First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons
Using first principles calculation the opto-electronic properties of blue phosphorene nanoribbons doped with carbon, silicon and sulfur atoms are studied. Zigzag and armchair edges configurations and several ribbon widths are considered. The electronic structure is analyzed and the results on band s...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6077
- Acceso en línea:
- http://hdl.handle.net/11407/6077
- Palabra clave:
- Calculations
Carbon
Dispersions
Electronic properties
Electronic structure
Sulfur
Dielectric functions
Dispersionless
First-principles calculation
Growth directions
Imaginary parts
Magnetic state
Optical response
Optoelectronic properties
Nanoribbons
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_5c317a6d5c4c96b8f27ee122dc591d53 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6077 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons |
title |
First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons |
spellingShingle |
First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons Calculations Carbon Dispersions Electronic properties Electronic structure Sulfur Dielectric functions Dispersionless First-principles calculation Growth directions Imaginary parts Magnetic state Optical response Optoelectronic properties Nanoribbons |
title_short |
First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons |
title_full |
First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons |
title_fullStr |
First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons |
title_full_unstemmed |
First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons |
title_sort |
First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons |
dc.subject.keyword.eng.fl_str_mv |
Calculations Carbon Dispersions Electronic properties Electronic structure Sulfur Dielectric functions Dispersionless First-principles calculation Growth directions Imaginary parts Magnetic state Optical response Optoelectronic properties Nanoribbons |
topic |
Calculations Carbon Dispersions Electronic properties Electronic structure Sulfur Dielectric functions Dispersionless First-principles calculation Growth directions Imaginary parts Magnetic state Optical response Optoelectronic properties Nanoribbons |
description |
Using first principles calculation the opto-electronic properties of blue phosphorene nanoribbons doped with carbon, silicon and sulfur atoms are studied. Zigzag and armchair edges configurations and several ribbon widths are considered. The electronic structure is analyzed and the results on band structure is used to study the optical response through the imaginary part of the dielectric function, considering light polarizations both perpendicular and parallel to the nanoribbon growth direction. The results show that carbon, silicon, and sulfur atoms in doped blue phosphorene nanoribbons induce magnetic states which appear as dispersionless energy levels above/under the Fermi level. The observed dispersionless levels in doped blue phosphorene nanoribbons suggest the presence of localized magnetic states. © 2019 Elsevier Ltd |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:11Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:11Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
7496036 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6077 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.spmi.2019.05.003 |
identifier_str_mv |
7496036 10.1016/j.spmi.2019.05.003 |
url |
http://hdl.handle.net/11407/6077 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066071183&doi=10.1016%2fj.spmi.2019.05.003&partnerID=40&md5=c138b8ec3759a7025e6a269a406a6de5 |
dc.relation.citationvolume.none.fl_str_mv |
130 |
dc.relation.citationstartpage.none.fl_str_mv |
401 |
dc.relation.citationendpage.none.fl_str_mv |
408 |
dc.relation.references.none.fl_str_mv |
Xu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials (2013) Chem. Rev., 113 (5), pp. 3766-3798 Xia, F., Wang, H., Jia, Y., Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics (2014) Nature Commun., 5, pp. 1-6 Balendhran, S., Walia, S., Nili, H., Sriram, S., Bhaskaran, M., Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene (2015) Small, 11, pp. 640-652 Zhu, C., Du, D., Lin, Y., Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review (2015) 2D Mater., 2, p. 32004 Luo, B., Liu, G., Wang, L., Recent advances in 2D materials for photocatalysis (2016) Nanoscale, 8 (13), pp. 6904-6920 Shavanova, K., Bakakina, Y., Burkova, I., Shtepliuk, I., Viter, R., Ubelis, A., Beni, V., Khranovskyy, V., Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology (2016) Sensors, 16, p. 223 Li, X.-L., Han, W.-P., Wu, J.-B., Qiao, X.-F., Zhang, J., Tan, P.-H., Layer-number dependent optical properties of 2D materials and their application for thickness determination (2017) Adv. Funct. Mater., 27 (19), p. 1604468 Liu, X., Ma, T., Pinna, N., Zhang, J., Two-dimensional nanostructured materials for gas sensing (2017) Adv. Funct. Mater., 27 (37), p. 1702168 Azadmanjiri, J., Wang, J., Berndt, C.C., 2D layered organicinorganic heterostructures for clean energy applications (2018) J. Mater. Chem. A, 6, pp. 3824-3849 Qiao, J., Kong, X., Hu, Z.X., Yang, F., Ji, W., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus (2014) Nature Commun., 5, pp. 1-7 Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Zhang, Y., Black phosphorus field-effect transistors (2014) Nature Nanotechnol., 9, pp. 372-377 Buscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., van der Zant, H.S.J., Castellanos-Gomez, A., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors (2014) Nano Lett., 14, pp. 3347-3352 Liu, H., Neal, A.T., Zhu, Z., Tomanek, D., Ye, P.D., Phosphorene: A new 2D material with high carrier mobility (2014) ACS Nano, 8, pp. 4033-4041 Hu, W., Yang, J., Defect in phosphorene (2014) J. Phys. Chem. C, 119 (35), pp. 20474-20480 Dai, J., Zeng, X.C., Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells (2014) J. Phys. Chem. Lett., 5 (7), pp. 1289-1293 Sa, B., Li, Y.-L., Qi, J., Ahuja, R., Sun, Z., Strain engineering for phosphorene: The potential application as a photocatalyst (2014) J. Phys. Chem. C, 118, pp. 26560-26568 Cai, Y., Ke, Q., Zhang, G., Zhang, Y.-W., Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene (2015) J. Phys. Chem. C, 119, pp. 3102-3110 Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Castro Neto, A.H., Oxygen defects in phosphorene (2015) Phys. Rev. Lett., 114, p. 046801 Zhang, H.-P., Hu, W., Du, A., Lu, X., Zhang, Y.-P., Zhou, J., Lin, X., Tang, Y., Doped phosphorene for hydrogen capture: A DFT study (2018) Appl. Surf. Sci., 433, pp. 249-255 Zhang, J., Liu, H.J., Cheng, L., Wei, J., Liang, J.H., Fan, D.D., Shi, J., Zhang, Q.J., Phosphorene nanoribbon as a promising candidate for thermoelectric applications (2014) Sci. Rep., 4, pp. 4-10 Ramasubramaniam, A., Muniz, A.R., Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons (2014) Phys. Rev. B, 90 (8), p. 085424 Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers (2014) J. Phys. Chem. C, 118 (25), pp. 14051-14059 Zhu, Z., Tománek, D., Semiconducting layered blue phosphorus: A computational study (2014) Phys. Rev. Lett., 112, p. 176802 Guan, J., Zhu, Z., Tománek, D., Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study (2014) Phys. Rev. Lett., 113, p. 46804 Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Chen, W., Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus (2016) Nano Lett., 16, pp. 4903-4908 Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: A DFT calculation (2016) Solid State Commun., 242, pp. 36-40 Li, P., Appelbaum, I., Electrons and holes in phosphorene (2014) Phys. Rev. B, 90 (11), p. 115439 Sun, M., Tang, W., Ren, Q., Wang, S.K., Yu, J., Du, Y., A first-principles study of light non-metallic atom substituted blue phosphorene (2015) Appl. Surf. Sci., 356, pp. 110-114 Zheng, H., Yang, H., Wang, H., Du, X., Yan, Y., Electronic and magnetic properties of nonmetal atoms doped blue phosphorene: First-principles study (2016) J. Magn. Magn. Mater., 408, pp. 121-126 Zhou, X., Feng, W., Li, F., Yao, Y., Large magneto-optical effects in hole-doped blue phosphorene and gray arsenene (2017) Nanoscale, 9, pp. 17405-17414 Kaewmaraya, T., Srepusharawoot, P., Hussian, T., Amornkitbamrung, V., Electronic properties of h-BCN–blue phosphorene van der Waals heterostructures (2018) Chem. Phys. Chem., 19 (5), pp. 612-618 Zhu, S.-C., Yip, C.-T., Peng, S.-J., Wu, K.-M., Yao, K.-L., Mak, C.-L., Lam, C.