Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies
Compared to conventional ground heat exchangers that require a separate pump or other mechanical devices to circulate the heat transfer fluid, ground coupled thermosiphons or naturally circulating ground heat exchangers do not require additional equipment for fluid circulation in the loop. This migh...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6082
- Acceso en línea:
- http://hdl.handle.net/11407/6082
- Palabra clave:
- Ground-coupled natural circulating devices
Heat pipe
Modeling and experimental
Thermosiphon
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_5ce9e9dec4bed409e318ba8687a27c48 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6082 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies |
title |
Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies |
spellingShingle |
Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies Ground-coupled natural circulating devices Heat pipe Modeling and experimental Thermosiphon |
title_short |
Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies |
title_full |
Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies |
title_fullStr |
Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies |
title_full_unstemmed |
Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies |
title_sort |
Ground-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studies |
dc.subject.spa.fl_str_mv |
Ground-coupled natural circulating devices Heat pipe Modeling and experimental Thermosiphon |
topic |
Ground-coupled natural circulating devices Heat pipe Modeling and experimental Thermosiphon |
description |
Compared to conventional ground heat exchangers that require a separate pump or other mechanical devices to circulate the heat transfer fluid, ground coupled thermosiphons or naturally circulating ground heat exchangers do not require additional equipment for fluid circulation in the loop. This might lead to a better overall efficiency and much simpler operation. This paper provides a review of the current published literature on the different types of existing ground coupled thermosiphons for use in applications requiring moderate and low temperatures. Effort has been focused on their classification according to type, configurations, major designs, and chronological year of apparition. Important technological findings and characteristics are provided in summary tables. Advances are identified in terms of the latest device developments and innovative concepts of thermosiphon technology used for the heat transfer to and from the soil. Applications are presented in a novel, well-defined classification in which major ground coupled thermosiphon applications are categorized in terms of medium and low temperature technologies. Finally, performance evaluation is meticulously discussed in terms of modeling, simulations, parametric, and experimental studies. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:15Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:15Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
24115134 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6082 |
dc.identifier.doi.none.fl_str_mv |
10.3390/inventions4010014 |
identifier_str_mv |
24115134 10.3390/inventions4010014 |
url |
http://hdl.handle.net/11407/6082 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068054593&doi=10.3390%2finventions4010014&partnerID=40&md5=798a07fe86f92e5dd7a38786d8213b6a |
dc.relation.citationvolume.none.fl_str_mv |
4 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.references.none.fl_str_mv |
Julia, R., (2008) Thermosiphon Loops for Heat Extraction from the Ground, , Master’s Thesis, KTH School of Industrial Engineering and Management, Stockholm, Sweden Kaltschmitt, M., Streicher, W., Wiese, A., (2007) Renewable Energy Technology Economics and Environment Springer Science & Business Media: Berlin/Heidelberg, p. 564. , Germany, ISBN 978-3-540-70949-7 Franco, A., Vaccaro, M., On the use of heat pipe principle for the exploitation of medium low temperature geothermal resources (2013) Appl. Therm. Eng., 59, pp. 189-199 Aresti, L., Christodoulides, P., Florides, G., A review of the design aspects of ground heat exchangers (2018) Renew. Sustain. Energy Rev., 92, pp. 757-773 Florides, G., Kalogirou, S., Ground heat exchangers—A review of systems, models and applications (2007) Renew. Energy, 32, pp. 2461-2478 Richardson, P., Tough Alaska conditions prove new pile design’s versatility (1979) Alaska Constr. Oil, pp. 20-28 Wu, J., Ma, W., Sun, Z., Wen, Z., In-situ study on cooling effect of the two-phase closed thermosyphon and insulation combinational embankment of the Qinghai-Tibet Railway (2010) Cold Reg. Sci. Technol., 60, pp. 234-244 Wagner, A., (2014) Review of Thermosyphon Applications, , http://acwc.sdp.sirsi.net/client/default, The US Army Engineer Research and Development Center: Hanover, NH, USA ERDC/CRREL-TR-14-1, accessed on 21 September 2018 Long, E.L., Zarling, J.P., Passive Techniques for Ground Temperature Control (2004) Thermal Analysis, Construction, and Monitoring Methods for Frozen Ground, pp. 77-165. , American Society of Civil Engineers: Reston, VA, USA Mc Fadden, T., (2001) Design Manual for Stabilizing Foundations on Permafrost, 181. , https://www.uaf.edu/ces/energy/housing_energy/resources/Permafrost-design-manual.pdf, Available online, accessed on 21 September 2018 Yarmak, E., Long, E., Recent Developments in Thermosyphon Technology (2002) Proceedings of the 11Th International Conference on Cold Regions Engineering, pp. 656-662. , Anchorage, AK, USA, 20–22 May McFadden, T.T., Bennett, F.L., (1991) Construction in Cold Regions: A Guide for Planners, Engineers, Contractors, and Managers, , John Wiley & Sons: Hoboken, NJ, USA, ISBN-13: 978-0471525035 Carotenuto, A., Casarosa, C., Martorano, L., The geothermal convector: Experimental and numerical results (1999) Appl. Therm. Eng., 19, pp. 349-374 Bertsch, S., Groll, E.A., Whitacre, K., Modeling of a CO2 thermosyphon for a ground source heat pump application (2005) Proceedings of the 8Th International Energy Agency for Heat Pump Conference, , Las Vegas, NY, USA, 30 May–2 June Wagner, A.M., Edward, Y., Jr., Using Frozen Barriers for Containment of Contaminants (2017) Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center Hanover United States, , https://apps.dtic.mil/docs/citations/AD1039597, accessed on 21 September 2018 (2014) Thermosyphon Foundations for Buildings in Permafrost Regions, , National Standard of Canada: Ottawa, ON, Canada, ISBN 9781771396042 Wagner, A.M., Yarmak, E., (2012) Demonstration of an Artificial Frozen Barrier Cold Regions Research Demonstration of an Artificial Frozen Barrier, , https://apps.dtic.mil/docs/citations/ADA571582, Available online, accessed on 21 January 2019 Gaugler, R.S., (1942) Heat Transfer Device, , U.S. Patent US2,350,348A, 21 December Reay, D., McGlen, R., Kew, P., (2006) Heat Pipes Theory and Design, , 5th ed. Butterworth Heinemann: Oxford, UK, 9780750667548 Heuer, C.E., The Application of Heat Pipes on the Trans-Alaska Pipeline. (No. CRREL-SR-79-26) (1979) Cold Regions Research and Engineering Lab Hanover NH, p. 34. , http://dtic.mil/dtic/tr/fulltext/u2/a073597.pdf, Available online, (accessed on 21 September 2018) Nguyen, T., Johnson, P., Akbarzadeh, A., Gibson, K., Mochizuki, M., Design, manufacture and testing of a closed cycle thermosyphonrankine engine (1995) Heat Recov. Syst. CHP, 15, pp. 333-346 Ziapour, B.M., Performance analysis of an enhanced thermosyphon Rankine cycle using impulse turbine (2009) Energy, 34, pp. 1636-1641 Lockett, G., Single borehole geothermal energy extraction system for electrical power generation (1986) Proceedings of the Eleventh Workshop on Geothermal Reservoir Engineering, pp. 215-216. , Stanford, CA, USA, 21–23 January Holubec, I., Flat Loop Thermosyphon Foundations in Warm Permafrost (2008) Government of Northwest Territories Thermosyphon Foundations in Warm Permafrost—Report, p. 119. , https://pievc.ca/government-northwest-territories-thermosyphon-foundations-warm-permafrost, Available online, accessed on 21 September 2018 Kruse, H., (1998) Terrestrial Heat Probe for Use in Heat Pump System for Heating, , German Patent DE19860328A1, 24 December Kruse, H., Russmann, H., The Status of Development and Research on CO2 Earth Heat Pipes for Geothermal Heat Pumps International High Performance Buildings Conference, , http://docs.lib.purdue.edu/ihpbc/51, Paper 51. Available online, accessed on 21 September 2018 Ochsner, K., Carbon dioxide heat pipe in conjunction with a ground source heat pump (GSHP) (2008) Appl. Therm. Eng., 28, pp. 2077-2082 Kruse, H., Russmann, H., Novel CO2-heat pipe as earth probe for heat pumps without auxiliary pumping