First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons

Using first principles calculation the opto-electronic properties of blue phosphorene nanoribbons doped with carbon, silicon and sulfur atoms are studied. Zigzag and armchair edges configurations and several ribbon widths are considered. The electronic structure is analyzed and the results on band s...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6077
Acceso en línea:
http://hdl.handle.net/11407/6077
Palabra clave:
Calculations
Carbon
Dispersions
Electronic properties
Electronic structure
Sulfur
Dielectric functions
Dispersionless
First-principles calculation
Growth directions
Imaginary parts
Magnetic state
Optical response
Optoelectronic properties
Nanoribbons
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_5c317a6d5c4c96b8f27ee122dc591d53
oai_identifier_str oai:repository.udem.edu.co:11407/6077
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons
title First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons
spellingShingle First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons
Calculations
Carbon
Dispersions
Electronic properties
Electronic structure
Sulfur
Dielectric functions
Dispersionless
First-principles calculation
Growth directions
Imaginary parts
Magnetic state
Optical response
Optoelectronic properties
Nanoribbons
title_short First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons
title_full First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons
title_fullStr First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons
title_full_unstemmed First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons
title_sort First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons
dc.subject.keyword.eng.fl_str_mv Calculations
Carbon
Dispersions
Electronic properties
Electronic structure
Sulfur
Dielectric functions
Dispersionless
First-principles calculation
Growth directions
Imaginary parts
Magnetic state
Optical response
Optoelectronic properties
Nanoribbons
topic Calculations
Carbon
Dispersions
Electronic properties
Electronic structure
Sulfur
Dielectric functions
Dispersionless
First-principles calculation
Growth directions
Imaginary parts
Magnetic state
Optical response
Optoelectronic properties
Nanoribbons
description Using first principles calculation the opto-electronic properties of blue phosphorene nanoribbons doped with carbon, silicon and sulfur atoms are studied. Zigzag and armchair edges configurations and several ribbon widths are considered. The electronic structure is analyzed and the results on band structure is used to study the optical response through the imaginary part of the dielectric function, considering light polarizations both perpendicular and parallel to the nanoribbon growth direction. The results show that carbon, silicon, and sulfur atoms in doped blue phosphorene nanoribbons induce magnetic states which appear as dispersionless energy levels above/under the Fermi level. The observed dispersionless levels in doped blue phosphorene nanoribbons suggest the presence of localized magnetic states. © 2019 Elsevier Ltd
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:59:11Z
dc.date.available.none.fl_str_mv 2021-02-05T14:59:11Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 7496036
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6077
dc.identifier.doi.none.fl_str_mv 10.1016/j.spmi.2019.05.003
identifier_str_mv 7496036
10.1016/j.spmi.2019.05.003
url http://hdl.handle.net/11407/6077
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066071183&doi=10.1016%2fj.spmi.2019.05.003&partnerID=40&md5=c138b8ec3759a7025e6a269a406a6de5
dc.relation.citationvolume.none.fl_str_mv 130
dc.relation.citationstartpage.none.fl_str_mv 401
dc.relation.citationendpage.none.fl_str_mv 408
dc.relation.references.none.fl_str_mv Xu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials (2013) Chem. Rev., 113 (5), pp. 3766-3798
Xia, F., Wang, H., Jia, Y., Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics (2014) Nature Commun., 5, pp. 1-6
Balendhran, S., Walia, S., Nili, H., Sriram, S., Bhaskaran, M., Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene (2015) Small, 11, pp. 640-652
Zhu, C., Du, D., Lin, Y., Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review (2015) 2D Mater., 2, p. 32004