-H., Half-metallic and magnetic semiconducting behaviors of metal-doped blue phosphorus nanoribbons from first-principles calculations (2018) Phys. Chem. Chem. Phys., 20 (11), pp. 7635-7642 Bai, R., Chen, Z., Gou, M., Zhang, Y., A first-principles study of group IV and VI atoms doped blue phosphorene (2018) Solid State Commun., 270, pp. 76-81 Hu, T., Hong, J., Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons (2015) J. Appl. Phys., 118 (5), p. 054301 Ospina, D., Duque, C., Mora-Ramos, M., Correa, J., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study (2017) Comput. Mater. Sci., 135 Safari, F., Fathipour, M., Yazdanpanah Goharrizi, A., Tuning electronic, magnetic, and transport properties of blue phosphorene by substitutional doping: a first-principles study (2018) J. Comput. Electron., 17 (2), pp. 499-513 Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14 (11), p. 2745 Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P., Structural relaxation made simple (2006) Phys. Rev. Lett., 97 (17), p. 170201 Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Academic Press |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Academic Press |
dc.source.none.fl_str_mv |
Superlattices and Microstructures |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159112064204800 |
spelling |
20192021-02-05T14:59:11Z2021-02-05T14:59:11Z7496036http://hdl.handle.net/11407/607710.1016/j.spmi.2019.05.003Using first principles calculation the opto-electronic properties of blue phosphorene nanoribbons doped with carbon, silicon and sulfur atoms are studied. Zigzag and armchair edges configurations and several ribbon widths are considered. The electronic structure is analyzed and the results on band structure is used to study the optical response through the imaginary part of the dielectric function, considering light polarizations both perpendicular and parallel to the nanoribbon growth direction. The results show that carbon, silicon, and sulfur atoms in doped blue phosphorene nanoribbons induce magnetic states which appear as dispersionless energy levels above/under the Fermi level. The observed dispersionless levels in doped blue phosphorene nanoribbons suggest the presence of localized magnetic states. © 2019 Elsevier LtdengAcademic PressFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85066071183&doi=10.1016%2fj.spmi.2019.05.003&partnerID=40&md5=c138b8ec3759a7025e6a269a406a6de5130401408Xu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials (2013) Chem. Rev., 113 (5), pp. 3766-3798Xia, F., Wang, H., Jia, Y., Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics (2014) Nature Commun., 5, pp. 1-6Balendhran, S., Walia, S., Nili, H., Sriram, S., Bhaskaran, M., Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene (2015) Small, 11, pp. 640-652Zhu, C., Du, D., Lin, Y., Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review (2015) 2D Mater., 2, p. 32004Luo, B., Liu, G., Wang, L., Recent advances in 2D materials for photocatalysis (2016) Nanoscale, 8 (13), pp. 6904-6920Shavanova, K., Bakakina, Y., Burkova, I., Shtepliuk, I., Viter, R., Ubelis, A., Beni, V., Khranovskyy, V., Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology (2016) Sensors, 16, p. 223Li, X.-L., Han, W.-P., Wu, J.-B., Qiao, X.-F., Zhang, J., Tan, P.-H., Layer-number dependent optical properties of 2D materials and their application for thickness determination (2017) Adv. Funct. Mater., 27 (19), p. 1604468Liu, X., Ma, T., Pinna, N., Zhang, J., Two-dimensional nanostructured materials for gas sensing (2017) Adv. Funct. Mater., 27 (37), p. 1702168Azadmanjiri, J., Wang, J., Berndt, C.C., 2D layered organicinorganic heterostructures for clean energy applications (2018) J. Mater. Chem. A, 6, pp. 3824-3849Qiao, J., Kong, X., Hu, Z.X., Yang, F., Ji, W., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus (2014) Nature Commun., 5, pp. 1-7Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Zhang, Y., Black phosphorus field-effect transistors (2014) Nature Nanotechnol., 9, pp. 372-377Buscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., van der Zant, H.S.J., Castellanos-Gomez, A., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors (2014) Nano Lett., 14, pp. 3347-3352Liu, H., Neal, A.T., Zhu, Z., Tomanek, D., Ye, P.D., Phosphorene: A new 2D material with high carrier mobility (2014) ACS Nano, 8, pp. 4033-4041Hu, W., Yang, J., Defect in phosphorene (2014) J. Phys. Chem. C, 119 (35), pp. 20474-20480Dai, J., Zeng, X.C., Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells (2014) J. Phys. Chem. Lett., 5 (7), pp. 1289-1293Sa, B., Li, Y.