Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium
The carbon nanotubes (CNTs) dispersion has gained interest in recent years due to its multiple applications in fields such as electronics, concrete, optics, environmental, automotive, marine and aeronautics coatings. In this sense it is necessary to develop stable dispersions of CNTs. On a laborator...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5700
- Acceso en línea:
- http://hdl.handle.net/11407/5700
- Palabra clave:
- Additives
Dispersions
Electric conductivity
Engineering research
Industrial laboratories
Marine applications
Nanotubes
Sonication
Yarn
Electrical conductivity
Factorial experimental design
Industrial additives
Multiple applications
Multiwalled carbon nanotube (MWCNTs)
Rheological modifiers
Stability measurements
Zeta potential measurements
Multiwalled carbon nanotubes (MWCN)
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_5a5321c815d70571c55f8ab572beb7a7 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5700 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium |
title |
Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium |
spellingShingle |
Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium Additives Dispersions Electric conductivity Engineering research Industrial laboratories Marine applications Nanotubes Sonication Yarn Electrical conductivity Factorial experimental design Industrial additives Multiple applications Multiwalled carbon nanotube (MWCNTs) Rheological modifiers Stability measurements Zeta potential measurements Multiwalled carbon nanotubes (MWCN) |
title_short |
Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium |
title_full |
Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium |
title_fullStr |
Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium |
title_full_unstemmed |
Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium |
title_sort |
Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium |
dc.subject.none.fl_str_mv |
Additives Dispersions Electric conductivity Engineering research Industrial laboratories Marine applications Nanotubes Sonication Yarn Electrical conductivity Factorial experimental design Industrial additives Multiple applications Multiwalled carbon nanotube (MWCNTs) Rheological modifiers Stability measurements Zeta potential measurements Multiwalled carbon nanotubes (MWCN) |
topic |
Additives Dispersions Electric conductivity Engineering research Industrial laboratories Marine applications Nanotubes Sonication Yarn Electrical conductivity Factorial experimental design Industrial additives Multiple applications Multiwalled carbon nanotube (MWCNTs) Rheological modifiers Stability measurements Zeta potential measurements Multiwalled carbon nanotubes (MWCN) |
description |
The carbon nanotubes (CNTs) dispersion has gained interest in recent years due to its multiple applications in fields such as electronics, concrete, optics, environmental, automotive, marine and aeronautics coatings. In this sense it is necessary to develop stable dispersions of CNTs. On a laboratory scale the method of preparation of the CNTs is usually done using sonication, but this method is not appropriate to obtain CNTs dispersions on a larger scale. This work studies Multiwalled Carbon Nanotubes (MWCNTs) in aqueous medium comparing an industrial laboratory dispersion method vs traditional sonication. A factorial experimental design was performed, considering as variables: dispersion method, type of surfactant and use of a rheological modifier. The samples were prepared according to the full factorial DoE and properties such as electrical conductivity and pH were studied. Stability measurements were carried out over time and charge stability studies were performed using zeta potential measurements. The results shown the best combination of variables for the electrical conductivity was: dispersion method, sonication; dispersant, TX-100; rheological modifier, present. Although the results show that an improvement in CNTs dispersion is not achieved with the grinding and the use of industrial additives, the additive Disperbyk 2012 presented the highest value of electrical conductivity as a lonely compound, but the final electrical conductivity obtained when using it was not so high, it indicates that this additive must have specific conditions of activation, which implies that a further experimental work is required in order to get a suitable working window that allows a combination of variables with greater industrial application. © Published under licence by IOP Publishing Ltd. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:42Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:42Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
17426588 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5700 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/1247/1/012011 |
identifier_str_mv |
17426588 10.1088/1742-6596/1247/1/012011 |
url |
http://hdl.handle.net/11407/5700 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071706237&doi=10.1088%2f1742-6596%2f1247%2f1%2f012011&partnerID=40&md5=586478472870eabf998ddb01e624d6ad |
dc.relation.citationvolume.none.fl_str_mv |
1247 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.references.none.fl_str_mv |
Drexler, K.E., (1992) Nanosystems: Molecular Machinery, Manufacturing and Computation, , (New York: John Wiley amp Sons) Wang, X., Li, Q., Xie, J., Jin, Z., Wang, J., Li, Y., Jiang, K., Fan, S., (2009) Nano Letters, 9 (9), p. 3137 Mendoza Reales, O.A., Arias Jaramillo, Y.P., Ochoa Botero, J.C., Delgado, C.A., Quintero, J.H., Toledo Filho, R.D., (2018) Cement and Concrete Research, 107, pp. 101-109 Mendoza Reales, O.A., Ocampo, C., Arias Jaramillo, Y.P., Ochoa Botero, J.C., Quintero, J.H., Silva, E.C.C.M., Toledo Filho, R.D., (2018) Hindawi Advances in Civil Engineering Rodríguez, B., Quintero, J.H., Arias, Y.P., Mendoza-Reales, O.A., Ochoa-Botero, J.C., Toledo-Filho, R.D., (2017) IOP Conf. Series: Journal of Physics: Conf. Series, 935 Alsharefa, J., Tahaa, M., Khana, T., (2017) Journal Teknologi, 79, pp. 69-81 Mittal, G., Dhand, V., Rhee, K.Y., Park, S.-J., Lee, W.R., (2015) J. Ind. Eng. Chem., 21, pp. 11-25 Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C., (2001) Science, 294 (5545), pp. 1317-1320 Schadler, L.S., Giannaris, S.C., Ajayan, P.M., (1999) Appl. Phys. Lett., 73 (26), pp. 3842-3844 Coleman, J.N., Khan, U., Blau, W.J., Gunko, Y.K., (2006) Carbon, 44 (9), pp. 1624-1652 Li, G.Y., Wang, P.M., Zhao, X., (2005) Carbon, 43 (6), pp. 1239-1245 Huhtala, M., Kuronen, A., Kaski, K., (2002) Computer Physics Communications, 146 (1), pp. 30-37 Jiang, L., Gao, L., Sun, J., (2003) Jour. Coll. Interf. Sci., 260 (1), pp. 89-94 Yu, J., Grossiord, N., Koning, C.E., Loos, J., (2007) Carbon, 45 (3), pp. 618-623 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.source.none.fl_str_mv |
Journal of Physics: Conference Series |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159255075291136 |
spelling |
20192020-04-29T14:53:42Z2020-04-29T14:53:42Z17426588http://hdl.handle.net/11407/570010.1088/1742-6596/1247/1/012011The carbon nanotubes (CNTs) dispersion has gained interest in recent years due to its multiple applications in fields such as electronics, concrete, optics, environmental, automotive, marine and aeronautics coatings. In this sense it is necessary to develop stable dispersions of CNTs. On a laboratory scale the method of preparation of the CNTs is usually done using sonication, but this method is not appropriate to obtain CNTs dispersions on a larger scale. This work studies Multiwalled Carbon Nanotubes (MWCNTs) in aqueous medium comparing an industrial laboratory dispersion method vs traditional sonication. A factorial experimental design was performed, considering as variables: dispersion method, type of surfactant and use of a rheological modifier. The samples were prepared according to the full factorial DoE and properties such as electrical conductivity and pH were studied. Stability measurements were carried out over time and charge stability studies were performed using zeta potential measurements. The results shown the best combination of variables for the electrical conductivity was: dispersion method, sonication; dispersant, TX-100; rheological modifier, present. Although the results show that an improvement in CNTs dispersion is not achieved with the grinding and the use of industrial additives, the additive Disperbyk 2012 presented the highest value of electrical conductivity as a lonely compound, but the final electrical conductivity obtained when using it was not so high, it indicates that this additive must have specific conditions of activation, which implies that a further experimental work is required in order to get a suitable working window that allows a combination of variables with greater industrial application. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071706237&doi=10.1088%2f1742-6596%2f1247%2f1%2f012011&partnerID=40&md5=586478472870eabf998ddb01e624d6ad12471Drexler, K.E., (1992) Nanosystems: Molecular Machinery, Manufacturing and Computation, , (New York: John Wiley ampSons)Wang, X., Li, Q., Xie, J., Jin, Z., Wang, J., Li, Y., Jiang, K., Fan, S., (2009) Nano Letters, 9 (9), p. 3137Mendoza Reales, O.A., Arias Jaramillo, Y.P., Ochoa Botero, J.C., Delgado, C.A., Quintero, J.H., Toledo Filho, R.D., (2018) Cement and Concrete Research, 107, pp. 101-109Mendoza Reales, O.A., Ocampo, C., Arias Jaramillo, Y.P., Ochoa Botero, J.C., Quintero, J.H., Silva, E.C.C.M., Toledo Filho, R.D., (2018) Hindawi Advances in Civil EngineeringRodríguez, B., Quintero, J.H., Arias, Y.P., Mendoza-Reales, O.A., Ochoa-Botero, J.C., Toledo-Filho, R.D., (2017) IOP Conf. Series: Journal of Physics: Conf. Series, 935Alsharefa, J., Tahaa, M., Khana, T., (2017) Journal Teknologi, 79, pp. 69-81Mittal, G., Dhand, V., Rhee, K.Y., Park, S.-J., Lee, W.R., (2015) J. Ind. Eng. Chem., 21, pp. 11-25Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C., (2001) Science, 294 (5545), pp. 1317-1320Schadler, L.S., Giannaris, S.C., Ajayan, P.M., (1999) Appl. Phys. Lett., 73 (26), pp. 3842-3844Coleman, J.N., Khan, U., Blau, W.J., Gunko, Y.K., (2006) Carbon, 44 (9), pp. 1624-1652Li, G.Y., Wang, P.M., Zhao, X., (2005) Carbon, 43 (6), pp. 1239-1245Huhtala, M., Kuronen, A., Kaski, K., (2002) Computer Physics Communications, 146 (1), pp. 30-37Jiang, L., Gao, L., Sun, J., (2003) Jour. Coll. Interf. Sci., 260 (1), pp. 89-94Yu, J., Grossiord, N., Koning, C.E., Loos, J., (2007) Carbon, 45 (3), pp. 618-623Journal of Physics: Conference SeriesAdditivesDispersionsElectric conductivityEngineering researchIndustrial laboratoriesMarine applicationsNanotubesSonicationYarnElectrical conductivityFactorial experimental designIndustrial additivesMultiple applicationsMultiwalled carbon nanotube (MWCNTs)Rheological modifiersStability measurementsZeta potential measurementsMultiwalled carbon nanotubes (MWCN)Testing industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous mediumConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Rodriguez, C., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Vélez, E., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Restrepo, J., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Quintero, J.H., Escuela de Fisica, Universidad Industrial de Santander, Bucaramanga, Colombia; Acuña, R., Universidad Nacional de Colombia, Medellin, Colombiahttp://purl.org/coar/access_right/c_16ecRodriguez C.Vélez E.Restrepo J.Quintero J.H.Acuña R.11407/5700oai:repository.udem.edu.co:11407/57002020-05-27 19:12:55.341Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |