Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution

We present a complete methodology to consistently estimate redox potentials strictly from first-principles, without any experimental input. The methodology is based on (i) ab initio molecular dynamics (MD) simulations, (ii) all-atom explicit solvation, (iii) the two-phase thermodynamic (2PT) model,...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4253
Acceso en línea:
http://hdl.handle.net/11407/4253
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_5ca33049945e54df0914891b9194fea6
oai_identifier_str oai:repository.udem.edu.co:11407/4253
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution
title Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution
spellingShingle Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution
title_short Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution
title_full Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution
title_fullStr Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution
title_full_unstemmed Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution
title_sort Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution
dc.contributor.affiliation.spa.fl_str_mv Caro, M.A., Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland, COMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Espoo, Finland
Lopez-Acevedo, O., COMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Espoo, Finland, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
Laurila, T., Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
description We present a complete methodology to consistently estimate redox potentials strictly from first-principles, without any experimental input. The methodology is based on (i) ab initio molecular dynamics (MD) simulations, (ii) all-atom explicit solvation, (iii) the two-phase thermodynamic (2PT) model, and (iv) the use of electrostatic potentials as references for the absolute electrochemical scale. We apply the approach presented to compute reduction potentials of the following redox couples: Cr2+/3+, V2+/3+, Ru(NH3)62+/3+, Sn2+/4+, Cu1+/2+, FcMeOH0/1+, and Fe2+/3+ (in aqueous solution) and Fc0/1+ (in acetonitrile). We argue that fully quantum-mechanical simulations are required to correctly model the intricate dynamical effects of the charged complexes on the surrounding solvent molecules within the solvation shell. Using the proposed methodology allows for a computationally efficient and statistically stable approach to compute free energy differences, yielding excellent agreement between our computed redox potentials and the experimental references. The root-mean-square deviation with respect to experiment for the aqueous test set and the two exchange-correlation density functionals used, PBE and PBE with van der Waals corrections, are 0.659 and 0.457 V, respectively. At this level of theory, depending on the functional employed, its ability to correctly describe each particular molecular complex seems to be the factor limiting the accuracy of the calculations. © 2017 American Chemical Society.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:41Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:41Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 15499618
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4253
dc.identifier.doi.none.fl_str_mv 10.1021/acs.jctc.7b00314
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 15499618
10.1021/acs.jctc.7b00314
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4253
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027228601&doi=10.1021%2facs.jctc.7b00314&partnerID=40&md5=e934b462e00f989f9f4e16ce4500392c
dc.relation.ispartofes.spa.fl_str_mv Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation Volume 13, Issue 8, 8 August 2017, Pages 3432-3441
dc.relation.references.spa.fl_str_mv Aarva, A., Laurila, T., & Caro, M. A. (2017). Doping as a means to probe the potential dependence of dopamine adsorption on carbon-based surfaces: A first-principles study. Journal of Chemical Physics, 146(23) doi:10.1063/1.4986521
Bard, A. J., & Faulkner, L. R. (1980). Electrochemical Methods: Fundamentals and Applications.
Berens, P. H., Mackay, D. H. J., White, G. M., & Wilson, K. R. (1983). Thermodynamics and quantum corrections from molecular dynamics for liquid water. The Journal of Chemical Physics, 79(5), 2375-2389.
Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/PhysRevB.50.17953
Cannes, C., Kanoufi, F., & Bard, A. J. (2003). Cyclic voltammetry and scanning electrochemical microscopy of ferrocenemethanol at monolayer and bilayer-modified gold electrodes. Journal of Electroanalytical Chemistry, 547(1), 83-91. doi:10.1016/S0022-0728(03)00192-X
Caro, M. A. (2017). Solvation shells and radial distribution functions of transition metal complexes in aqueous solution: Results from ab initio molecular dynamics. Zenodo.
Caro, M. A., Laurila, T., & Lopez-Acevedo, O. (2016). Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations. Journal of Chemical Physics, 145(24) doi:10.1063/1.4973001
Caro, M. A., Määttä, J., Lopez-Acevedo, O., & Laurila, T. (2015). Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment. Journal of Applied Physics, 117(3) doi:10.1063/1.4905915
Cheng, J., Liu, X., VandeVondele, J., Sulpizi, M., & Sprik, M. (2014). Redox potentials and acidity constants from density functional theory based molecular dynamics. Accounts of Chemical Research, 47(12), 3522-3529. doi:10.1021/ar500268y
Christ, C. D., Mark, A. E., & Van Gunsteren, W. F. (2010). Basic ingredients of free energy calculations: A review. Journal of Computational Chemistry, 31(8), 1569-1582. doi:10.1002/jcc.21450
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., & Sutton, A. P. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B - Condensed Matter and Materials Physics, 57(3), 1505-1509.
Gagne, R. R., Koval, C. A., & Lisensky, G. C. (1980). Ferrocene as an internal standard for electrochemical measurements. Inorganic Chemistry, 19(9), 2854-2855. doi:10.1021/ic50211a080
Gillan, M. J., Alfè, D., & Michaelides, A. (2016). Perspective: How good is DFT for water? Journal of Chemical Physics, 144(13) doi:10.1063/1.4944633
Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2003). Hybrid functionals based on a screened coulomb potential. Journal of Chemical Physics, 118(18), 8207-8215. doi:10.1063/1.1564060
Holmberg, N., & Laasonen, K. (2015). Ab initio electrochemistry: Exploring the hydrogen evolution reaction on carbon nanotubes. Journal of Physical Chemistry C, 119(28), 16166-16178. doi:10.1021/acs.jpcc.5b04739
Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695-1697. doi:10.1103/PhysRevA.31.1695
House, C. I., & Kelsall, G. H. (1984). Potential-pH diagrams for the Sn/H2OCl system. Electrochimica Acta, 29(10), 1459-1464. doi:10.1016/0013-4686(84)87028-0
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926-935.
Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B - Condensed Matter and Materials Physics, 54(16), 11169-11186.
Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B - Condensed Matter and Materials Physics, 59(3), 1758-1775.
Lai, P. -., Hsieh, C. -., & Lin, S. -. (2012). Rapid determination of entropy and free energy of mixtures from molecular dynamics simulations with the two-phase thermodynamic model. Physical Chemistry Chemical Physics, 14(43), 15206-15213. doi:10.1039/c2cp42011b
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/PhysRevB.37.785
Lin, S. -., Blanco, M., & Goddard III, W. A. (2003). The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of lennard-jones fluids.Journal of Chemical Physics, 119(22), 11792-11805. doi:10.1063/1.1624057
Lin, S. -., Maiti, P. K., & Goddard III, W. A. (2010). Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations. Journal of Physical Chemistry B, 114(24), 8191-8198. doi:10.1021/jp103120q
Lindahl, E., Bjelkmar, P., Larsson, P., Cuendet, M. A., & Hess, B. (2010). Implementation of the charmm force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6(2), 459-466. doi:10.1021/ct900549r
Lucking, M., Sun, Y. -., West, D., & Zhang, S. (2014). Absolute redox potential of liquid water: A first-principles theory. Chemical Science, 5(3), 1216-1220. doi:10.1039/c3sc52287c
Makov, G., & Payne, M. C. (1995). Periodic boundary conditions in ab initio calculations. Physical Review B, 51(7), 4014-4022. doi:10.1103/PhysRevB.51.4014
Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511-519.