-L., Qi, J., Ahuja, R., Sun, Z., Strain engineering for phosphorene: The potential application as a photocatalyst (2014) J. Phys. Chem. C, 118, pp. 26560-26568Cai, Y., Ke, Q., Zhang, G., Zhang, Y.-W., Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene (2015) J. Phys. Chem. C, 119, pp. 3102-3110Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Castro Neto, A.H., Oxygen defects in phosphorene (2015) Phys. Rev. Lett., 114, p. 046801Zhang, H.-P., Hu, W., Du, A., Lu, X., Zhang, Y.-P., Zhou, J., Lin, X., Tang, Y., Doped phosphorene for hydrogen capture: A DFT study (2018) Appl. Surf. Sci., 433, pp. 249-255Zhang, J., Liu, H.J., Cheng, L., Wei, J., Liang, J.H., Fan, D.D., Shi, J., Zhang, Q.J., Phosphorene nanoribbon as a promising candidate for thermoelectric applications (2014) Sci. Rep., 4, pp. 4-10Ramasubramaniam, A., Muniz, A.R., Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons (2014) Phys. Rev. B, 90 (8), p. 085424Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers (2014) J. Phys. Chem. C, 118 (25), pp. 14051-14059Zhu, Z., Tománek, D., Semiconducting layered blue phosphorus: A computational study (2014) Phys. Rev. Lett., 112, p. 176802Guan, J., Zhu, Z., Tománek, D., Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study (2014) Phys. Rev. Lett., 113, p. 46804Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Chen, W., Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus (2016) Nano Lett., 16, pp. 4903-4908Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: A DFT calculation (2016) Solid State Commun., 242, pp. 36-40Li, P., Appelbaum, I., Electrons and holes in phosphorene (2014) Phys. Rev. B, 90 (11), p. 115439Sun, M., Tang, W., Ren, Q., Wang, S.K., Yu, J., Du, Y., A first-principles study of light non-metallic atom substituted blue phosphorene (2015) Appl. Surf. Sci., 356, pp. 110-114Zheng, H., Yang, H., Wang, H., Du, X., Yan, Y., Electronic and magnetic properties of nonmetal atoms doped blue phosphorene: First-principles study (2016) J. Magn. Magn. Mater., 408, pp. 121-126Zhou, X., Feng, W., Li, F., Yao, Y., Large magneto-optical effects in hole-doped blue phosphorene and gray arsenene (2017) Nanoscale, 9, pp. 17405-17414Kaewmaraya, T., Srepusharawoot, P., Hussian, T., Amornkitbamrung, V., Electronic properties of h-BCN–blue phosphorene van der Waals heterostructures (2018) Chem. Phys. Chem., 19 (5), pp. 612-618Zhu, S.-C., Yip, C.-T., Peng, S.-J., Wu, K.-M., Yao, K.-L., Mak, C.-L., Lam, C.-H., Half-metallic and magnetic semiconducting behaviors of metal-doped blue phosphorus nanoribbons from first-principles calculations (2018) Phys. Chem. Chem. Phys., 20 (11), pp. 7635-7642Bai, R., Chen, Z., Gou, M., Zhang, Y., A first-principles study of group IV and VI atoms doped blue phosphorene (2018) Solid State Commun., 270, pp. 76-81Hu, T., Hong, J., Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons (2015) J. Appl. Phys., 118 (5), p. 054301Ospina, D., Duque, C., Mora-Ramos, M., Correa, J., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study (2017) Comput. Mater. Sci., 135Safari, F., Fathipour, M., Yazdanpanah Goharrizi, A., Tuning electronic, magnetic, and transport properties of blue phosphorene by substitutional doping: a first-principles study (2018) J. Comput. Electron., 17 (2), pp. 499-513Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14 (11), p. 2745Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P., Structural relaxation made simple (2006) Phys. Rev. Lett., 97 (17), p. 170201Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868Superlattices and MicrostructuresFirst principles calculations of opto-electronic properties of doped blue phosphorene nanoribbonsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1CalculationsCarbonDispersionsElectronic propertiesElectronic structureSulfurDielectric functionsDispersionlessFirst-principles calculationGrowth directionsImaginary partsMagnetic stateOptical responseOptoelectronic propertiesNanoribbonsCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecCorrea J.D.11407/6077oai:repository.udem.edu.co:11407/60772021-02-05 09:59:11.528Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |