, Z., McClure, M.W., Horne, R.N., A single-well EGS configuration using a thermosyphon (2009) In Proceedings of the 34Th Workshop on Geothermal Reservoir Engineering, , Stanford, CA, USA, 9–11 February , . Paper SGP-TR-187Jardine, J.D., Long, E.L., Yarmak, E., Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion: Discussion (1992) Can. Geotech. J., 29, pp. 998-1001Smith, L.B., Graham, J.P., Nixon, J.F., Washuta, A.S., Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion (1991) Can. Geotech. J., 28, pp. 399-409Cui, P., Yang, H., Fang, Z., Numerical analysis and experimental validation of heat transfer in ground heat exchangers in alternative operation modes (2008) Energy Build, 40, pp. 1060-1066Yavuzturk, C., Spitler, J.D., Field validation of a short time step model for vertical ground-loop heat exchangers/Discussion (2001) ASHRAE Trans, 107, p. 617Javed, S., New Analytical and Numerical Solutions for the Short-term Analysis of Vertical Ground Heat Exchangers (2011) ASHRAE Trans, 117, pp. 3-12Li, M., Lai, A.C.K., Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation (2013) Appl. Energy, 104, pp. 510-516Viskanta, R., Phase change heat transfer in porous media (1991) Proceedings of the 3Rd International Symposium on Cold Region Heat Transfer, pp. 1-24. , Fairbanks, AK, USABazri, S., Anjum, I., Sajad, M., A review of numerical studies on solar collectors integrated with latent heat storage systems employing fi ns or nanoparticles (2018) Renew. Energy, 118, pp. 761-778Yang, W., Kong, L., Chen, Y., Numerical evaluation on the effects of soil freezing on underground temperature variations of soil around ground heat exchangers (2015) Appl. Therm. Eng., 75, pp. 259-269Eslami-Nejad, P., Bernier, M., Freezing of geothermal borehole surroundings: A numerical and experimental assessment with applications (2012) Appl. Energy, 98, pp. 333-345Sheshukov, A.Y., Egorov, A.G., Frozen barrier evolution in saturated porous media (2002) Adv. Water Resour., 25, pp. 591-599Zhang, G.G., Horne, W.B.T., Applications of numerical thermal analysis in engineering designs and evaluations for northern mines (2010) Proceedings of the 63Rd Canadian Geotechnical Conference & 6Th Canadian Permafrost Conference, pp. 617-624. , Calgary, AB, Canada, 12–16 SeptemberYu, F., Qi, J., Zhang, M., Lai, Y., Yao, X., Liu, Y., Wu, G., Cooling performance of two-phase closed thermosyphons installed at a highway embankment in permafrost regions (2016) Appl. Therm. Eng., 98, pp. 220-227Ho, I.-H., Dickson, M., Numerical modeling of heat production using geothermal energy for a snow-melting system (2017) Geomech. Energy Environ., 10, pp. 42-51Duffie, J.A., Beckman, W.A., (2013) Solar Engineering of Thermal Processes, , John Wiley & Sons: Hoboken, NJ, USA, ISBN 0470873663Givoni, B., Mostrel, M., Passive solar journal (1982) Passive Sol. J., 1, pp. 229-238Rao, K.G., Estimation of the exchange coefficient of heat during low wind convective conditions (2004) Bound.-Lay. Meteorol., 111, pp. 247-273McAdams, W.H., (1954) Heat Transmission, p. 330. , McGraw-Hill: New York, NY, USAPalyvos, J.A., A survey of wind convection coefficient correlations for building envelope energy systems’ modeling (2008) Appl. Therm. Eng., 28, pp. 801-808Faghri, A., (1995) Heat Pipe Science and Technology, , 2nd ed.Global Digital Press: Kanpur, India, 1560323833Jafari, D., Franco, A., Filippeschi, S., Di Marco, P., Two-phase closed thermosyphons: A review of studies and solar applications (2016) Renew. Sustain. Energy Rev., 53, pp. 575-593Dobran, F., Steady-state characteristics and stability thresholds of a closed two-phase thermosyphon (1985) Int. J. Heat Mass Transf., 28, pp. 949-957Mirzaei, B., Hadi, Z., Heat transfer characteristics of a two-phase closed thermosyphon using different working fluids (2010) Heat Mass Transf, 46, pp. 307-314El-Genk, M.S., Saber, H.H., Flooding limit in closed, two-phase flow thermosyphons (1997) Int. J. Heat Mass Transf., 40, pp. 