Pascal, T. A., & Goddard, W. A. (2012). Hydrophobic segregation, phase transitions and the anomalous thermodynamics of water/methanol mixtures. Journal of Physical Chemistry B, 116(47), 13905-13912. doi:10.1021/jp309693d
Pavlishchuk, V. V., & Addison, A. W. (2000). Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorganica Chimica Acta, 298(1), 97-102. doi:10.1016/S0020-1693(99)00407-7
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865
Post, K., & Robins, R. G. (1976). Thermodynamic diagrams for the vanadium-water system at 298·15K. Electrochimica Acta, 21(6), 401-405. doi:10.1016/0013-4686(76)85115-8
Rossmeisl, J., Nørskov, J. K., Taylor, C. D., Janik, M. J., & Neurock, M. (2006). Calculated phase diagrams for the electrochemical oxidation and reduction of water over pt(111). Journal of Physical Chemistry B, 110(43), 21833-21839. doi:10.1021/jp0631735
Rossmeisl, J., Skúlason, E., Björketun, M. E., Tripkovic, V., & Nørskov, J. K. (2008). Modeling the electrified solid-liquid interface. Chemical Physics Letters, 466(1-3), 68-71. doi:10.1016/j.cplett.2008.10.024
Rusnak, A. J., Pinnick, E. R., Calderon, C. E., & Wang, F. (2012). Static dielectric constants and molecular dipole distributions of liquid water and ice-ih investigated by the PAW-PBE exchange-correlation functional. Journal of Chemical Physics, 137(3) doi:10.1063/1.4734594
Skúlason, E., Karlberg, G. S., Rossmeisl, J., Bligaard, T., Greeley, J., Jónsson, H., & Nørskov, J. K. (2007). Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the pt(111) electrode. Physical Chemistry Chemical Physics, 9(25), 3241-3250. doi:10.1039/b700099e
Stradi, D., Martinez, U., Blom, A., Brandbyge, M., & Stokbro, K. (2016). General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium green's function. Physical Review B, 93(15) doi:10.1103/PhysRevB.93.155302
Tkatchenko, A., & Scheffler, M. (2009). Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 102(7) doi:10.1103/PhysRevLett.102.073005
Trasa'tti, S. (1986). The absolute electrode potential: An explanatory note (recommendations 1986). Pure and Applied Chemistry, 58(7), 955-966. doi:10.1351/pac198658070955
Tsierkezos, N. G. (2007). Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. Journal of Solution Chemistry, 36(3), 289-302. doi:10.1007/s10953-006-9119-9
Tsierkezos, N. G., & Ritter, U. (2010). Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system. Journal of Applied Electrochemistry, 40(2), 409-417. doi:10.1007/s10800-009-0011-3
Van De Walle, C. G., & Martin, R. M. (1986). Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Physical Review B, 34(8), 5621-5634. doi:10.1103/PhysRevB.34.5621
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701-1718. doi:10.1002/jcc.20291
Wang, L. -., & Van Voorhis, T. (2012). A polarizable QM/MM explicit solvent model for computational electrochemistry in water. Journal of Chemical Theory and Computation, 8(2), 610-617. doi:10.1021/ct200340x
Wang, Y., Rogers, E. I., & Compton, R. G. (2010). The measurement of the diffusion coefficients of ferrocene and ferrocenium and their temperature dependence in acetonitrile using double potential step microdisk electrode chronoamperometry. Journal of Electroanalytical Chemistry, 648(1), 15-19. doi:10.1016/j.jelechem.2010.07.006
Wu, Y., Chan, M. K. Y., & Ceder, G. (2011). Prediction of semiconductor band edge positions in aqueous environments from first principles. Physical Review B - Condensed Matter and Materials Physics, 83(23) doi:10.1103/PhysRevB.83.235301
Zhang, C., Spanu, L., & Galli, G. (2011). Entropy of liquid water from ab initio molecular dynamics. Journal of Physical Chemistry B, 115(48), 14190-14195. doi:10.1021/jp204981y
Zhang, S. B., Tománek, D., Louie, S. G., Cohen, M. L., & Hybertsen, M. S. (1988). Quasiparticle calculation of valence band offset of AlAs-GaAs(001). Solid State Communications, 66(6), 585-588. doi:10.1016/0038-1098(88)90213-X
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv American Chemical Society
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159136863027200
spelling 2017-12-19T19:36:41Z2017-12-19T19:36:41Z201715499618http://hdl.handle.net/11407/425310.1021/acs.jctc.7b00314reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínWe present a complete methodology to consistently estimate redox potentials strictly from first-principles, without any experimental input. The methodology is based on (i) ab initio molecular dynamics (MD) simulations, (ii) all-atom explicit solvation, (iii) the two-phase thermodynamic (2PT) model, and (iv) the use of electrostatic potentials as references for the absolute electrochemical scale. We apply the approach presented to compute reduction potentials of the following redox couples: Cr2+/3+, V2+/3+, Ru(NH3)62+/3+, Sn2+/4+, Cu1+/2+, FcMeOH0/1+, and Fe2+/3+ (in aqueous solution) and Fc0/1+ (in acetonitrile). We argue that fully quantum-mechanical simulations are required to correctly model the intricate dynamical effects of the charged complexes on the surrounding solvent molecules within the solvation shell. Using the proposed methodology allows for a computationally efficient and statistically stable approach to compute free energy differences, yielding excellent agreement between our computed redox potentials and the experimental references. The root-mean-square deviation with respect to experiment for the aqueous test set and the two exchange-correlation density functionals used, PBE and PBE with van der Waals corrections, are 0.659 and 0.457 V, respectively. At this level of theory, depending on the functional employed, its ability to correctly describe each particular molecular complex seems to be the factor limiting the accuracy of the calculations. © 2017 American Chemical Society.engAmerican Chemical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85027228601&doi=10.1021%2facs.jctc.7b00314&partnerID=40&md5=e934b462e00f989f9f4e16ce4500392cJournal of Chemical Theory and ComputationJournal of Chemical Theory and Computation Volume 13, Issue 8, 8 August 2017, Pages 3432-3441Aarva, A., Laurila, T., & Caro, M. A. (2017). Doping as a means to probe the potential dependence of dopamine adsorption on carbon-based surfaces: A first-principles study. Journal of Chemical Physics, 146(23) doi:10.1063/1.4986521Bard, A. J., & Faulkner, L. R. (1980). Electrochemical Methods: Fundamentals and Applications.Berens, P. H., Mackay, D. H. J., White, G. M., & Wilson, K. R. (1983). Thermodynamics and quantum corrections from molecular dynamics for liquid water. The Journal of Chemical Physics, 79(5), 2375-2389.Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/PhysRevB.50.17953Cannes, C., Kanoufi, F., & Bard, A. J. (2003). Cyclic voltammetry and scanning electrochemical microscopy of ferrocenemethanol at monolayer and bilayer-modified gold electrodes. Journal of Electroanalytical Chemistry, 547(1), 83-91. doi:10.1016/S0022-0728(03)00192-XCaro, M. A. (2017). Solvation shells and radial distribution functions of transition metal complexes in aqueous solution: Results from ab initio molecular dynamics. Zenodo.Caro, M. A., Laurila, T., & Lopez-Acevedo, O. (2016). Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations. Journal of Chemical Physics, 145(24) doi:10.1063/1.4973001Caro, M. A., Määttä, J., Lopez-Acevedo, O., & Laurila, T. (2015). Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment. Journal of Applied Physics, 117(3) doi:10.1063/1.4905915Cheng, J., Liu, X., VandeVondele, J., Sulpizi, M., & Sprik, M. (2014). Redox potentials and acidity constants from density functional theory based molecular dynamics. Accounts of Chemical Research, 47(12), 3522-3529. doi:10.1021/ar500268yChrist, C. D., Mark, A. E., & Van Gunsteren, W. F. (2010). Basic ingredients of free energy calculations: A review. Journal of Computational Chemistry, 31(8), 1569-1582. doi:10.1002/jcc.21450Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., & Sutton, A. P. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B - Condensed Matter and Materials Physics, 57(3), 1505-1509.Gagne, R. R., Koval, C. A., & Lisensky, G. C. (1980). Ferrocene as an internal standard for electrochemical measurements. Inorganic Chemistry, 19(9), 2854-2855. doi:10.1021/ic50211a080Gillan, M. J., Alfè, D., & Michaelides, A. (2016). Perspective: How good is DFT for water? Journal of Chemical Physics, 144(13) doi:10.1063/1.4944633Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2003). Hybrid functionals based on a screened coulomb potential. Journal of Chemical Physics, 118(18), 8207-8215. doi:10.1063/1.1564060Holmberg, N., & Laasonen, K. (2015). Ab initio electrochemistry: Exploring the hydrogen evolution reaction on carbon nanotubes. Journal of Physical Chemistry C, 119(28), 16166-16178. doi:10.1021/acs.jpcc.5b04739Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695-1697. doi:10.1103/PhysRevA.31.1695House, C. I., & Kelsall, G. H. (1984). Potential-pH diagrams for the Sn/H2OCl system. Electrochimica Acta, 29(10), 1459-1464. doi:10.1016/0013-4686(84)87028-0Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926-935.Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B - Condensed Matter and Materials Physics, 54(16), 11169-11186.Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B - Condensed Matter and Materials Physics, 59(3), 1758-1775.Lai, P. -., Hsieh, C. -., & Lin, S. -. (2012). Rapid determination of entropy and free energy of mixtures from molecular dynamics simulations with the two-phase thermodynamic model. Physical Chemistry Chemical Physics, 14(43), 15206-15213. doi:10.1039/c2cp42011bLee, C., Yang, W., & Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/PhysRevB.37.785Lin, S. -., Blanco, M., & Goddard III, W. A. (2003). The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of lennard-jones fluids.Journal of Chemical Physics, 119(22), 11792-11805. doi:10.1063/1.1624057Lin, S. -., Maiti, P. K., & Goddard III, W. A. (2010). Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations. Journal of Physical Chemistry B, 114(24), 8191-8198. doi:10.1021/jp103120qLindahl, E., Bjelkmar, P., Larsson, P., Cuendet, M. A., & Hess, B. (2010). Implementation of the charmm force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6(2), 459-466. doi:10.1021/ct900549rLucking, M., Sun, Y. -., West, D., & Zhang, S. (2014). Absolute redox potential of liquid water: A first-principles theory. Chemical Science, 5(3), 1216-1220. doi:10.1039/c3sc52287cMakov, G., & Payne, M. C. (1995). Periodic boundary conditions in ab initio calculations. Physical Review B, 51(7), 4014-4022. doi:10.1103/PhysRevB.51.4014Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511-519.Pascal, T. A., & Goddard, W. A. (2012). Hydrophobic segregation, phase transitions and the anomalous thermodynamics of water/methanol mixtures. Journal of Physical Chemistry B, 116(47), 13905-13912. doi:10.1021/jp309693dPavlishchuk, V. V., & Addison, A. W. (2000). Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorganica Chimica Acta, 298(1), 97-102. doi:10.1016/S0020-1693(99)00407-7Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865Post, K., & Robins, R. G. (1976). Thermodynamic diagrams for the vanadium-water system at 298·15K. Electrochimica Acta, 21(6), 401-405. doi:10.1016/0013-4686(76)85115-8Rossmeisl, J., Nørskov, J. K., Taylor, C. D., Janik, M. J., & Neurock, M. (2006). Calculated phase diagrams for the electrochemical oxidation and reduction of water over pt(111). Journal of Physical Chemistry B, 110(43), 21833-21839. doi:10.1021/jp0631735Rossmeisl, J., Skúlason, E., Björketun, M. E., Tripkovic, V., & Nørskov, J. K. (2008). Modeling the electrified solid-liquid interface. Chemical Physics Letters, 466(1-3), 68-71. doi:10.1016/j.cplett.2008.10.024Rusnak, A. J., Pinnick, E. R., Calderon, C. E., & Wang, F. (2012). Static dielectric constants and molecular dipole distributions of liquid water and ice-ih investigated by the PAW-PBE exchange-correlation functional. Journal of Chemical Physics, 137(3) doi:10.1063/1.4734594Skúlason, E., Karlberg, G. S., Rossmeisl, J., Bligaard, T., Greeley, J., Jónsson, H., & Nørskov, J. K. (2007). Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the pt(111) electrode. Physical Chemistry Chemical Physics, 9(25), 3241-3250. doi:10.1039/b700099eStradi, D., Martinez, U., Blom, A., Brandbyge, M., & Stokbro, K. (2016). General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium green's function. Physical Review B, 93(15) doi:10.1103/PhysRevB.93.155302Tkatchenko, A., & Scheffler, M. (2009). Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 102(7) doi:10.1103/PhysRevLett.102.073005Trasa'tti, S. (1986). The absolute electrode potential: An explanatory note (recommendations 1986). Pure and Applied Chemistry, 58(7), 955-966. doi:10.1351/pac198658070955Tsierkezos, N. G. (2007). Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. Journal of Solution Chemistry, 36(3), 289-302. doi:10.1007/s10953-006-9119-9Tsierkezos, N. G., & Ritter, U. (2010). Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system. Journal of Applied Electrochemistry, 40(2), 409-417. doi:10.1007/s10800-009-0011-3Van De Walle, C. G., & Martin, R. M. (1986). Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Physical Review B, 34(8), 5621-5634. doi:10.1103/PhysRevB.34.5621Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701-1718. doi:10.1002/jcc.20291Wang, L. -., & Van Voorhis, T. (2012). A polarizable QM/MM explicit solvent model for computational electrochemistry in water. Journal of Chemical Theory and Computation, 8(2), 610-617. doi:10.1021/ct200340xWang, Y., Rogers, E. I., & Compton, R. G. (2010). The measurement of the diffusion coefficients of ferrocene and ferrocenium and their temperature dependence in acetonitrile using double potential step microdisk electrode chronoamperometry. Journal of Electroanalytical Chemistry, 648(1), 15-19. doi:10.1016/j.jelechem.2010.07.006Wu, Y., Chan, M. K. Y., & Ceder, G. (2011). Prediction of semiconductor band edge positions in aqueous environments from first principles. Physical Review B - Condensed Matter and Materials Physics, 83(23) doi:10.1103/PhysRevB.83.235301Zhang, C., Spanu, L., & Galli, G. (2011). Entropy of liquid water from ab initio molecular dynamics. Journal of Physical Chemistry B, 115(48), 14190-14195. doi:10.1021/jp204981yZhang, S. B., Tománek, D., Louie, S. G., Cohen, M. L., & Hybertsen, M. S. (1988). Quasiparticle calculation of valence band offset of AlAs-GaAs(001). Solid State Communications, 66(6), 585-588. doi:10.1016/0038-1098(88)90213-XScopusRedox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous SolutionArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Caro, M.A., Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland, COMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Espoo, FinlandLopez-Acevedo, O., COMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Espoo, Finland, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaLaurila, T., Department of Electrical Engineering and Automation, Aalto University, Espoo, FinlandCaro M.A.Lopez-Acevedo O.Laurila T.Department of Electrical Engineering and Automation, Aalto University, Espoo, FinlandCOMP Centre of Excellence in Computational Nanoscience, Department of Applied Physics, Aalto University, Espoo, FinlandDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaWe present a complete methodology to consistently estimate redox potentials strictly from first-principles, without any experimental input. The methodology is based on (i) ab initio molecular dynamics (MD) simulations, (ii) all-atom explicit solvation, (iii) the two-phase thermodynamic (2PT) model, and (iv) the use of electrostatic potentials as references for the absolute electrochemical scale. We apply the approach presented to compute reduction potentials of the following redox couples: Cr2+/3+, V2+/3+, Ru(NH3)62+/3+, Sn2+/4+, Cu1+/2+, FcMeOH0/1+, and Fe2+/3+ (in aqueous solution) and Fc0/1+ (in acetonitrile). We argue that fully quantum-mechanical simulations are required to correctly model the intricate dynamical effects of the charged complexes on the surrounding solvent molecules within the solvation shell. Using the proposed methodology allows for a computationally efficient and statistically stable approach to compute free energy differences, yielding excellent agreement between our computed redox potentials and the experimental references. The root-mean-square deviation with respect to experiment for the aqueous test set and the two exchange-correlation density functionals used, PBE and PBE with van der Waals corrections, are 0.659 and 0.457 V, respectively. At this level of theory, depending on the functional employed, its ability to correctly describe each particular molecular complex seems to be the factor limiting the accuracy of the calculations. © 2017 American Chemical Society.http://purl.org/coar/access_right/c_16ec11407/4253oai:repository.udem.edu.co:11407/42532020-05-27 16:24:40.954Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co