Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium

The carbon nanotubes (CNTs) dispersion has gained interest in recent years due to its multiple applications in fields such as electronics, concrete, optics, environmental, automotive, marine and aeronautics coatings. In this sense it is necessary to develop stable dispersions of CNTs. On a laborator...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5700
Acceso en línea:
http://hdl.handle.net/11407/5700
Palabra clave:
Additives
Dispersions
Electric conductivity
Engineering research
Industrial laboratories
Marine applications
Nanotubes
Sonication
Yarn
Electrical conductivity
Factorial experimental design
Industrial additives
Multiple applications
Multiwalled carbon nanotube (MWCNTs)
Rheological modifiers
Stability measurements
Zeta potential measurements
Multiwalled carbon nanotubes (MWCN)
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_5a5321c815d70571c55f8ab572beb7a7
oai_identifier_str oai:repository.udem.edu.co:11407/5700
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium
title Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium
spellingShingle Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium
Additives
Dispersions
Electric conductivity
Engineering research
Industrial laboratories
Marine applications
Nanotubes
Sonication
Yarn
Electrical conductivity
Factorial experimental design
Industrial additives
Multiple applications
Multiwalled carbon nanotube (MWCNTs)
Rheological modifiers
Stability measurements
Zeta potential measurements
Multiwalled carbon nanotubes (MWCN)
title_short Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium
title_full Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium
title_fullStr Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium
title_full_unstemmed Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium
title_sort Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium
dc.subject.none.fl_str_mv Additives
Dispersions
Electric conductivity
Engineering research
Industrial laboratories
Marine applications
Nanotubes
Sonication
Yarn
Electrical conductivity
Factorial experimental design
Industrial additives
Multiple applications
Multiwalled carbon nanotube (MWCNTs)
Rheological modifiers
Stability measurements
Zeta potential measurements
Multiwalled carbon nanotubes (MWCN)
topic Additives
Dispersions
Electric conductivity
Engineering research
Industrial laboratories
Marine applications
Nanotubes
Sonication
Yarn
Electrical conductivity
Factorial experimental design
Industrial additives
Multiple applications
Multiwalled carbon nanotube (MWCNTs)
Rheological modifiers
Stability measurements
Zeta potential measurements
Multiwalled carbon nanotubes (MWCN)
description The carbon nanotubes (CNTs) dispersion has gained interest in recent years due to its multiple applications in fields such as electronics, concrete, optics, environmental, automotive, marine and aeronautics coatings. In this sense it is necessary to develop stable dispersions of CNTs. On a laboratory scale the method of preparation of the CNTs is usually done using sonication, but this method is not appropriate to obtain CNTs dispersions on a larger scale. This work studies Multiwalled Carbon Nanotubes (MWCNTs) in aqueous medium comparing an industrial laboratory dispersion method vs traditional sonication. A factorial experimental design was performed, considering as variables: dispersion method, type of surfactant and use of a rheological modifier. The samples were prepared according to the full factorial DoE and properties such as electrical conductivity and pH were studied. Stability measurements were carried out over time and charge stability studies were performed using zeta potential measurements. The results shown the best combination of variables for the electrical conductivity was: dispersion method, sonication; dispersant, TX-100; rheological modifier, present. Although the results show that an improvement in CNTs dispersion is not achieved with the grinding and the use of industrial additives, the additive Disperbyk 2012 presented the highest value of electrical conductivity as a lonely compound, but the final electrical conductivity obtained when using it was not so high, it indicates that this additive must have specific conditions of activation, which implies that a further experimental work is required in order to get a suitable working window that allows a combination of variables with greater industrial application. © Published under licence by IOP Publishing Ltd.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:42Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:42Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5700
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1247/1/012011
identifier_str_mv 17426588
10.1088/1742-6596/1247/1/012011
url http://hdl.handle.net/11407/5700
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071706237&doi=10.1088%2f1742-6596%2f1247%2f1%2f012011&partnerID=40&md5=586478472870eabf998ddb01e624d6ad
dc.relation.citationvolume.none.fl_str_mv 1247
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.references.none.fl_str_mv Drexler, K.E., (1992) Nanosystems: Molecular Machinery, Manufacturing and Computation, , (New York: John Wiley amp
Sons)
Wang, X., Li, Q., Xie, J., Jin, Z., Wang, J., Li, Y., Jiang, K., Fan, S., (2009) Nano Letters, 9 (9), p. 3137
Mendoza Reales, O.A., Arias Jaramillo, Y.P., Ochoa Botero, J.C., Delgado, C.A., Quintero, J.H., Toledo Filho, R.D., (2018) Cement and Concrete Research, 107, pp. 101-109
Mendoza Reales, O.A., Ocampo, C., Arias Jaramillo, Y.P., Ochoa Botero, J.C., Quintero, J.H., Silva, E.C.C.M., Toledo Filho, R.D., (2018) Hindawi Advances in Civil Engineering
Rodríguez, B., Quintero, J.H., Arias, Y.P., Mendoza-Reales, O.A., Ochoa-Botero, J.C., Toledo-Filho, R.D., (2017) IOP Conf. Series: Journal of Physics: Conf. Series, 935
Alsharefa, J., Tahaa, M., Khana, T., (2017) Journal Teknologi, 79, pp. 69-81
Mittal, G., Dhand, V., Rhee, K.Y., Park, S.-J., Lee, W.R., (2015) J. Ind. Eng. Chem., 21, pp. 11-25
Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C., (2001) Science, 294 (5545), pp. 1317-1320
Schadler, L.S., Giannaris, S.C., Ajayan, P.M., (1999) Appl. Phys. Lett., 73 (26), pp. 3842-3844
Coleman, J.N., Khan, U., Blau, W.J., Gunko, Y.K., (2006) Carbon, 44 (9), pp. 1624-1652
Li, G.Y., Wang, P.M., Zhao, X., (2005) Carbon, 43 (6), pp. 1239-1245
Huhtala, M., Kuronen, A., Kaski, K., (2002) Computer Physics Communications, 146 (1), pp. 30-37
Jiang, L., Gao, L., Sun, J., (2003) Jour. Coll. Interf. Sci., 260 (1), pp. 89-94
Yu, J., Grossiord, N., Koning, C.E., Loos, J., (2007) Carbon, 45 (3), pp. 618-623
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Institute of Physics Publishing
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv Journal of Physics: Conference Series
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159255075291136
spelling 20192020-04-29T14:53:42Z2020-04-29T14:53:42Z17426588http://hdl.handle.net/11407/570010.1088/1742-6596/1247/1/012011The carbon nanotubes (CNTs) dispersion has gained interest in recent years due to its multiple applications in fields such as electronics, concrete, optics, environmental, automotive, marine and aeronautics coatings. In this sense it is necessary to develop stable dispersions of CNTs. On a laboratory scale the method of preparation of the CNTs is usually done using sonication, but this method is not appropriate to obtain CNTs dispersions on a larger scale. This work studies Multiwalled Carbon Nanotubes (MWCNTs) in aqueous medium comparing an industrial laboratory dispersion method vs traditional sonication. A factorial experimental design was performed, considering as variables: dispersion method, type of surfactant and use of a rheological modifier. The samples were prepared according to the full factorial DoE and properties such as electrical conductivity and pH were studied. Stability measurements were carried out over time and charge stability studies were performed using zeta potential measurements. The results shown the best combination of variables for the electrical conductivity was: dispersion method, sonication; dispersant, TX-100; rheological modifier, present. Although the results show that an improvement in CNTs dispersion is not achieved with the grinding and the use of industrial additives, the additive Disperbyk 2012 presented the highest value of electrical conductivity as a lonely compound, but the final electrical conductivity obtained when using it was not so high, it indicates that this additive must have specific conditions of activation, which implies that a further experimental work is required in order to get a suitable working window that allows a combination of variables with greater industrial application. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071706237&doi=10.1088%2f1742-6596%2f1247%2f1%2f012011&partnerID=40&md5=586478472870eabf998ddb01e624d6ad12471Drexler, K.E., (1992) Nanosystems: Molecular Machinery, Manufacturing and Computation, , (New York: John Wiley ampSons)Wang, X., Li, Q., Xie, J., Jin, Z., Wang, J., Li, Y., Jiang, K., Fan, S., (2009) Nano Letters, 9 (9), p. 3137Mendoza Reales, O.A., Arias Jaramillo, Y.P., Ochoa Botero, J.C., Delgado, C.A., Quintero, J.H., Toledo Filho, R.D., (2018) Cement and Concrete Research, 107, pp. 101-109Mendoza Reales, O.A., Ocampo, C., Arias Jaramillo, Y.P., Ochoa Botero, J.C., Quintero, J.H., Silva, E.C.C.M., Toledo Filho, R.D., (2018) Hindawi Advances in Civil EngineeringRodríguez, B., Quintero, J.H., Arias, Y.P., Mendoza-Reales, O.A., Ochoa-Botero, J.C., Toledo-Filho, R.D., (2017) IOP Conf. Series: Journal of Physics: Conf. Series, 935Alsharefa, J., Tahaa, M., Khana, T., (2017) Journal Teknologi, 79, pp. 69-81Mittal, G., Dhand, V., Rhee, K.Y., Park, S.-J., Lee, W.R., (2015) J. Ind. Eng. Chem., 21, pp. 11-25Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C., (2001) Science, 294 (5545), pp. 1317-1320Schadler, L.S., Giannaris, S.C., Ajayan, P.M., (1999) Appl. Phys. Lett., 73 (26), pp. 3842-3844Coleman, J.N., Khan, U., Blau, W.J., Gunko, Y.K., (2006) Carbon, 44 (9), pp. 1624-1652Li, G.Y., Wang, P.M., Zhao, X., (2005) Carbon, 43 (6), pp. 1239-1245Huhtala, M., Kuronen, A., Kaski, K., (2002) Computer Physics Communications, 146 (1), pp. 30-37Jiang, L., Gao, L., Sun, J., (2003) Jour. Coll. Interf. Sci., 260 (1), pp. 89-94Yu, J., Grossiord, N., Koning, C.E., Loos, J., (2007) Carbon, 45 (3), pp. 618-623Journal of Physics: Conference SeriesAdditivesDispersionsElectric conductivityEngineering researchIndustrial laboratoriesMarine applicationsNanotubesSonicationYarnElectrical conductivityFactorial experimental designIndustrial additivesMultiple applicationsMultiwalled carbon nanotube (MWCNTs)Rheological modifiersStability measurementsZeta potential measurementsMultiwalled carbon nanotubes (MWCN)Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous mediumConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Rodriguez, C., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Vélez, E., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Restrepo, J., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Quintero, J.H., Escuela de Fisica, Universidad Industrial de Santander, Bucaramanga, Colombia; Acuña, R., Universidad Nacional de Colombia, Medellin, Colombiahttp://purl.org/coar/access_right/c_16ecRodriguez C.Vélez E.Restrepo J.Quintero J.H.Acuña R.11407/5700oai:repository.udem.edu.co:11407/57002020-05-27 19:12:55.341Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co