2147-2164Pan, Y., Condensation heat transfer characteristics and concept of sub-flooding limit in a two-phase closed thermosyphon (2001) Int. Commun. Heat Mass Transf., 28, pp. 311-322Fadhl, B., Wrobel, L.C., Jouhara, H., CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a (2015) Appl. Therm. Eng., 78, pp. 482-490Jouhara, H., Fadhl, B., Wrobel, L.C., Three-dimensional CFD simulation of geyser boiling in a two-phase closed thermosyphon (2016) Int. J. Hydrogen Energy, 41, pp. 16463-16476Pan, Y., Wu, C. Numerical investigations and engineering applications on freezing expansion of soil restrained two-phase closed thermosyphons (2002) Int. J. Therm. Sci, 41, pp. 341-347Hemmingway, P., Tolooiyan, A.P., Numerical and finite element analysis of heat transfer in a closed loop geothermal system (2013) Int. J. Green Energy, 11, pp. 206-223Frost Evolution in Tailings Final Report. the Atomic Energy Control Board., , https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/007/24007807.pdf, Available online, accessed on 21 January 2019Greenslade, J., Nixon, J.F.D., Lewkowicz, A.G., Allard, M., Design aspect of a buried oil pipeline on the Alaskan north slope (1998) Proceedings of the 7Th International Conference on Permafrost, pp. 23-27. , Yellowknife, NT, Canada, 23–27 June(2018) Simmakers Frost 3D Universal, , http://frost3d.ru/eng/thermosyphon-technology-ground-freezing/, Available online, accessed on 20 AugustThermal Analysis in Engineering. Parallel Computing. Frost 3D Universal., , https://www.capterra.com/p/147397/Frost-3D-Universal/, Available online, accessed on 10 January 2019Plaxix Modelling of Thermosyphons Foundation System Using Plaxis 2D, , https://www.plaxis.com/support/verifications/modelling-thermosyphons-foundation-system/, Available online, accessed on 21 September 2018PLAXIS 3D Manuals, , https://www.plaxis.com/support/manuals/plaxis-3d-manuals, Available online, accessed on 10 January 2019Ebeling, J.-C., Kabelac, S., Luckmann, S., Kruse, H., Quasi-dynamic model for simulation of a 400 m vertical CO2 heat pipe for geothermal application (2016) Proceedings of the 9Th International Symposium on Heat Transfer (ISHT9-Q0358), pp. 15-19. , Beijing, China, AugustRohsenow, W.M., Hartnett, J.P., Ganic, E.N., (1985) Handbook of Heat Transfer Fundamentals, p. 1440. , 2nd ed.McGraw-Hill Book Co.: New York, NY, USAImura, H., Kusuda, H., Ogata, J.-I., Miyazaki, T., Sakamoto, N., Heat transfer in two-phase closed-type thermosyphons (1979) JSME Trans, 45, pp. 712-722Yong-Ping, Y., Shumhua, Z., Qing-Chao, W.E.I., Effect simulation of different declining angles of thermosyphons used in Qinghai-Tibet railway permafrost embankment (2006) China Civ. Eng. J., 39, pp. 108-113Hegab, H.E., Colwell, G.T., Thermal performance of heat pipe arrays in soil (1994) Numer. Heat Transf., 26, pp. 619-630Zarling, J.P., Hansen, P., Kozisekl, L., Design and performance experience of foundations stabilized with thermosyphons (1990) Proceedings of the Fifth Canadian Permafrost Conference, pp. 365-370. , Quebec, QC, Canada, 6–8 JuneFeldman, K.T., Jr., Munje, S., Experiments with gravity-assisted heat pipes with and without circumferential grooves (1979) J. Energy, 3, pp. 211-216Zarling, J.P., Haynes, F.D., (1985) Thermosyphon Devices and Slab-On-Grade Foundation Design, , https://trid.trb.org/view/273606, State of Alaska, Department of Transportation and Public Facilities, Research Section, Available online, accessed on 21 September 2018Haynes, F.D., Zarling, J.P., Thermosyphons and foundation design in cold regions (1988) Cold Reg. Sci. Technol., 15, pp. 251-259Haynes, F.D., Zarling, J.P., Gooch, G.E., Performance of a thermosyphon with a 37-m-long, horizontal evaporator (1992) Cold Reg. Sci. Technol., 20, pp. 261-269Guo, L., Yu, Q., You, Y., Wang, X., Li, X., Yuan, C., Cooling effects of thermosyphons in tower foundation soils in permafrost regions along the Qinghai–Tibet Power Transmission Line from Golmud, Qinghai Province to Lhasa, Tibet Autonomous Region, China (2016) Cold Reg. Sci. Technol., 121, pp. 196-204Yamada, N., Minami, T., Anuar Mohamad, M.N., Fundamental experiment of pumpless Rankine-type cycle for low-temperature heat recovery (2011) Energy, 36, pp. 1010-1017Heuer, C.E., Passive techniques for ground temperature control (1985) Therm. Des. Consid. Frozen Ground Eng., pp. 72-154Eidan, A.A., Najim, S.E., Jalil, J.M., Experimental and numerical investigation of thermosyphon performance in HVAC system applications (2016) Heat Mass Transf, 52, pp. 2879-2893Nemec, P., Čaja, A., Malcho, M., Mathematical model for heat transfer limitations of heat pipe (2013) Math. Comput. Model., 57, pp. 126-136Qiu, B.J.L.M., Zhang, Z.H.G.X.B., Determination of the operation range of a vertical two-phase closed thermosyphon (2012) Heat Mass Transf, 48, pp. 1043-1055Ma, W., Wen, Z., Sheng, Y., Wu, Q., Wang, D., Feng, W., Remedying embankment thaw settlement in a warm permafrost region with thermosyphons and crushed rock revetment (2012) Can. Geotech. J., 49, pp. 1005-1014Kusaba, S., Suzuki, H., Hirowatari, K., Mochizuki, M., Mashiko, K., Nguyen, T., Akbarzadeh, A., Extraction of geothermal energy and electric power generation using a large heat pipe (2000) Proceedings of the World Geothermal Congress, Kyushu-Tohoku, pp. 3489-3494. , Japan, 28 May–10 JuneLund, J.W., Pavement snow melting (2000) Geo-Heat Center Q. Bull., 21, pp. 12-19Lorentzen, G., Revival of carbon dioxide as a refrigerant (1994) Int. J. Refrig., 17, pp. 292-301Storch, T., Gross, U., Wagner, S., Performance of geothermal heat pipe using propane (2011) Proceedings of the 8Th Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators, Power Sources, , Minsk, Belarus, 12–15 SeptemberJouhara, H., Chauhan, A., Nannou, T., Almahmoud, S., Delpech, B., Wrobel, L.C., Heat pipe based systems— Advances and applications (2017) Energy, 128, pp. 729-754Narendra Babu, N., Kamath, H.C., Materials used in Heat Pipe (2015) Mater. Today Proc., 2, pp. 1469-1478ACT Advanced Cooling Technologies, , https://www.1-act.com/compatible-fluids-and-materials/, Available online, accessed on 21 September 2018Lyazgin, A.L., Bayasan, R.M., Chisnik, S.A., Cheverev, V.G., Pustovoit, G.P., Stabilization of pile foundations subjected to frost heave and in thawing permafrost (2003) Proceedings of the 8Th International Conference on Permafrost, pp. 707-711. , Zurich, Switzerland, 21–25 JulyLyazgin, A.L., Ostroborodov, S.V., Pustovoit, G.P., Shevtsov, K.P., Leveling of pile foundations supporting electric transmission lines by temperature control of bed soils (2004) Soil Mech. Found. Eng., 41, pp. 23-26Bayasan, R.M., Korotchenko, A.G., Volkov, N.G., Pustovoit, G.P., Lobanov, A.D., Use of two-phase heat pipes with the enlarged heat-exchange surface for thermal stabilization of permafrost soils at the bases of structures (2008) Appl. Therm. Eng., 28, pp. 274-277Bayasan, R.M., Korotchenko, A.G., Lobanov, A.D., Using of minor diameter thermo-stabilizers in the North construction engineering (2001)InventionsGround-coupled natural circulating devicesHeat pipeModeling and experimentalThermosiphonGround-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studiesIngeniería AmbientalIngeniería en EnergíaFacultad de IngenieríasBadache, M., CanmetENERGY Natural Resources Canada, 1615 Lionel Boulet Blvd., P.O.Box 4800, Varennes, QC J3X1S6, CanadaAidoun, Z., CanmetENERGY Natural Resources Canada, 1615 Lionel Boulet Blvd., P.O.Box 4800, Varennes, QC J3X1S6, CanadaEslami-Nejad, P., CanmetENERGY Natural Resources Canada, 1615 Lionel Boulet Blvd., P.O.Box 4800, Varennes, QC J3X1S6, CanadaBlessent, D., Department of environmental engineering, Universidad de Medellín, Medellín, 50026, Colombiainfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_16ecBadache M.Aidoun Z.Eslami-Nejad P.Blessent D.11407/6082oai:repository.udem.edu.co:11407/60822021-02-05 09:59:15.325Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co