energy (2005) Proceedings of the 8Th International IEA Heat Pump Conference, , Las Vegas, NV, USA, 30 May–2 June Rieberer, R., Naturally circulating probes and collectors for ground-coupled heat pumps (2005) Int. J. Refrig., 28, pp. 1308-1315 Acuña, J., Palm, B., Khodabandeh, R., Weber, K., Ab, E., Distributed Temperature Measurements on a U-Pipe Thermosyphon Borehole Heat Exchanger with CO2 (2010) Proceedings of the 9Th IIR Gustav Lorentzen Conference, , Sydney, Australia, 12–14 April Ebeling, J.C., Kabelac, S., Luckmann, S., Kruse, H., Simulation and experimental validation of a 400 m vertical CO2 heat pipe for geothermal application (2017) Heat Mass Transf, 53, pp. 3257-3265 Ebeling, J.C., Luo, X., Kabelac, S., Luckmann, S., Kruse, H., Dynamic simulation and experimental validation of a two-phase closed thermosyphon for geothermal application (2017) Propuls. Power Res., 6, pp. 107-116 Haynes, F.D., Zarling, P., Quinn, F., Sollecito, P.E.M., (1992) Passive-Active Thermosyphon, , U.S. Patent US07, 883, 443, 15 May Udell, K.S., Jankovich, P., Kekelia, B., Seasonal underground thermal energy storage using smart thermosiphon technology (2009) Proceedings of the Geothermal Resources Council 2009, Annual Meeting, GRC Transactions, 33, pp. 643-647. , Reno, NV, USA, 4–7 October Kekelia, B., Udell, K.S., Grid-Independent Air Conditioning Using Underground Thermal Energy Storage (UTES) and Reversible Thermosiphon Technology: Experimental Results (2011) Proceedings of the ASME 2011 5Th International Conference on Energy Sustainability, pp. 1245-1254. , Washington, DC, USA, 7–10 August Jankovich, P.M., (2012) Seasonal Underground Thermal Energy Storage Using Smart Thermosiphon Arrays, , Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA Rieberer, R., Moser, H., Naturally Circulating Collector for Heat Pumps-Initial Results (2006) Proceedings of the 7Th IIR Gustav Lorentzen Conference on Natural Working Fluids, , Trondheim, Norway, 28–31 May Vasiliev, L.L., Academy, N., Vassiliev, L.L., Academy, N., Vassiliev, L.L., Heat Pipes and nanotechnologies Microscale and Nanoscale Heat Transfer: Analysis, Design, and Application Edition, p. 505. , CRC Press: Boca Raton, FL, USA, 2016 Chapter 8, ISBN 9781498736312 Vasiliev, L., Grakovich, L.P., Rabetsky, M., Vasiliev, L.J., Heat transfer enhancement in heat pipes and thermosyphons using nanotechnologies (Nanofluids, nanocoatings, and nanocomposites) as an hp envelope (2013) Heat Pipe Sci. Technol. Int. J., 4, pp. 251-275 Wang, X., Fan, H., Zhu, Y., Zhu, M., Heat Transfer Simulation and Analysis of Ice and Snow Melting System Using Geothermy by Super-long Flexible Heat Pipes (2017) Energy Procedia, 105, pp. 4724-4730 Zhuravlyov, A.S., Vasiliev, L.L., Vasiliev, L.L., Jr., Horizontal vapordynamicthermosyphons, fundamentals and practical applications (2013) Heat Pipe Sci. Technol. Int. J., 4, pp. 39-52 Vasiliev, L.L., Kiselev, V.G., Valery, A., Rudnev, E.A., Nesvit, V.A., Dunaevsky, L.M., Tverdokhleb, N.F., Davis, P.E.W., (1985) Heat-Transfer Device, , U.S. Patent 45,554,966, 26 November Vasiliev, L., Vasiliev, L., Zhuravlyov, A., Shapovalov, A., Rodin, A., Vapordynamicthermosyphon-Heat transfer two-phase device for wide applications (2015) Arch. Thermodyn., 36, pp. 65-76 Vasiliev, L.L., Grakovich, L.P., Rabetsky, M.I., Vassiliev, L.L., Zhuravlyov, A.S., Thermosyphons with innovative technologies (2017) Appl. Therm. Eng., 111, pp. 1647-1654 Vasiliev, L.L., Vaaz, S.L., (1986) Freezing and Heating of Ground by means of Cooling Devices, , NaukaiTekhnika: Minsk, Belarus, (In Russian) Read, J.P.R.H., Pullen, K.R., Gordon, M., (2010) A Thermosyphon Heat Transfer Device with Bubble Driven Rotor, , WO2011158008A3, 18 June Long, E.L., Designing friction piles for increased stability at lower installed cost in permafrost (1973) Proceedings of the Permafrost-The North American Contribution to the Second International Conference, , Yakutsk National Academy of Sciences: Washington, DC, USA Yarmak, E., Permafrost Foundations Thermally Stabilized Using Thermosyphons (2015) Proceedings of the OTC Arctic Technology Conference, pp. 23-25. , Copenhagen, Denmark, 23–25 March Acuña, J., (2013) Distributed Thermal Response Tests: New Insights on U-Pipe and Coaxial Heat Exchangers in Groundwater-Filled Boreholes, , Ph.D. Dissertation, KTH Royal Institute of Technology, Stockholm, Sweden Mashiko, K., Mochizuki, M., Watanabe, Y., Kanai, Y., Eguchi, K., Shiraishi, M., Development of a Large Scale Loop Type Gravity Assisted Heat Pipe Having Showering Nozzles Proceedings of the 4Th International Heat Pipe Symposium, pp. 264-274. , Tsukuba, Japan, 16–18 May 1994 Hayley, D.W., Application of heat pipes to design of shallow foundations on permafrost (1982) Proceedings of the 4Th Canadian Permafrost Conference, pp. 535-544. , National Research Council of Canada: Ottawa, ON, Canada Wang, X., Zhu, Y., Zhu, M., Zhu, Y., Fan, H., Wang, Y., Thermal analysis and optimization of an ice and snow melting system using geothermy by super-long flexible heat pipes (2017) Appl. Therm. Eng., 112, pp. 1353-1363 Wang, X., Wang, Y., Wang, Z., Liu, Y., Zhu, Y., Chen, H., Simulation-based analysis of a ground source heat pump system using super-long flexible heat pipes coupled borehole heat exchanger during heating season (2018) Energy Convers. Manag., 164, pp. 132-143 Xu, J., Goering, D.J., Experimental validation of passive permafrost cooling systems (2008) Cold Reg. Sci. Technol., 53, pp. 283-297 Zhi, W., Yu, S., Wei, M., Jilin, Q., Wu, J., Analysis on effect of permafrost protection by two-phase closed thermosyphon and insulation jointly in permafrost regions (2005) Cold Reg. Sci. Technol., 43, pp. 150-163 Chan, C.W., Siqueiros, E., Ling-Chin, J., Royapoor, M., Roskilly, A.P., Heat utilisation technologies: A critical review of heat pipes (2015) Renew. Sustain. Energy Rev., 50, pp. 615-627 Vasiliev, L.L., Vasiliev, L.L., Jr., Horizontal vapordynamic thermosyphons, fundamentals and practical applications (2012) Proceedings of the 16Th International Heat Pipe Conference, , Lyon, France, 20–24 May Grakovich, M.I., Rabetsky, L.L., Vasiliev, L.L.V.J., Polymer flat loop thermosyphons (2014) Heat Pipe Sci. Technol. Int. J., 5, pp. 1-4 Nydahl, J.E., Pell, K., Lee, R., Bridge deck heating with ground-coupled heat pipes: Analysis and design (1987) ASHRAE Trans, 93, pp. 939-958 Zorn, R., Steger, H., Kölbel, T., De-Icing and Snow Melting System with Innovative Heat Pipe Technology (2015) Proceedings of the World Geothermal Congress, pp. 1-6. , Melbourne, Australia, 19–25 April Vasiliev, L.L., Heat pipes for ground heating and cooling (1988) Heat Recov. Syst. CHP, 8, pp. 125-139 Griffin, R.G., Highway Bridge Deicing Using Passive Heat Sources (1982) Colorado Department of Highways, p. 71. , https://www.codot.gov/programs/research/pdfs/archive/passivedeicing.pdf, Available online, accessed on 21 September 2018 Fukuda, M., Tsuchiya, F., Ryokai, K., Mochizuki, M., Mashiko, K., Development of an artificial permafrost storage using heat pipes (1990) Proceedings of the 7Th International Heat Pipe Conference, 2, pp. 305-317. , Moscow, Russia, 21–25 May 1990 Dussadee, N., Kiatsiriroat, T., Performance analysis and economic evaluation of thermosyphon paddy bulk storage (2004) Appl. Therm. Eng., 24, pp. 401-414 Zorn, R., Steger, H., Kölbel, T., Kruse, H., Deep Borehole Heat Exchanger with a CO2 Gravitational Heat Pipe (2008) Proceedings of the Geocongress 2008: Geosustainability and Geohazard Mitigation, pp. 899-906. , New Orleans, LA, USA, 9–12 March Rieberer, R., Mittermayr, K., Halozan, H., CO2 Thermosyphons as Heat Source System for Heat Pumps-4 Years of Market Experience (2005) Proceedings of the 8Th IEA Heat Pump Conference, , Las Vegas, NV, USA, 30 May–2 June Udell, K.S., Kekelia, B., Jankovich, P., Net Zero Energy Air Conditioning Using Smart Thermosiphon Arrays (2011) ASHRAE Trans, 117, pp. 892-898 Kekelia, B., (2012) Heat Transfer to and from a Reversible Thermosiphon Placed in Porous Media, , https://search.proquest.com/openview/d6b0c7ce0d1b891aa8a14e5d07d0e6a3/1?cbl=18750&diss=y&pq-origsite=gscholar, Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA, accessed on 21 September 2018 Mu, Y., Li, G., Yu, Q., Ma, W., Wang, D., Wang, F., Numerical study of long-term cooling effects of thermosyphons around tower footings in permafrost regions along the Qinghai-Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 237-249 Wei, M., Guodong, C., Qingbai, W., Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad (2009) Cold Reg. Sci. Technol., 59, pp. 3-11 Jin, H., Hao, J., Chang, X., Zhang, J., Yu, Q., Qi, J., Lü, L., Wang, S., Zonation and assessment of frozen-ground conditions for engineering geology along the China–Russia crude oil pipeline route from Mo’he to Daqing, Northeastern China (2010) Cold Reg. Sci. Technol., 64, pp. 213-225 Li, G., Yu, Q., Ma, W., Chen, Z., Mu, Y., Guo, L., Wang, F., Freeze–thaw properties and long-term thermal stability of the unprotected tower foundation soils in permafrost regions along the Qinghai–Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 258-274 Wang, H., Zhao, J., Chen, Z., Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water (2008) Energy Convers. Manag., 49, pp. 1538-1546 Wagner, A.M., Creation of an artificial frozen barrier using hybrid thermosyphons (2013) Cold Reg. Sci. Technol., 96, pp. 108-116 Lynn, S.W., Rhodes, C., Evaluation of a vertical frozen soil barrier at oak ridge national laboratory (2000) Remediat. J., 10, pp. 15-33 Eskilson, P., (1987) Thermal Analysis of Heat Extraction Boreholes, , Ph.D. Thesis, Lund University, Department of Mathematical Physics, Lund, Sweden Li, M., Lai, A.C.K., Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales (2015) Appl. Energy, 151, pp. 178-191 Rees, S., (2016) Advances in Ground-Source Heat Pump Systems, p. 482. , 1st ed. Woodhead Publishing: Sawston, UK, ISBN 0081003226 Yang, H., Cui, P., Fang, Z., Vertical-borehole ground-coupled heat pumps: A review of models and systems (2010) Appl. Energy, 87, pp. 16-27 Carslaw, H.S., Jaeger, J.C., (1959) Conduction of Heat in Solids, , 2nd ed. Clarendon Press: Oxford, UK Ingersoll, L.R., Zabel, O.J., Ingersoll, A.C., (1955) Heat Conduction with Engineering, Geological, and Other Applications, p. 325. , 3rd ed. Thames and Hudson: London, UK Zeng, H.Y., Diao, N.R., Fang, Z.H., A finite line-source model for boreholes in geothermal heat exchangers (2002) Heat Transf. Asian Res., 31, pp. 558-567 Zeng, H., Diao, N., Fang, Z., Heat transfer analysis of boreholes in vertical ground heat exchangers (2003) Int. J. Heat Mass Transf., 46, pp. 4467-4481 Yavuzturk, C., Spitler, J.D., Rees, S.J., A Transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers (1999) ASHRAE Trans, 105, pp. 465-474 Bozzoli, F., Pagliarini, G., Rainieri, S., Schiavi, L., Estimation of soil and grout thermal properties through a TSPEP (Two-step parameter estimation procedure) applied to TRT (thermal response test) data (2011) Energy, 36, pp. 839-846 Al-Khoury, R., (2012) Computational Modeling of Shallow Geothermal Systems, , CRC Press: Boca Raton, FL, USA London, UK, ISBN 0415596270 Beier, R.A., Smith, M.D., Spitler, J.D., Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis (2011) Geothermics, 40, pp. 79-85 Salim Shirazi, A., Bernier, M., A small-scale experimental apparatus to study heat transfer in the vicinity of geothermal boreholes (2014) HVAC&R Res, 20, pp. 819-827 Chen, L., Yu, W., Lu, Y., Liu, W., Numerical simulation on the performance of thermosyphon adopted to mitigate thaw settlement of embankment in sandy permafrost zone (2018) Appl. Therm. Eng., 128, pp. 1624-1633 Paramonov, V.N., Sakharov, I.I., Calculations of thermal stabilization of transport embankments and their bases (2017) Procedia Eng, 189, pp. 472-477 Zhao, X.Y., Wang, J., Wang, Y.Z., The temperature control technology of bridge foundation in permafrost regions (2017) Procedia Eng, 210, pp. 235-239 Pei, W., Zhang, M., Li, S., Lai, Y., Jin, L., Zhai, W., Yu, F., Lu, J., Geotemperature control performance of two-phase closed thermosyphons in the shady and sunny slopes of an embankment in a permafrost region (2017) Appl. Therm. Eng., 112, pp. 986-998 Lim, H., Kim, C., Cho, Y., Kim, M., Energy saving potentials from the application of heat pipes on geothermal heat pump system (2017) Appl. Therm. Eng., 126, pp. 1191-1198 Yu, F., Zhang, M., Lai, Y., Liu, Y., Qi, J., Yao, X., Crack formation of a highway embankment installed with two-phase closed thermosyphons in permafrost regions: Field experiment and geothermal modelling (2017) Appl. Therm. Eng., 115, pp. 670-681 Zhang, M., Pei, W., Lai, Y., Niu, F., Li, S., Numerical study of the thermal characteristics of a shallow tunnel section with a two-phase closed thermosyphon group in a permafrost region under climate warming (2017) Int. J. Heat Mass Transf., 104, pp. 952-963 Lu, Y., Yi, X., Yu, W., Liu, W., Numerical analysis on the thermal regimes of thermosyphon embankment in snowy permafrost area (2017) Sci. Cold Arid Reg., 9, pp. 580-586 Ozsoy, A., Yildirim, R., Prevention of icing with ground source heat pipe: A theoretical analysis for Turkey’s climatic conditions (2016) Cold Reg. Sci. Technol., 125, pp. 65-71 Mu, Y., Wang, G., Yu, Q., Li, G., Ma, W., Zhao, S., Thermal performance of a combined cooling method of thermosyphons and insulation boards for tower foundation soils along the Qinghai–Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 226-236 Hartmann, F., Behrend, R., Hantsch, A., Grab, T., Gross, U., Numerical investigation of the performance of a partially wetted geothermal thermosyphon at various power demand schemes (2015) Geothermics, 55, pp. 99-107 Grab, D.I.T., Storch, D.I.T., Wagner, S., Gross, U., Wechselwirkungen zwischen Heiz-und Kühlkreislauf bei einem geothermischen Direktverdampfer-Sondenfeld (2010) Deutsche Kälte-und Klimatagung, DKV, Magdeburg, , https://tu-freiberg.de/sites/default/files/media/professur-fuer-technische-thermodynamik-15264/Publikationen_Grab/2010-grab-dkv-magdeburg-wechselwirkungen-zw.-heiz-und-kuehlkreislauf.pdf, Available online, (accessed on 20 February 2019) Abdalla, B., Fan, C., McKinnon, C., Gaffard, V., Numerical Study of Thermosyphon Protection for Frost Heave (2015) Proceedings of the ASME 2015 34Th International Conference on Ocean, Offshore and Arctic Engineering, , St. John’s, NL, Canada, 31 May–5 June Mu, Y., Li, G., Yu, Q., Ma, W., Zhang, Q., Guo, L., Chen, Z., Numerical simulation of heat transfer processes of cone-cylinder pile and cooling effects of thermosyphon along the Qinghai–Tibet DC Interconnection project (2014) J. Glaciol. Geocryol., 36, pp. 106-117 Ma, C., Wu, X., Gao, S., Analysis and applications of a two-phase closed thermosyphon for improving the fluid temperature distribution in wellbores (2013) Appl. Therm. Eng., 55, pp. 1-6 Filippeschi, S., Su, Y., Riffat, S.B., Lucio, L., Feasibility of periodic thermosyphons for environmentally friendly ground source cooling applications (2013) Int. J. Low-Carbon Technol., 8, pp. 117-123 Hantsch, A., Gross, U., Numerical investigation of partially-wetted geothermal heat pipe performance (2013) Geothermics, 47, pp. 97-103 Nakaoka, J., (2012) Heat Transfer Analysis of Thermosiphons and U-Tube Ground Source Heat Pumps, , Masters’s Thesis, The University of Utah, Salt Lake City, UT, USA Dong, Y., Lai, Y., Chen, W., Cooling effect of combined L-shaped thermosyphon, crushed-rock revetment and insulation for high-grade highways in permafrost regions (2012) Chin. J. Geotechn. Eng., 34, pp. 1043-1049 Zhang, M., Lai, Y., Zhang, J., Sun, Z., Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions (2011) Cold Reg. Sci. Technol., 65, pp. 203-210 Wang, Z., McClure, M.W., Horne, R.N., A single-well EGS configuration using a thermosyphon (2009) In Proceedings of the 34Th Workshop on Geothermal Reservoir Engineering, , Stanford, CA, USA, 9–11 February , . Paper SGP-TR-187 Jardine, J.D., Long, E.L., Yarmak, E., Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion: Discussion (1992) Can. Geotech. J., 29, pp. 998-1001 Smith, L.B., Graham, J.P., Nixon, J.F., Washuta, A.S., Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion (1991) Can. Geotech. J., 28, pp. 399-409 Cui, P., Yang, H., Fang, Z., Numerical analysis and experimental validation of heat transfer in ground heat exchangers in alternative operation modes (2008) Energy Build, 40, pp. 1060-1066 Yavuzturk, C., Spitler, J.D., Field validation of a short time step model for vertical ground-loop heat exchangers/Discussion (2001) ASHRAE Trans, 107, p. 617 Javed, S., New Analytical and Numerical Solutions for the Short-term Analysis of Vertical Ground Heat Exchangers (2011) ASHRAE Trans, 117, pp. 3-12 Li, M., Lai, A.C.K., Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation (2013) Appl. Energy, 104, pp. 510-516 Viskanta, R., Phase change heat transfer in porous media (1991) Proceedings of the 3Rd International Symposium on Cold Region Heat Transfer, pp. 1-24. , Fairbanks, AK, USA Bazri, S., Anjum, I., Sajad, M., A review of numerical studies on solar collectors integrated with latent heat storage systems employing fi ns or nanoparticles (2018) Renew. Energy, 118, pp. 761-778 Yang, W., Kong, L., Chen, Y., Numerical evaluation on the effects of soil freezing on underground temperature variations of soil around ground heat exchangers (2015) Appl. Therm. Eng., 75, pp. 259-269 Eslami-Nejad, P., Bernier, M., Freezing of geothermal borehole surroundings: A numerical and experimental assessment with applications (2012) Appl. Energy, 98, pp. 333-345 Sheshukov, A.Y., Egorov, A.G., Frozen barrier evolution in saturated porous media (2002) Adv. Water Resour., 25, pp. 591-599 Zhang, G.G., Horne, W.B.T., Applications of numerical thermal analysis in engineering designs and evaluations for northern mines (2010) Proceedings of the 63Rd Canadian Geotechnical Conference & 6Th Canadian Permafrost Conference, pp. 617-624. , Calgary, AB, Canada, 12–16 September Yu, F., Qi, J., Zhang, M., Lai, Y., Yao, X., Liu, Y., Wu, G., Cooling performance of two-phase closed thermosyphons installed at a highway embankment in permafrost regions (2016) Appl. Therm. Eng., 98, pp. 220-227 Ho, I.