Luo, B., Liu, G., Wang, L., Recent advances in 2D materials for photocatalysis (2016) Nanoscale, 8 (13), pp. 6904-6920
Shavanova, K., Bakakina, Y., Burkova, I., Shtepliuk, I., Viter, R., Ubelis, A., Beni, V., Khranovskyy, V., Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology (2016) Sensors, 16, p. 223
Li, X.-L., Han, W.-P., Wu, J.-B., Qiao, X.-F., Zhang, J., Tan, P.-H., Layer-number dependent optical properties of 2D materials and their application for thickness determination (2017) Adv. Funct. Mater., 27 (19), p. 1604468
Liu, X., Ma, T., Pinna, N., Zhang, J., Two-dimensional nanostructured materials for gas sensing (2017) Adv. Funct. Mater., 27 (37), p. 1702168
Azadmanjiri, J., Wang, J., Berndt, C.C., 2D layered organicinorganic heterostructures for clean energy applications (2018) J. Mater. Chem. A, 6, pp. 3824-3849
Qiao, J., Kong, X., Hu, Z.X., Yang, F., Ji, W., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus (2014) Nature Commun., 5, pp. 1-7
Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Zhang, Y., Black phosphorus field-effect transistors (2014) Nature Nanotechnol., 9, pp. 372-377
Buscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., van der Zant, H.S.J., Castellanos-Gomez, A., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors (2014) Nano Lett., 14, pp. 3347-3352
Liu, H., Neal, A.T., Zhu, Z., Tomanek, D., Ye, P.D., Phosphorene: A new 2D material with high carrier mobility (2014) ACS Nano, 8, pp. 4033-4041
Hu, W., Yang, J., Defect in phosphorene (2014) J. Phys. Chem. C, 119 (35), pp. 20474-20480
Dai, J., Zeng, X.C., Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells (2014) J. Phys. Chem. Lett., 5 (7), pp. 1289-1293
Sa, B., Li, Y.-L., Qi, J., Ahuja, R., Sun, Z., Strain engineering for phosphorene: The potential application as a photocatalyst (2014) J. Phys. Chem. C, 118, pp. 26560-26568
Cai, Y., Ke, Q., Zhang, G., Zhang, Y.-W., Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene (2015) J. Phys. Chem. C, 119, pp. 3102-3110
Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Castro Neto, A.H., Oxygen defects in phosphorene (2015) Phys. Rev. Lett., 114, p. 046801
Zhang, H.-P., Hu, W., Du, A., Lu, X., Zhang, Y.-P., Zhou, J., Lin, X., Tang, Y., Doped phosphorene for hydrogen capture: A DFT study (2018) Appl. Surf. Sci., 433, pp. 249-255
Zhang, J., Liu, H.J., Cheng, L., Wei, J., Liang, J.H., Fan, D.D., Shi, J., Zhang, Q.J., Phosphorene nanoribbon as a promising candidate for thermoelectric applications (2014) Sci. Rep., 4, pp. 4-10
Ramasubramaniam, A., Muniz, A.R., Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons (2014) Phys. Rev. B, 90 (8), p. 085424
Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers (2014) J. Phys. Chem. C, 118 (25), pp. 14051-14059
Zhu, Z., Tománek, D., Semiconducting layered blue phosphorus: A computational study (2014) Phys. Rev. Lett., 112, p. 176802
Guan, J., Zhu, Z., Tománek, D., Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study (2014) Phys. Rev. Lett., 113, p. 46804
Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Chen, W., Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus (2016) Nano Lett., 16, pp. 4903-4908
Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: A DFT calculation (2016) Solid State Commun., 242, pp. 36-40
Li, P., Appelbaum, I., Electrons and holes in phosphorene (2014) Phys. Rev. B, 90 (11), p. 115439
Sun, M., Tang, W., Ren, Q., Wang, S.K., Yu, J., Du, Y., A first-principles study of light non-metallic atom substituted blue phosphorene (2015) Appl. Surf. Sci., 356, pp. 110-114
Zheng, H., Yang, H., Wang, H., Du, X., Yan, Y., Electronic and magnetic properties of nonmetal atoms doped blue phosphorene: First-principles study (2016) J. Magn. Magn. Mater., 408, pp. 121-126
Zhou, X., Feng, W., Li, F., Yao, Y., Large magneto-optical effects in hole-doped blue phosphorene and gray arsenene (2017) Nanoscale, 9, pp. 17405-17414
Kaewmaraya, T., Srepusharawoot, P., Hussian, T., Amornkitbamrung, V., Electronic properties of h-BCN–blue phosphorene van der Waals heterostructures (2018) Chem. Phys. Chem., 19 (5), pp. 612-618
Zhu, S.-C., Yip, C.-T., Peng, S.-J., Wu, K.-M., Yao, K.-L., Mak, C.-L., Lam, C.-H., Half-metallic and magnetic semiconducting behaviors of metal-doped blue phosphorus nanoribbons from first-principles calculations (2018) Phys. Chem. Chem. Phys., 20 (11), pp. 7635-7642
Bai, R., Chen, Z., Gou, M., Zhang, Y., A first-principles study of group IV and VI atoms doped blue phosphorene (2018) Solid State Commun., 270, pp. 76-81
Hu, T., Hong, J., Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons (2015) J. Appl. Phys., 118 (5), p. 054301
Ospina, D., Duque, C., Mora-Ramos, M., Correa, J., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study (2017) Comput. Mater. Sci., 135
Safari, F., Fathipour, M., Yazdanpanah Goharrizi, A., Tuning electronic, magnetic, and transport properties of blue phosphorene by substitutional doping: a first-principles study (2018) J. Comput. Electron., 17 (2), pp. 499-513
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14 (11), p. 2745
Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P., Structural relaxation made simple (2006) Phys. Rev. Lett., 97 (17), p. 170201
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Academic Press
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Academic Press
dc.source.none.fl_str_mv Superlattices and Microstructures
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159112064204800
spelling 20192021-02-05T14:59:11Z2021-02-05T14:59:11Z7496036http://hdl.handle.net/11407/607710.1016/j.spmi.2019.05.003Using first principles calculation the opto-electronic properties of blue phosphorene nanoribbons doped with carbon, silicon and sulfur atoms are studied. Zigzag and armchair edges configurations and several ribbon widths are considered. The electronic structure is analyzed and the results on band structure is used to study the optical response through the imaginary part of the dielectric function, considering light polarizations both perpendicular and parallel to the nanoribbon growth direction. The results show that carbon, silicon, and sulfur atoms in doped blue phosphorene nanoribbons induce magnetic states which appear as dispersionless energy levels above/under the Fermi level. The observed dispersionless levels in doped blue phosphorene nanoribbons suggest the presence of localized magnetic states. © 2019 Elsevier LtdengAcademic PressFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85066071183&doi=10.1016%2fj.spmi.2019.05.003&partnerID=40&md5=c138b8ec3759a7025e6a269a406a6de5130401408Xu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials (2013) Chem. Rev., 113 (5), pp. 3766-3798Xia, F., Wang, H., Jia, Y., Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics (2014) Nature Commun., 5, pp. 1-6Balendhran, S., Walia, S., Nili, H., Sriram, S., Bhaskaran, M., Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene (2015) Small, 11, pp. 640-652Zhu, C., Du, D., Lin, Y., Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review (2015) 2D Mater., 2, p. 32004Luo, B., Liu, G., Wang, L., Recent advances in 2D materials for photocatalysis (2016) Nanoscale, 8 (13), pp. 6904-6920Shavanova, K., Bakakina, Y., Burkova, I., Shtepliuk, I., Viter, R., Ubelis, A., Beni, V., Khranovskyy, V., Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology (2016) Sensors, 16, p. 223Li, X.-L., Han, W.-P., Wu, J.-B., Qiao, X.-F., Zhang, J., Tan, P.-H., Layer-number dependent optical properties of 2D materials and their application for thickness determination (2017) Adv. Funct. Mater., 27 (19), p. 1604468Liu, X., Ma, T., Pinna, N., Zhang, J., Two-dimensional nanostructured materials for gas sensing (2017) Adv. Funct. Mater., 27 (37), p. 1702168Azadmanjiri, J., Wang, J., Berndt, C.C., 2D layered organicinorganic heterostructures for clean energy applications (2018) J. Mater. Chem. A, 6, pp. 3824-3849Qiao, J., Kong, X., Hu, Z.X., Yang, F., Ji, W., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus (2014) Nature Commun., 5, pp. 1-7Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Zhang, Y., Black phosphorus field-effect transistors (2014) Nature Nanotechnol., 9, pp. 372-377Buscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., van der Zant, H.S.J., Castellanos-Gomez, A., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors (2014) Nano Lett., 14, pp. 3347-3352Liu, H., Neal, A.T., Zhu, Z., Tomanek, D., Ye, P.D., Phosphorene: A new 2D material with high carrier mobility (2014) ACS Nano, 8, pp. 4033-4041Hu, W., Yang, J., Defect in phosphorene (2014) J. Phys. Chem. C, 119 (35), pp. 20474-20480Dai, J., Zeng, X.C., Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells (2014) J. Phys. Chem. Lett., 5 (7), pp. 1289-1293Sa, B., Li, Y.-L., Qi, J., Ahuja, R., Sun, Z., Strain engineering for phosphorene: The potential application as a photocatalyst (2014) J. Phys. Chem. C, 118, pp. 26560-26568Cai, Y., Ke, Q., Zhang, G., Zhang, Y.-W., Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene (2015) J. Phys. Chem. C, 119, pp. 3102-3110Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Castro Neto, A.H., Oxygen defects in phosphorene (2015) Phys. Rev. Lett., 114, p. 046801Zhang, H.-P., Hu, W., Du, A., Lu, X., Zhang, Y.-P., Zhou, J., Lin, X., Tang, Y., Doped phosphorene for hydrogen capture: A DFT study (2018) Appl. Surf. Sci., 433, pp. 249-255Zhang, J., Liu, H.J., Cheng, L., Wei, J., Liang, J.H., Fan, D.D., Shi, J., Zhang, Q.J., Phosphorene nanoribbon as a promising candidate for thermoelectric applications (2014) Sci. Rep., 4, pp. 4-10Ramasubramaniam, A., Muniz, A.R., Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons (2014) Phys. Rev. B, 90 (8), p. 085424Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers (2014) J. Phys. Chem. C, 118 (25), pp. 14051-14059Zhu, Z., Tománek, D., Semiconducting layered blue phosphorus: A computational study (2014) Phys. Rev. Lett., 112, p. 176802Guan, J., Zhu, Z., Tománek, D., Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study (2014) Phys. Rev. Lett., 113, p. 46804Zhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Chen, W., Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus (2016) Nano Lett., 16, pp. 4903-4908Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: A DFT calculation (2016) Solid State Commun., 242, pp. 36-40Li, P., Appelbaum, I., Electrons and holes in phosphorene (2014) Phys. Rev. B, 90 (11), p. 115439Sun, M., Tang, W., Ren, Q., Wang, S.K., Yu, J., Du, Y., A first-principles study of light non-metallic atom substituted blue phosphorene (2015) Appl. Surf. Sci., 356, pp. 110-114Zheng, H., Yang, H., Wang, H., Du, X., Yan, Y., Electronic and magnetic properties of nonmetal atoms doped blue phosphorene: First-principles study (2016) J. Magn. Magn. Mater., 408, pp. 121-126Zhou, X., Feng, W., Li, F., Yao, Y., Large magneto-optical effects in hole-doped blue phosphorene and gray arsenene (2017) Nanoscale, 9, pp. 17405-17414Kaewmaraya, T., Srepusharawoot, P., Hussian, T., Amornkitbamrung, V., Electronic properties of h-BCN–blue phosphorene van der Waals heterostructures (2018) Chem. Phys. Chem., 19 (5), pp. 612-618Zhu, S.-C., Yip, C.-T., Peng, S.-J., Wu, K.-M., Yao, K.-L., Mak, C.-L., Lam, C.-H., Half-metallic and magnetic semiconducting behaviors of metal-doped blue phosphorus nanoribbons from first-principles calculations (2018) Phys. Chem. Chem. Phys., 20 (11), pp. 7635-7642Bai, R., Chen, Z., Gou, M., Zhang, Y., A first-principles study of group IV and VI atoms doped blue phosphorene (2018) Solid State Commun., 270, pp. 76-81Hu, T., Hong, J., Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons (2015) J. Appl. Phys., 118 (5), p. 054301Ospina, D., Duque, C., Mora-Ramos, M., Correa, J., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study (2017) Comput. Mater. Sci., 135Safari, F., Fathipour, M., Yazdanpanah Goharrizi, A., Tuning electronic, magnetic, and transport properties of blue phosphorene by substitutional doping: a first-principles study (2018) J. Comput. Electron., 17 (2), pp. 499-513Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14 (11), p. 2745Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P., Structural relaxation made simple (2006) Phys. Rev. Lett., 97 (17), p. 170201Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868Superlattices and MicrostructuresFirst principles calculations of opto-electronic properties of doped blue phosphorene nanoribbonsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1CalculationsCarbonDispersionsElectronic propertiesElectronic structureSulfurDielectric functionsDispersionlessFirst-principles calculationGrowth directionsImaginary partsMagnetic stateOptical responseOptoelectronic propertiesNanoribbonsCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecCorrea J.D.11407/6077oai:repository.udem.edu.co:11407/60772021-02-05 09:59:11.528Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co