Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces
A systematic study of ethylene adsorption over δ-MoC(001), TiC(001), and ZrC(001) surfaces was conducted by means of calculations based on periodic density functional theory. The structure and electronic properties of each carbide pristine surface had a strong influence in the bonding of ethylene. I...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/2872
- Acceso en línea:
- http://hdl.handle.net/11407/2872
- Palabra clave:
- Adsorption
Binding energy
Bins
Carbides
Carbon
Chemical bonds
Electronic properties
Ethylene
Platinum
Titanium carbide
Van der Waals forces
Zirconium compounds
Adsorbate-geometry
Adsorption process
Binding geometries
Bonding mechanism
Ethylene adsorption
Hydrogenation of olefins
Periodic density functional theory
Van der Waals correction
Density functional theory
- Rights
- restrictedAccess
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_59d30a684a4eeff71c526d584024db6f |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/2872 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
spelling |
2016-10-28T16:44:56Z2016-10-28T16:44:56Z201619327447http://hdl.handle.net/11407/287210.1021/acs.jpcc.6b03106A systematic study of ethylene adsorption over δ-MoC(001), TiC(001), and ZrC(001) surfaces was conducted by means of calculations based on periodic density functional theory. The structure and electronic properties of each carbide pristine surface had a strong influence in the bonding of ethylene. It was found that the metal and carbon sites of the carbide could participate in the adsorption process. As a consequence of this, very different bonding mechanisms were seen on δ-MoC(001) and TiC(001). The bonding of the molecule on the TMC(001) systems showed only minor similarities to the type of bonding found on a typical metal like Pt(111). In general, the ethylene binding energy follow the trend in stability: ZrC(001) < TiC(001) < δ-MoC(001) < Pt(111). The van der Waals correction to the energy produces large binding energy values, modifies the stability orders and drives the ethylene closer to the surface but the adsorbate geometry parameters remain unchanged. Ethylene was activated on clearly defined binding geometries, changing its hybridization from sp2 to sp3 with an elongation (0.16–0.31 Å) of the C═C bond. On the basis of this theoretical study, δ-MoC(001) is proposed as a potential catalyst for the hydrogenation of olefins, whereas TiC(001) could be useful for their hydrogenolysis.engAmerican Chemical Societyhttp://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b03106Journal of Physical Chemistry CScopusSystematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) SurfacesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecQuímica de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaDepartamento de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, ColombiaChemistry Department, Brookhaven National Laboratory, Upton, NY, United StatesJimenez-Orozco C.Florez E.Moreno A.Liu P.Rodriguez J.A.AdsorptionBinding energyBinsCarbidesCarbonChemical bondsElectronic propertiesEthylenePlatinumTitanium carbideVan der Waals forcesZirconium compoundsAdsorbate-geometryAdsorption processBinding geometriesBonding mechanismEthylene adsorptionHydrogenation of olefinsPeriodic density functional theoryVan der Waals correctionDensity functional theory11407/2872oai:repository.udem.edu.co:11407/28722020-05-27 16:24:37.977Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |
dc.title.spa.fl_str_mv |
Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces |
title |
Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces |
spellingShingle |
Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces Adsorption Binding energy Bins Carbides Carbon Chemical bonds Electronic properties Ethylene Platinum Titanium carbide Van der Waals forces Zirconium compounds Adsorbate-geometry Adsorption process Binding geometries Bonding mechanism Ethylene adsorption Hydrogenation of olefins Periodic density functional theory Van der Waals correction Density functional theory |
title_short |
Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces |
title_full |
Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces |
title_fullStr |
Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces |
title_full_unstemmed |
Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces |
title_sort |
Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces |
dc.contributor.affiliation.spa.fl_str_mv |
Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia Departamento de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States |
dc.subject.keyword.eng.fl_str_mv |
Adsorption Binding energy Bins Carbides Carbon Chemical bonds Electronic properties Ethylene Platinum Titanium carbide Van der Waals forces Zirconium compounds Adsorbate-geometry Adsorption process Binding geometries Bonding mechanism Ethylene adsorption Hydrogenation of olefins Periodic density functional theory Van der Waals correction Density functional theory |
topic |
Adsorption Binding energy Bins Carbides Carbon Chemical bonds Electronic properties Ethylene Platinum Titanium carbide Van der Waals forces Zirconium compounds Adsorbate-geometry Adsorption process Binding geometries Bonding mechanism Ethylene adsorption Hydrogenation of olefins Periodic density functional theory Van der Waals correction Density functional theory |
description |
A systematic study of ethylene adsorption over δ-MoC(001), TiC(001), and ZrC(001) surfaces was conducted by means of calculations based on periodic density functional theory. The structure and electronic properties of each carbide pristine surface had a strong influence in the bonding of ethylene. It was found that the metal and carbon sites of the carbide could participate in the adsorption process. As a consequence of this, very different bonding mechanisms were seen on δ-MoC(001) and TiC(001). The bonding of the molecule on the TMC(001) systems showed only minor similarities to the type of bonding found on a typical metal like Pt(111). In general, the ethylene binding energy follow the trend in stability: ZrC(001) < TiC(001) < δ-MoC(001) < Pt(111). The van der Waals correction to the energy produces large binding energy values, modifies the stability orders and drives the ethylene closer to the surface but the adsorbate geometry parameters remain unchanged. Ethylene was activated on clearly defined binding geometries, changing its hybridization from sp2 to sp3 with an elongation (0.16–0.31 Å) of the C═C bond. On the basis of this theoretical study, δ-MoC(001) is proposed as a potential catalyst for the hydrogenation of olefins, whereas TiC(001) could be useful for their hydrogenolysis. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2016-10-28T16:44:56Z |
dc.date.available.none.fl_str_mv |
2016-10-28T16:44:56Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
19327447 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/2872 |
dc.identifier.doi.none.fl_str_mv |
10.1021/acs.jpcc.6b03106 |
identifier_str_mv |
19327447 10.1021/acs.jpcc.6b03106 |
url |
http://hdl.handle.net/11407/2872 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b03106 |
dc.relation.ispartofes.spa.fl_str_mv |
Journal of Physical Chemistry C |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
American Chemical Society |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159136853590016 |