-H., Dickson, M., Numerical modeling of heat production using geothermal energy for a snow-melting system (2017) Geomech. Energy Environ., 10, pp. 42-51 Duffie, J.A., Beckman, W.A., (2013) Solar Engineering of Thermal Processes, , John Wiley & Sons: Hoboken, NJ, USA, ISBN 0470873663 Givoni, B., Mostrel, M., Passive solar journal (1982) Passive Sol. J., 1, pp. 229-238 Rao, K.G., Estimation of the exchange coefficient of heat during low wind convective conditions (2004) Bound.-Lay. Meteorol., 111, pp. 247-273 McAdams, W.H., (1954) Heat Transmission, p. 330. , McGraw-Hill: New York, NY, USA Palyvos, J.A., A survey of wind convection coefficient correlations for building envelope energy systems’ modeling (2008) Appl. Therm. Eng., 28, pp. 801-808 Faghri, A., (1995) Heat Pipe Science and Technology, , 2nd ed. Global Digital Press: Kanpur, India, 1560323833 Jafari, D., Franco, A., Filippeschi, S., Di Marco, P., Two-phase closed thermosyphons: A review of studies and solar applications (2016) Renew. Sustain. Energy Rev., 53, pp. 575-593 Dobran, F., Steady-state characteristics and stability thresholds of a closed two-phase thermosyphon (1985) Int. J. Heat Mass Transf., 28, pp. 949-957 Mirzaei, B., Hadi, Z., Heat transfer characteristics of a two-phase closed thermosyphon using different working fluids (2010) Heat Mass Transf, 46, pp. 307-314 El-Genk, M.S., Saber, H.H., Flooding limit in closed, two-phase flow thermosyphons (1997) Int. J. Heat Mass Transf., 40, pp. 2147-2164 Pan, Y., Condensation heat transfer characteristics and concept of sub-flooding limit in a two-phase closed thermosyphon (2001) Int. Commun. Heat Mass Transf., 28, pp. 311-322 Fadhl, B., Wrobel, L.C., Jouhara, H., CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a (2015) Appl. Therm. Eng., 78, pp. 482-490 Jouhara, H., Fadhl, B., Wrobel, L.C., Three-dimensional CFD simulation of geyser boiling in a two-phase closed thermosyphon (2016) Int. J. Hydrogen Energy, 41, pp. 16463-16476 Pan, Y., Wu, C. Numerical investigations and engineering applications on freezing expansion of soil restrained two-phase closed thermosyphons (2002) Int. J. Therm. Sci, 41, pp. 341-347 Hemmingway, P., Tolooiyan, A.P., Numerical and finite element analysis of heat transfer in a closed loop geothermal system (2013) Int. J. Green Energy, 11, pp. 206-223 Frost Evolution in Tailings Final Report. the Atomic Energy Control Board., , https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/007/24007807.pdf, Available online, accessed on 21 January 2019 Greenslade, J., Nixon, J.F.D., Lewkowicz, A.G., Allard, M., Design aspect of a buried oil pipeline on the Alaskan north slope (1998) Proceedings of the 7Th International Conference on Permafrost, pp. 23-27. , Yellowknife, NT, Canada, 23–27 June (2018) Simmakers Frost 3D Universal, , http://frost3d.ru/eng/thermosyphon-technology-ground-freezing/, Available online, accessed on 20 August Thermal Analysis in Engineering. Parallel Computing. Frost 3D Universal., , https://www.capterra.com/p/147397/Frost-3D-Universal/, Available online, accessed on 10 January 2019 Plaxix Modelling of Thermosyphons Foundation System Using Plaxis 2D, , https://www.plaxis.com/support/verifications/modelling-thermosyphons-foundation-system/, Available online, accessed on 21 September 2018 PLAXIS 3D Manuals, , https://www.plaxis.com/support/manuals/plaxis-3d-manuals, Available online, accessed on 10 January 2019 Ebeling, J.-C., Kabelac, S., Luckmann, S., Kruse, H., Quasi-dynamic model for simulation of a 400 m vertical CO2 heat pipe for geothermal application (2016) Proceedings of the 9Th International Symposium on Heat Transfer (ISHT9-Q0358), pp. 15-19. , Beijing, China, August Rohsenow, W.M., Hartnett, J.P., Ganic, E.N., (1985) Handbook of Heat Transfer Fundamentals, p. 1440. , 2nd ed. McGraw-Hill Book Co.: New York, NY, USA Imura, H., Kusuda, H., Ogata, J.-I., Miyazaki, T., Sakamoto, N., Heat transfer in two-phase closed-type thermosyphons (1979) JSME Trans, 45, pp. 712-722 Yong-Ping, Y., Shumhua, Z., Qing-Chao, W.E.I., Effect simulation of different declining angles of thermosyphons used in Qinghai-Tibet railway permafrost embankment (2006) China Civ. Eng. J., 39, pp. 108-113 Hegab, H.E., Colwell, G.T., Thermal performance of heat pipe arrays in soil (1994) Numer. Heat Transf., 26, pp. 619-630 Zarling, J.P., Hansen, P., Kozisekl, L., Design and performance experience of foundations stabilized with thermosyphons (1990) Proceedings of the Fifth Canadian Permafrost Conference, pp. 365-370. , Quebec, QC, Canada, 6–8 June Feldman, K.T., Jr., Munje, S., Experiments with gravity-assisted heat pipes with and without circumferential grooves (1979) J. Energy, 3, pp. 211-216 Zarling, J.P., Haynes, F.D., (1985) Thermosyphon Devices and Slab-On-Grade Foundation Design, , https://trid.trb.org/view/273606, State of Alaska, Department of Transportation and Public Facilities, Research Section, Available online, accessed on 21 September 2018 Haynes, F.D., Zarling, J.P., Thermosyphons and foundation design in cold regions (1988) Cold Reg. Sci. Technol., 15, pp. 251-259 Haynes, F.D., Zarling, J.P., Gooch, G.E., Performance of a thermosyphon with a 37-m-long, horizontal evaporator (1992) Cold Reg. Sci. Technol., 20, pp. 261-269 Guo, L., Yu, Q., You, Y., Wang, X., Li, X., Yuan, C., Cooling effects of thermosyphons in tower foundation soils in permafrost regions along the Qinghai–Tibet Power Transmission Line from Golmud, Qinghai Province to Lhasa, Tibet Autonomous Region, China (2016) Cold Reg. Sci. Technol., 121, pp. 196-204 Yamada, N., Minami, T., Anuar Mohamad, M.N., Fundamental experiment of pumpless Rankine-type cycle for low-temperature heat recovery (2011) Energy, 36, pp. 1010-1017 Heuer, C.E., Passive techniques for ground temperature control (1985) Therm. Des. Consid. Frozen Ground Eng., pp. 72-154 Eidan, A.A., Najim, S.E., Jalil, J.M., Experimental and numerical investigation of thermosyphon performance in HVAC system applications (2016) Heat Mass Transf, 52, pp. 2879-2893 Nemec, P., Čaja, A., Malcho, M., Mathematical model for heat transfer limitations of heat pipe (2013) Math. Comput. Model., 57, pp. 126-136 Qiu, B.J.L.M., Zhang, Z.H.G.X.B., Determination of the operation range of a vertical two-phase closed thermosyphon (2012) Heat Mass Transf, 48, pp. 1043-1055 Ma, W., Wen, Z., Sheng, Y., Wu, Q., Wang, D., Feng, W., Remedying embankment thaw settlement in a warm permafrost region with thermosyphons and crushed rock revetment (2012) Can. Geotech. J., 49, pp. 1005-1014 Kusaba, S., Suzuki, H., Hirowatari, K., Mochizuki, M., Mashiko, K., Nguyen, T., Akbarzadeh, A., Extraction of geothermal energy and electric power generation using a large heat pipe (2000) Proceedings of the World Geothermal Congress, Kyushu-Tohoku, pp. 3489-3494. , Japan, 28 May–10 June Lund, J.W., Pavement snow melting (2000) Geo-Heat Center Q. Bull., 21, pp. 12-19 Lorentzen, G., Revival of carbon dioxide as a refrigerant (1994) Int. J. Refrig., 17, pp. 292-301 Storch, T., Gross, U., Wagner, S., Performance of geothermal heat pipe using propane (2011) Proceedings of the 8Th Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators, Power Sources, , Minsk, Belarus, 12–15 September Jouhara, H., Chauhan, A., Nannou, T., Almahmoud, S., Delpech, B., Wrobel, L.C., Heat pipe based systems— Advances and applications (2017) Energy, 128, pp. 729-754 Narendra Babu, N., Kamath, H.C., Materials used in Heat Pipe (2015) Mater. Today Proc., 2, pp. 1469-1478 ACT Advanced Cooling Technologies, , https://www.1-act.com/compatible-fluids-and-materials/, Available online, accessed on 21 September 2018 Lyazgin, A.L., Bayasan, R.M., Chisnik, S.A., Cheverev, V.G., Pustovoit, G.P., Stabilization of pile foundations subjected to frost heave and in thawing permafrost (2003) Proceedings of the 8Th International Conference on Permafrost, pp. 707-711. , Zurich, Switzerland, 21–25 July Lyazgin, A.L., Ostroborodov, S.V., Pustovoit, G.P., Shevtsov, K.P., Leveling of pile foundations supporting electric transmission lines by temperature control of bed soils (2004) Soil Mech. Found. Eng., 41, pp. 23-26 Bayasan, R.M., Korotchenko, A.G., Volkov, N.G., Pustovoit, G.P., Lobanov, A.D., Use of two-phase heat pipes with the enlarged heat-exchange surface for thermal stabilization of permafrost soils at the bases of structures (2008) Appl. Therm. Eng., 28, pp. 274-277 Bayasan, R.M., Korotchenko, A.G., Lobanov, A.D., Using of minor diameter thermo-stabilizers in the North construction engineering (2001) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Ambiental Ingeniería en Energía |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.source.none.fl_str_mv |
Inventions |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159219373375488 |
spelling |
20192021-02-05T14:59:15Z2021-02-05T14:59:15Z24115134http://hdl.handle.net/11407/608210.3390/inventions4010014Compared to conventional ground heat exchangers that require a separate pump or other mechanical devices to circulate the heat transfer fluid, ground coupled thermosiphons or naturally circulating ground heat exchangers do not require additional equipment for fluid circulation in the loop. This might lead to a better overall efficiency and much simpler operation. This paper provides a review of the current published literature on the different types of existing ground coupled thermosiphons for use in applications requiring moderate and low temperatures. Effort has been focused on their classification according to type, configurations, major designs, and chronological year of apparition. Important technological findings and characteristics are provided in summary tables. Advances are identified in terms of the latest device developments and innovative concepts of thermosiphon technology used for the heat transfer to and from the soil. Applications are presented in a novel, well-defined classification in which major ground coupled thermosiphon applications are categorized in terms of medium and low temperature technologies. Finally, performance evaluation is meticulously discussed in terms of modeling, simulations, parametric, and experimental studies. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.enghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068054593&doi=10.3390%2finventions4010014&partnerID=40&md5=798a07fe86f92e5dd7a38786d8213b6a41Julia, R., (2008) Thermosiphon Loops for Heat Extraction from the Ground, , Master’s Thesis, KTH School of Industrial Engineering and Management, Stockholm, SwedenKaltschmitt, M., Streicher, W., Wiese, A., (2007) Renewable Energy Technology Economics and EnvironmentSpringer Science & Business Media: Berlin/Heidelberg, p. 564. , Germany, ISBN 978-3-540-70949-7Franco, A., Vaccaro, M., On the use of heat pipe principle for the exploitation of medium low temperature geothermal resources (2013) Appl. Therm. Eng., 59, pp. 189-199Aresti, L., Christodoulides, P., Florides, G., A review of the design aspects of ground heat exchangers (2018) Renew. Sustain. Energy Rev., 92, pp. 757-773Florides, G., Kalogirou, S., Ground heat exchangers—A review of systems, models and applications (2007) Renew. Energy, 32, pp. 2461-2478Richardson, P., Tough Alaska conditions prove new pile design’s versatility (1979) Alaska Constr. Oil, pp. 20-28Wu, J., Ma, W., Sun, Z., Wen, Z., In-situ study on cooling effect of the two-phase closed thermosyphon and insulation combinational embankment of the Qinghai-Tibet Railway (2010) Cold Reg. Sci. Technol., 60, pp. 234-244Wagner, A., (2014) Review of Thermosyphon Applications, , http://acwc.sdp.sirsi.net/client/default, The US Army Engineer Research and Development Center: Hanover, NH, USA ERDC/CRREL-TR-14-1, accessed on 21 September 2018Long, E.L., Zarling, J.P., Passive Techniques for Ground Temperature Control (2004) Thermal Analysis, Construction, and Monitoring Methods for Frozen Ground, pp. 77-165. , American Society of Civil Engineers: Reston, VA, USAMc Fadden, T., (2001) Design Manual for Stabilizing Foundations on Permafrost, 181. , https://www.uaf.edu/ces/energy/housing_energy/resources/Permafrost-design-manual.pdf, Available online, accessed on 21 September 2018Yarmak, E., Long, E., Recent Developments in Thermosyphon Technology (2002) Proceedings of the 11Th International Conference on Cold Regions Engineering, pp. 656-662. , Anchorage, AK, USA, 20–22 MayMcFadden, T.T., Bennett, F.L., (1991) Construction in Cold Regions: A Guide for Planners, Engineers, Contractors, and Managers, , John Wiley & Sons: Hoboken, NJ, USA, ISBN-13: 978-0471525035Carotenuto, A., Casarosa, C., Martorano, L., The geothermal convector: Experimental and numerical results (1999) Appl. Therm. Eng., 19, pp. 349-374Bertsch, S., Groll, E.A., Whitacre, K., Modeling of a CO2 thermosyphon for a ground source heat pump application (2005) Proceedings of the 8Th International Energy Agency for Heat Pump Conference, , Las Vegas, NY, USA, 30 May–2 JuneWagner, A.M., Edward, Y., Jr., Using Frozen Barriers for Containment of Contaminants (2017) Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center Hanover United States, , https://apps.dtic.mil/docs/citations/AD1039597, accessed on 21 September 2018(2014) Thermosyphon Foundations for Buildings in Permafrost Regions, , National Standard of Canada: Ottawa, ON, Canada,ISBN 9781771396042Wagner, A.M., Yarmak, E., (2012) Demonstration of an Artificial Frozen Barrier Cold Regions Research Demonstration of an Artificial Frozen Barrier, , https://apps.dtic.mil/docs/citations/ADA571582, Available online, accessed on 21 January 2019Gaugler, R.S., (1942) Heat Transfer Device, , U.S. Patent US2,350,348A, 21 DecemberReay, D., McGlen, R., Kew, P., (2006) Heat Pipes Theory and Design, , 5th ed.Butterworth Heinemann: Oxford, UK, 9780750667548Heuer, C.E., The Application of Heat Pipes on the Trans-Alaska Pipeline. (No. CRREL-SR-79-26) (1979) Cold Regions Research and Engineering Lab Hanover NH, p. 34. , http://dtic.mil/dtic/tr/fulltext/u2/a073597.pdf, Available online, (accessed on 21 September 2018)Nguyen, T., Johnson, P., Akbarzadeh, A., Gibson, K., Mochizuki, M., Design, manufacture and testing of a closed cycle thermosyphonrankine engine (1995) Heat Recov. Syst. CHP, 15, pp. 333-346Ziapour, B.M., Performance analysis of an enhanced thermosyphon Rankine cycle using impulse turbine (2009) Energy, 34, pp. 1636-1641Lockett, G., Single borehole geothermal energy extraction system for electrical power generation (1986) Proceedings of the Eleventh Workshop on Geothermal Reservoir Engineering, pp. 215-216. , Stanford, CA, USA, 21–23 JanuaryHolubec, I., Flat Loop Thermosyphon Foundations in Warm Permafrost (2008) Government of Northwest Territories Thermosyphon Foundations in Warm Permafrost—Report, p. 119. , https://pievc.ca/government-northwest-territories-thermosyphon-foundations-warm-permafrost, Available online, accessed on 21 September 2018Kruse, H., (1998) Terrestrial Heat Probe for Use in Heat Pump System for Heating, , German Patent DE19860328A1, 24 DecemberKruse, H., Russmann, H., The Status of Development and Research on CO2 Earth Heat Pipes for Geothermal Heat Pumps International High Performance Buildings Conference, , http://docs.lib.purdue.edu/ihpbc/51, Paper 51. Available online, accessed on 21 September 2018Ochsner, K., Carbon dioxide heat pipe in conjunction with a ground source heat pump (GSHP) (2008) Appl. Therm. Eng., 28, pp. 2077-2082Kruse, H., Russmann, H., Novel CO2-heat pipe as earth probe for heat pumps without auxiliary pumping energy (2005) Proceedings of the 8Th International IEA Heat Pump Conference, , Las Vegas, NV, USA, 30 May–2 JuneRieberer, R., Naturally circulating probes and collectors for ground-coupled heat pumps (2005) Int. J. Refrig., 28, pp. 1308-1315Acuña, J., Palm, B., Khodabandeh, R., Weber, K., Ab, E., Distributed Temperature Measurements on a U-Pipe Thermosyphon Borehole Heat Exchanger with CO2 (2010) Proceedings of the 9Th IIR Gustav Lorentzen Conference, , Sydney, Australia, 12–14 AprilEbeling, J.C., Kabelac, S., Luckmann, S., Kruse, H., Simulation and experimental validation of a 400 m vertical CO2 heat pipe for geothermal application (2017) Heat Mass Transf, 53, pp. 3257-3265Ebeling, J.C., Luo, X., Kabelac, S., Luckmann, S., Kruse, H., Dynamic simulation and experimental validation of a two-phase closed thermosyphon for geothermal application (2017) Propuls. Power Res., 6, pp. 107-116Haynes, F.D., Zarling, P., Quinn, F., Sollecito, P.E.M., (1992) Passive-Active Thermosyphon, , U.S. Patent US07, 883, 443, 15 MayUdell, K.S., Jankovich, P., Kekelia, B., Seasonal underground thermal energy storage using smart thermosiphon technology (2009) Proceedings of the Geothermal Resources Council 2009, Annual Meeting, GRC Transactions, 33, pp. 643-647. , Reno, NV, USA, 4–7 OctoberKekelia, B., Udell, K.S., Grid-Independent Air Conditioning Using Underground Thermal Energy Storage (UTES) and Reversible Thermosiphon Technology: Experimental Results (2011) Proceedings of the ASME 2011 5Th International Conference on Energy Sustainability, pp. 1245-1254. , Washington, DC, USA, 7–10 AugustJankovich, P.M., (2012) Seasonal Underground Thermal Energy Storage Using Smart Thermosiphon Arrays, , Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USARieberer, R., Moser, H., Naturally Circulating Collector for Heat Pumps-Initial Results (2006) Proceedings of the 7Th IIR Gustav Lorentzen Conference on Natural Working Fluids, , Trondheim, Norway, 28–31 MayVasiliev, L.L., Academy, N., Vassiliev, L.L., Academy, N., Vassiliev, L.L., Heat Pipes and nanotechnologies Microscale and Nanoscale Heat Transfer: Analysis, Design, and Application Edition, p. 505. , CRC Press: Boca Raton, FL, USA, 2016Chapter 8, ISBN 9781498736312Vasiliev, L., Grakovich, L.P., Rabetsky, M., Vasiliev, L.J., Heat transfer enhancement in heat pipes and thermosyphons using nanotechnologies (Nanofluids, nanocoatings, and nanocomposites) as an hp envelope (2013) Heat Pipe Sci. Technol. Int. J., 4, pp. 251-275Wang, X., Fan, H., Zhu, Y., Zhu, M., Heat Transfer Simulation and Analysis of Ice and Snow Melting System Using Geothermy by Super-long Flexible Heat Pipes (2017) Energy Procedia, 105, pp. 4724-4730Zhuravlyov, A.S., Vasiliev, L.L., Vasiliev, L.L., Jr., Horizontal vapordynamicthermosyphons, fundamentals and practical applications (2013) Heat Pipe Sci. Technol. Int. J., 4, pp. 39-52Vasiliev, L.L., Kiselev, V.G., Valery, A., Rudnev, E.A., Nesvit, V.A., Dunaevsky, L.M., Tverdokhleb, N.F., Davis, P.E.W., (1985) Heat-Transfer Device, , U.S. Patent 45,554,966, 26 NovemberVasiliev, L., Vasiliev, L., Zhuravlyov, A., Shapovalov, A., Rodin, A., Vapordynamicthermosyphon-Heat transfer two-phase device for wide applications (2015) Arch. Thermodyn., 36, pp. 65-76Vasiliev, L.L., Grakovich, L.P., Rabetsky, M.I., Vassiliev, L.L., Zhuravlyov, A.S., Thermosyphons with innovative technologies (2017) Appl. Therm. Eng., 111, pp. 1647-1654Vasiliev, L.L., Vaaz, S.L., (1986) Freezing and Heating of Ground by means of Cooling Devices, , NaukaiTekhnika: Minsk, Belarus, (In Russian)Read, J.P.R.H., Pullen, K.R., Gordon, M., (2010) A Thermosyphon Heat Transfer Device with Bubble Driven Rotor, , WO2011158008A3, 18 JuneLong, E.L., Designing friction piles for increased stability at lower installed cost in permafrost (1973) Proceedings of the Permafrost-The North American Contribution to the Second International Conference, , YakutskNational Academy of Sciences: Washington, DC, USAYarmak, E., Permafrost Foundations Thermally Stabilized Using Thermosyphons (2015) Proceedings of the OTC Arctic Technology Conference, pp. 23-25. , Copenhagen, Denmark, 23–25 MarchAcuña, J., (2013) Distributed Thermal Response Tests: New Insights on U-Pipe and Coaxial Heat Exchangers in Groundwater-Filled Boreholes, , Ph.D. Dissertation, KTH Royal Institute of Technology, Stockholm, SwedenMashiko, K., Mochizuki, M., Watanabe, Y., Kanai, Y., Eguchi, K., Shiraishi, M., Development of a Large Scale Loop Type Gravity Assisted Heat Pipe Having Showering Nozzles Proceedings of the 4Th International Heat Pipe Symposium, pp. 264-274. , Tsukuba, Japan, 16–18 May 1994Hayley, D.W., Application of heat pipes to design of shallow foundations on permafrost (1982) Proceedings of the 4Th Canadian Permafrost Conference, pp. 535-544. , National Research Council of Canada: Ottawa, ON, CanadaWang, X., Zhu, Y., Zhu, M., Zhu, Y., Fan, H., Wang, Y., Thermal analysis and optimization of an ice and snow melting system using geothermy by super-long flexible heat pipes (2017) Appl. Therm. Eng., 112, pp. 1353-1363Wang, X., Wang, Y., Wang, Z., Liu, Y., Zhu, Y., Chen, H., Simulation-based analysis of a ground source heat pump system using super-long flexible heat pipes coupled borehole heat exchanger during heating season (2018) Energy Convers. Manag., 164, pp. 132-143Xu, J., Goering, D.J., Experimental validation of passive permafrost cooling systems (2008) Cold Reg. Sci. Technol., 53, pp. 283-297Zhi, W., Yu, S., Wei, M., Jilin, Q., Wu, J., Analysis on effect of permafrost protection by two-phase closed thermosyphon and insulation jointly in permafrost regions (2005) Cold Reg. Sci. Technol., 43, pp. 150-163Chan, C.W., Siqueiros, E., Ling-Chin, J., Royapoor, M., Roskilly, A.P., Heat utilisation technologies: A critical review of heat pipes (2015) Renew. Sustain. Energy Rev., 50, pp. 615-627Vasiliev, L.L., Vasiliev, L.L., Jr., Horizontal vapordynamic thermosyphons, fundamentals and practical applications (2012) Proceedings of the 16Th International Heat Pipe Conference, , Lyon, France, 20–24 MayGrakovich, M.I., Rabetsky, L.L., Vasiliev, L.L.V.J., Polymer flat loop thermosyphons (2014) Heat Pipe Sci. Technol. Int. J., 5, pp. 1-4Nydahl, J.E., Pell, K., Lee, R., Bridge deck heating with ground-coupled heat pipes: Analysis and design (1987) ASHRAE Trans, 93, pp. 939-958Zorn, R., Steger, H., Kölbel, T., De-Icing and Snow Melting System with Innovative Heat Pipe Technology (2015) Proceedings of the World Geothermal Congress, pp. 1-6. , Melbourne, Australia, 19–25 AprilVasiliev, L.L., Heat pipes for ground heating and cooling (1988) Heat Recov. Syst. CHP, 8, pp. 125-139Griffin, R.G., Highway Bridge Deicing Using Passive Heat Sources (1982) Colorado Department of Highways, p. 71. , https://www.codot.gov/programs/research/pdfs/archive/passivedeicing.pdf, Available online, accessed on 21 September 2018Fukuda, M., Tsuchiya, F., Ryokai, K., Mochizuki, M., Mashiko, K., Development of an artificial permafrost storage using heat pipes (1990) Proceedings of the 7Th International Heat Pipe Conference, 2, pp. 305-317. , Moscow, Russia, 21–25 May 1990Dussadee, N., Kiatsiriroat, T., Performance analysis and economic evaluation of thermosyphon paddy bulk storage (2004) Appl. Therm. Eng., 24, pp. 401-414Zorn, R., Steger, H., Kölbel, T., Kruse, H., Deep Borehole Heat Exchanger with a CO2 Gravitational Heat Pipe (2008) Proceedings of the Geocongress 2008: Geosustainability and Geohazard Mitigation, pp. 899-906. , New Orleans, LA, USA, 9–12 MarchRieberer, R., Mittermayr, K., Halozan, H., CO2 Thermosyphons as Heat Source System for Heat Pumps-4 Years of Market Experience (2005) Proceedings of the 8Th IEA Heat Pump Conference, , Las Vegas, NV, USA, 30 May–2 JuneUdell, K.S., Kekelia, B., Jankovich, P., Net Zero Energy Air Conditioning Using Smart Thermosiphon Arrays (2011) ASHRAE Trans, 117, pp. 892-898Kekelia, B., (2012) Heat Transfer to and from a Reversible Thermosiphon Placed in Porous Media, , https://search.proquest.com/openview/d6b0c7ce0d1b891aa8a14e5d07d0e6a3/1?cbl=18750&diss=y&pq-origsite=gscholar, Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA, accessed on 21 September 2018Mu, Y., Li, G., Yu, Q., Ma, W., Wang, D., Wang, F., Numerical study of long-term cooling effects of thermosyphons around tower footings in permafrost regions along the Qinghai-Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 237-249Wei, M., Guodong, C., Qingbai, W., Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad (2009) Cold Reg. Sci. Technol., 59, pp. 3-11Jin, H., Hao, J., Chang, X., Zhang, J., Yu, Q., Qi, J., Lü, L., Wang, S., Zonation and assessment of frozen-ground conditions for engineering geology along the China–Russia crude oil pipeline route from Mo’he to Daqing, Northeastern China (2010) Cold Reg. Sci. Technol., 64, pp. 213-225Li, G., Yu, Q., Ma, W., Chen, Z., Mu, Y., Guo, L., Wang, F., Freeze–thaw properties and long-term thermal stability of the unprotected tower foundation soils in permafrost regions along the Qinghai–Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 258-274Wang, H., Zhao, J., Chen, Z., Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water (2008) Energy Convers. Manag., 49, pp. 1538-1546Wagner, A.M., Creation of an artificial frozen barrier using hybrid thermosyphons (2013) Cold Reg. Sci. Technol., 96, pp. 108-116Lynn, S.W., Rhodes, C., Evaluation of a vertical frozen soil barrier at oak ridge national laboratory (2000) Remediat. J., 10, pp. 15-33Eskilson, P., (1987) Thermal Analysis of Heat Extraction Boreholes, , Ph.D. Thesis, Lund University, Department of Mathematical Physics, Lund, SwedenLi, M., Lai, A.C.K., Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales (2015) Appl. Energy, 151, pp. 178-191Rees, S., (2016) Advances in Ground-Source Heat Pump Systems, p. 482. , 1st ed.Woodhead Publishing: Sawston, UK, ISBN 0081003226Yang, H., Cui, P., Fang, Z., Vertical-borehole ground-coupled heat pumps: A review of models and systems (2010) Appl. Energy, 87, pp. 16-27Carslaw, H.S., Jaeger, J.C., (1959) Conduction of Heat in Solids, , 2nd ed.Clarendon Press: Oxford, UKIngersoll, L.R., Zabel, O.J., Ingersoll, A.C., (1955) Heat Conduction with Engineering, Geological, and Other Applications, p. 325. , 3rd ed.Thames and Hudson: London, UKZeng, H.Y., Diao, N.R., Fang, Z.H., A finite line-source model for boreholes in geothermal heat exchangers (2002) Heat Transf. Asian Res., 31, pp. 558-567Zeng, H., Diao, N., Fang, Z., Heat transfer analysis of boreholes in vertical ground heat exchangers (2003) Int. J. Heat Mass Transf., 46, pp. 4467-4481Yavuzturk, C., Spitler, J.D., Rees, S.J., A Transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers (1999) ASHRAE Trans, 105, pp. 465-474Bozzoli, F., Pagliarini, G., Rainieri, S., Schiavi, L., Estimation of soil and grout thermal properties through a TSPEP (Two-step parameter estimation procedure) applied to TRT (thermal response test) data (2011) Energy, 36, pp. 839-846Al-Khoury, R., (2012) Computational Modeling of Shallow Geothermal Systems, , CRC Press: Boca Raton, FL, USALondon, UK, ISBN 0415596270Beier, R.A., Smith, M.D., Spitler, J.D., Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis (2011) Geothermics, 40, pp. 79-85Salim Shirazi, A., Bernier, M., A small-scale experimental apparatus to study heat transfer in the vicinity of geothermal boreholes (2014) HVAC&R Res, 20, pp. 819-827Chen, L., Yu, W., Lu, Y., Liu, W., Numerical simulation on the performance of thermosyphon adopted to mitigate thaw settlement of embankment in sandy permafrost zone (2018) Appl. Therm. Eng., 128, pp. 1624-1633Paramonov, V.N., Sakharov, I.I., Calculations of thermal stabilization of transport embankments and their bases (2017) Procedia Eng, 189, pp. 472-477Zhao, X.Y., Wang, J., Wang, Y.Z., The temperature control technology of bridge foundation in permafrost regions (2017) Procedia Eng, 210, pp. 235-239Pei, W., Zhang, M., Li, S., Lai, Y., Jin, L., Zhai, W., Yu, F., Lu, J., Geotemperature control performance of two-phase closed thermosyphons in the shady and sunny slopes of an embankment in a permafrost region (2017) Appl. Therm. Eng., 112, pp. 986-998Lim, H., Kim, C., Cho, Y., Kim, M., Energy saving potentials from the application of heat pipes on geothermal heat pump system (2017) Appl. Therm. Eng., 126, pp. 1191-1198Yu, F., Zhang, M., Lai, Y., Liu, Y., Qi, J., Yao, X., Crack formation of a highway embankment installed with two-phase closed thermosyphons in permafrost regions: Field experiment and geothermal modelling (2017) Appl. Therm. Eng., 115, pp. 670-681Zhang, M., Pei, W., Lai, Y., Niu, F., Li, S., Numerical study of the thermal characteristics of a shallow tunnel section with a two-phase closed thermosyphon group in a permafrost region under climate warming (2017) Int. J. Heat Mass Transf., 104, pp. 952-963Lu, Y., Yi, X., Yu, W., Liu, W., Numerical analysis on the thermal regimes of thermosyphon embankment in snowy permafrost area (2017) Sci. Cold Arid Reg., 9, pp. 580-586Ozsoy, A., Yildirim, R., Prevention of icing with ground source heat pipe: A theoretical analysis for Turkey’s climatic conditions (2016) Cold Reg. Sci. Technol., 125, pp. 65-71Mu, Y., Wang, G., Yu, Q., Li, G., Ma, W., Zhao, S., Thermal performance of a combined cooling method of thermosyphons and insulation boards for tower foundation soils along the Qinghai–Tibet Power Transmission Line (2016) Cold Reg. Sci. Technol., 121, pp. 226-236Hartmann, F., Behrend, R., Hantsch, A., Grab, T., Gross, U., Numerical investigation of the performance of a partially wetted geothermal thermosyphon at various power demand schemes (2015) Geothermics, 55, pp. 99-107Grab, D.I.T., Storch, D.I.T., Wagner, S., Gross, U., Wechselwirkungen zwischen Heiz-und Kühlkreislauf bei einem geothermischen Direktverdampfer-Sondenfeld (2010) Deutsche Kälte-und Klimatagung, DKV, Magdeburg, , https://tu-freiberg.de/sites/default/files/media/professur-fuer-technische-thermodynamik-15264/Publikationen_Grab/2010-grab-dkv-magdeburg-wechselwirkungen-zw.-heiz-und-kuehlkreislauf.pdf, Available online, (accessed on 20 February 2019)Abdalla, B., Fan, C., McKinnon, C., Gaffard, V., Numerical Study of Thermosyphon Protection for Frost Heave (2015) Proceedings of the ASME 2015 34Th International Conference on Ocean, Offshore and Arctic Engineering, , St. John’s, NL, Canada, 31 May–5 JuneMu, Y., Li, G., Yu, Q., Ma, W., Zhang, Q., Guo, L., Chen, Z., Numerical simulation of heat transfer processes of cone-cylinder pile and cooling effects of thermosyphon along the Qinghai–Tibet DC Interconnection project (2014) J. Glaciol. Geocryol., 36, pp. 106-117Ma, C., Wu, X., Gao, S., Analysis and applications of a two-phase closed thermosyphon for improving the fluid temperature distribution in wellbores (2013) Appl. Therm. Eng., 55, pp. 1-6Filippeschi, S., Su, Y., Riffat, S.B., Lucio, L., Feasibility of periodic thermosyphons for environmentally friendly ground source cooling applications (2013) Int. J. Low-Carbon Technol., 8, pp. 117-123Hantsch, A., Gross, U., Numerical investigation of partially-wetted geothermal heat pipe performance (2013) Geothermics, 47, pp. 97-103Nakaoka, J., (2012) Heat Transfer Analysis of Thermosiphons and U-Tube Ground Source Heat Pumps, , Masters’s Thesis, The University of Utah, Salt Lake City, UT, USADong, Y., Lai, Y., Chen, W., Cooling effect of combined L-shaped thermosyphon, crushed-rock revetment and insulation for high-grade highways in permafrost regions (2012) Chin. J. Geotechn. Eng., 34, pp. 1043-1049Zhang, M., Lai, Y., Zhang, J., Sun, Z., Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions (2011) Cold Reg. Sci. Technol., 65, pp. 203-210Wang, Z., McClure, M.W., Horne, R.N., A single-well EGS configuration using a thermosyphon (2009) In Proceedings of the 34Th Workshop on Geothermal Reservoir Engineering, , Stanford, CA, USA, 9–11 February , . Paper SGP-TR-187Jardine, J.D., Long, E.L., Yarmak, E., Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion: Discussion (1992) Can. Geotech. J., 29, pp. 998-1001Smith, L.B., Graham, J.P., Nixon, J.F., Washuta, A.S., Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion (1991) Can. Geotech. J., 28, pp. 399-409Cui, P., Yang, H., Fang, Z., Numerical analysis and experimental validation of heat transfer in ground heat exchangers in alternative operation modes (2008) Energy Build, 40, pp. 1060-1066Yavuzturk, C., Spitler, J.D., Field validation of a short time step model for vertical ground-loop heat exchangers/Discussion (2001) ASHRAE Trans, 107, p. 617Javed, S., New Analytical and Numerical Solutions for the Short-term Analysis of Vertical Ground Heat Exchangers (2011) ASHRAE Trans, 117, pp. 3-12Li, M., Lai, A.C.K., Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation (2013) Appl. Energy, 104, pp. 510-516Viskanta, R., Phase change heat transfer in porous media (1991) Proceedings of the 3Rd International Symposium on Cold Region Heat Transfer, pp. 1-24. , Fairbanks, AK, USABazri, S., Anjum, I., Sajad, M., A review of numerical studies on solar collectors integrated with latent heat storage systems employing fi ns or nanoparticles (2018) Renew. Energy, 118, pp. 761-778Yang, W., Kong, L., Chen, Y., Numerical evaluation on the effects of soil freezing on underground temperature variations of soil around ground heat exchangers (2015) Appl. Therm. Eng., 75, pp. 259-269Eslami-Nejad, P., Bernier, M., Freezing of geothermal borehole surroundings: A numerical and experimental assessment with applications (2012) Appl. Energy, 98, pp. 333-345Sheshukov, A.Y., Egorov, A.G., Frozen barrier evolution in saturated porous media (2002) Adv. Water Resour., 25, pp. 591-599Zhang, G.G., Horne, W.B.T., Applications of numerical thermal analysis in engineering designs and evaluations for northern mines (2010) Proceedings of the 63Rd Canadian Geotechnical Conference & 6Th Canadian Permafrost Conference, pp. 617-624. , Calgary, AB, Canada, 12–16 SeptemberYu, F., Qi, J., Zhang, M., Lai, Y., Yao, X., Liu, Y., Wu, G., Cooling performance of two-phase closed thermosyphons installed at a highway embankment in permafrost regions (2016) Appl. Therm. Eng., 98, pp. 220-227Ho, I.-H., Dickson, M., Numerical modeling of heat production using geothermal energy for a snow-melting system (2017) Geomech. Energy Environ., 10, pp. 42-51Duffie, J.A., Beckman, W.A., (2013) Solar Engineering of Thermal Processes, , John Wiley & Sons: Hoboken, NJ, USA, ISBN 0470873663Givoni, B., Mostrel, M., Passive solar journal (1982) Passive Sol. J., 1, pp. 229-238Rao, K.G., Estimation of the exchange coefficient of heat during low wind convective conditions (2004) Bound.-Lay. Meteorol., 111, pp. 247-273McAdams, W.H., (1954) Heat Transmission, p. 330. , McGraw-Hill: New York, NY, USAPalyvos, J.A., A survey of wind convection coefficient correlations for building envelope energy systems’ modeling (2008) Appl. Therm. Eng., 28, pp. 801-808Faghri, A., (1995) Heat Pipe Science and Technology, , 2nd ed.Global Digital Press: Kanpur, India, 1560323833Jafari, D., Franco, A., Filippeschi, S., Di Marco, P., Two-phase closed thermosyphons: A review of studies and solar applications (2016) Renew. Sustain. Energy Rev., 53, pp. 575-593Dobran, F., Steady-state characteristics and stability thresholds of a closed two-phase thermosyphon (1985) Int. J. Heat Mass Transf., 28, pp. 949-957Mirzaei, B., Hadi, Z., Heat transfer characteristics of a two-phase closed thermosyphon using different working fluids (2010) Heat Mass Transf, 46, pp. 307-314El-Genk, M.S., Saber, H.H., Flooding limit in closed, two-phase flow thermosyphons (1997) Int. J. Heat Mass Transf., 40, pp. 2147-2164Pan, Y., Condensation heat transfer characteristics and concept of sub-flooding limit in a two-phase closed thermosyphon (2001) Int. Commun. Heat Mass Transf., 28, pp. 311-322Fadhl, B., Wrobel, L.C., Jouhara, H., CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a (2015) Appl. Therm. Eng., 78, pp. 482-490Jouhara, H., Fadhl, B., Wrobel, L.C., Three-dimensional CFD simulation of geyser boiling in a two-phase closed thermosyphon (2016) Int. J. Hydrogen Energy, 41, pp. 16463-16476Pan, Y., Wu, C. Numerical investigations and engineering applications on freezing expansion of soil restrained two-phase closed thermosyphons (2002) Int. J. Therm. Sci, 41, pp. 341-347Hemmingway, P., Tolooiyan, A.P., Numerical and finite element analysis of heat transfer in a closed loop geothermal system (2013) Int. J. Green Energy, 11, pp. 206-223Frost Evolution in Tailings Final Report. the Atomic Energy Control Board., , https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/007/24007807.pdf, Available online, accessed on 21 January 2019Greenslade, J., Nixon, J.F.D., Lewkowicz, A.G., Allard, M., Design aspect of a buried oil pipeline on the Alaskan north slope (1998) Proceedings of the 7Th International Conference on Permafrost, pp. 23-27. , Yellowknife, NT, Canada, 23–27 June(2018) Simmakers Frost 3D Universal, , http://frost3d.ru/eng/thermosyphon-technology-ground-freezing/, Available online, accessed on 20 AugustThermal Analysis in Engineering. Parallel Computing. Frost 3D Universal., , https://www.capterra.com/p/147397/Frost-3D-Universal/, Available online, accessed on 10 January 2019Plaxix Modelling of Thermosyphons Foundation System Using Plaxis 2D, , https://www.plaxis.com/support/verifications/modelling-thermosyphons-foundation-system/, Available online, accessed on 21 September 2018PLAXIS 3D Manuals, , https://www.plaxis.com/support/manuals/plaxis-3d-manuals, Available online, accessed on 10 January 2019Ebeling, J.-C., Kabelac, S., Luckmann, S., Kruse, H., Quasi-dynamic model for simulation of a 400 m vertical CO2 heat pipe for geothermal application (2016) Proceedings of the 9Th International Symposium on Heat Transfer (ISHT9-Q0358), pp. 15-19. , Beijing, China, AugustRohsenow, W.M., Hartnett, J.P., Ganic, E.N., (1985) Handbook of Heat Transfer Fundamentals, p. 1440. , 2nd ed.McGraw-Hill Book Co.: New York, NY, USAImura, H., Kusuda, H., Ogata, J.-I., Miyazaki, T., Sakamoto, N., Heat transfer in two-phase closed-type thermosyphons (1979) JSME Trans, 45, pp. 712-722Yong-Ping, Y., Shumhua, Z., Qing-Chao, W.E.I., Effect simulation of different declining angles of thermosyphons used in Qinghai-Tibet railway permafrost embankment (2006) China Civ. Eng. J., 39, pp. 108-113Hegab, H.E., Colwell, G.T., Thermal performance of heat pipe arrays in soil (1994) Numer. Heat Transf., 26, pp. 619-630Zarling, J.P., Hansen, P., Kozisekl, L., Design and performance experience of foundations stabilized with thermosyphons (1990) Proceedings of the Fifth Canadian Permafrost Conference, pp. 365-370. , Quebec, QC, Canada, 6–8 JuneFeldman, K.T., Jr., Munje, S., Experiments with gravity-assisted heat pipes with and without circumferential grooves (1979) J. Energy, 3, pp. 211-216Zarling, J.P., Haynes, F.D., (1985) Thermosyphon Devices and Slab-On-Grade Foundation Design, , https://trid.trb.org/view/273606, State of Alaska, Department of Transportation and Public Facilities, Research Section, Available online, accessed on 21 September 2018Haynes, F.D., Zarling, J.P., Thermosyphons and foundation design in cold regions (1988) Cold Reg. Sci. Technol., 15, pp. 251-259Haynes, F.D., Zarling, J.P., Gooch, G.E., Performance of a thermosyphon with a 37-m-long, horizontal evaporator (1992) Cold Reg. Sci. Technol., 20, pp. 261-269Guo, L., Yu, Q., You, Y., Wang, X., Li, X., Yuan, C., Cooling effects of thermosyphons in tower foundation soils in permafrost regions along the Qinghai–Tibet Power Transmission Line from Golmud, Qinghai Province to Lhasa, Tibet Autonomous Region, China (2016) Cold Reg. Sci. Technol., 121, pp. 196-204Yamada, N., Minami, T., Anuar Mohamad, M.N., Fundamental experiment of pumpless Rankine-type cycle for low-temperature heat recovery (2011) Energy, 36, pp. 1010-1017Heuer, C.E., Passive techniques for ground temperature control (1985) Therm. Des. Consid. Frozen Ground Eng., pp. 72-154Eidan, A.A., Najim, S.E., Jalil, J.M., Experimental and numerical investigation of thermosyphon performance in HVAC system applications (2016) Heat Mass Transf, 52, pp. 2879-2893Nemec, P., Čaja, A., Malcho, M., Mathematical model for heat transfer limitations of heat pipe (2013) Math. Comput. Model., 57, pp. 126-136Qiu, B.J.L.M., Zhang, Z.H.G.X.B., Determination of the operation range of a vertical two-phase closed thermosyphon (2012) Heat Mass Transf, 48, pp. 1043-1055Ma, W., Wen, Z., Sheng, Y., Wu, Q., Wang, D., Feng, W., Remedying embankment thaw settlement in a warm permafrost region with thermosyphons and crushed rock revetment (2012) Can. Geotech. J., 49, pp. 1005-1014Kusaba, S., Suzuki, H., Hirowatari, K., Mochizuki, M., Mashiko, K., Nguyen, T., Akbarzadeh, A., Extraction of geothermal energy and electric power generation using a large heat pipe (2000) Proceedings of the World Geothermal Congress, Kyushu-Tohoku, pp. 3489-3494. , Japan, 28 May–10 JuneLund, J.W., Pavement snow melting (2000) Geo-Heat Center Q. Bull., 21, pp. 12-19Lorentzen, G., Revival of carbon dioxide as a refrigerant (1994) Int. J. Refrig., 17, pp. 292-301Storch, T., Gross, U., Wagner, S., Performance of geothermal heat pipe using propane (2011) Proceedings of the 8Th Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators, Power Sources, , Minsk, Belarus, 12–15 SeptemberJouhara, H., Chauhan, A., Nannou, T., Almahmoud, S., Delpech, B., Wrobel, L.C., Heat pipe based systems— Advances and applications (2017) Energy, 128, pp. 729-754Narendra Babu, N., Kamath, H.C., Materials used in Heat Pipe (2015) Mater. Today Proc., 2, pp. 1469-1478ACT Advanced Cooling Technologies, , https://www.1-act.com/compatible-fluids-and-materials/, Available online, accessed on 21 September 2018Lyazgin, A.L., Bayasan, R.M., Chisnik, S.A., Cheverev, V.G., Pustovoit, G.P., Stabilization of pile foundations subjected to frost heave and in thawing permafrost (2003) Proceedings of the 8Th International Conference on Permafrost, pp. 707-711. , Zurich, Switzerland, 21–25 JulyLyazgin, A.L., Ostroborodov, S.V., Pustovoit, G.P., Shevtsov, K.P., Leveling of pile foundations supporting electric transmission lines by temperature control of bed soils (2004) Soil Mech. Found. Eng., 41, pp. 23-26Bayasan, R.M., Korotchenko, A.G., Volkov, N.G., Pustovoit, G.P., Lobanov, A.D., Use of two-phase heat pipes with the enlarged heat-exchange surface for thermal stabilization of permafrost soils at the bases of structures (2008) Appl. Therm. Eng., 28, pp. 274-277Bayasan, R.M., Korotchenko, A.G., Lobanov, A.D., Using of minor diameter thermo-stabilizers in the North construction engineering (2001)InventionsGround-coupled natural circulating devicesHeat pipeModeling and experimentalThermosiphonGround-coupled natural circulating devices (Thermosiphons): A review of modeling, experimental and development studiesIngeniería AmbientalIngeniería en EnergíaFacultad de IngenieríasBadache, M., CanmetENERGY Natural Resources Canada, 1615 Lionel Boulet Blvd., P.O.Box 4800, Varennes, QC J3X1S6, CanadaAidoun, Z., CanmetENERGY Natural Resources Canada, 1615 Lionel Boulet Blvd., P.O.Box 4800, Varennes, QC J3X1S6, CanadaEslami-Nejad, P., CanmetENERGY Natural Resources Canada, 1615 Lionel Boulet Blvd., P.O.Box 4800, Varennes, QC J3X1S6, CanadaBlessent, D., Department of environmental engineering, Universidad de Medellín, Medellín, 50026, Colombiainfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_16ecBadache M.Aidoun Z.Eslami-Nejad P.Blessent D.11407/6082oai:repository.udem.edu.co:11407/60822021-02-05 09:59:15.325Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |