Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces

A systematic study of ethylene adsorption over δ-MoC(001), TiC(001), and ZrC(001) surfaces was conducted by means of calculations based on periodic density functional theory. The structure and electronic properties of each carbide pristine surface had a strong influence in the bonding of ethylene. I...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/2872
Acceso en línea:
http://hdl.handle.net/11407/2872
Palabra clave:
Adsorption
Binding energy
Bins
Carbides
Carbon
Chemical bonds
Electronic properties
Ethylene
Platinum
Titanium carbide
Van der Waals forces
Zirconium compounds
Adsorbate-geometry
Adsorption process
Binding geometries
Bonding mechanism
Ethylene adsorption
Hydrogenation of olefins
Periodic density functional theory
Van der Waals correction
Density functional theory
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_59d30a684a4eeff71c526d584024db6f
oai_identifier_str oai:repository.udem.edu.co:11407/2872
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
spelling 2016-10-28T16:44:56Z2016-10-28T16:44:56Z201619327447http://hdl.handle.net/11407/287210.1021/acs.jpcc.6b03106A systematic study of ethylene adsorption over δ-MoC(001), TiC(001), and ZrC(001) surfaces was conducted by means of calculations based on periodic density functional theory. The structure and electronic properties of each carbide pristine surface had a strong influence in the bonding of ethylene. It was found that the metal and carbon sites of the carbide could participate in the adsorption process. As a consequence of this, very different bonding mechanisms were seen on δ-MoC(001) and TiC(001). The bonding of the molecule on the TMC(001) systems showed only minor similarities to the type of bonding found on a typical metal like Pt(111). In general, the ethylene binding energy follow the trend in stability: ZrC(001) < TiC(001) < δ-MoC(001) < Pt(111). The van der Waals correction to the energy produces large binding energy values, modifies the stability orders and drives the ethylene closer to the surface but the adsorbate geometry parameters remain unchanged. Ethylene was activated on clearly defined binding geometries, changing its hybridization from sp2 to sp3 with an elongation (0.16–0.31 Å) of the C═C bond. On the basis of this theoretical study, δ-MoC(001) is proposed as a potential catalyst for the hydrogenation of olefins, whereas TiC(001) could be useful for their hydrogenolysis.engAmerican Chemical Societyhttp://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b03106Journal of Physical Chemistry CScopusSystematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) SurfacesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecQuímica de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaDepartamento de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, ColombiaChemistry Department, Brookhaven National Laboratory, Upton, NY, United StatesJimenez-Orozco C.Florez E.Moreno A.Liu P.Rodriguez J.A.AdsorptionBinding energyBinsCarbidesCarbonChemical bondsElectronic propertiesEthylenePlatinumTitanium carbideVan der Waals forcesZirconium compoundsAdsorbate-geometryAdsorption processBinding geometriesBonding mechanismEthylene adsorptionHydrogenation of olefinsPeriodic density functional theoryVan der Waals correctionDensity functional theory11407/2872oai:repository.udem.edu.co:11407/28722020-05-27 16:24:37.977Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co
dc.title.spa.fl_str_mv Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces
title Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces
spellingShingle Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces
Adsorption
Binding energy
Bins
Carbides
Carbon
Chemical bonds
Electronic properties
Ethylene
Platinum
Titanium carbide
Van der Waals forces
Zirconium compounds
Adsorbate-geometry
Adsorption process
Binding geometries
Bonding mechanism
Ethylene adsorption
Hydrogenation of olefins
Periodic density functional theory
Van der Waals correction
Density functional theory
title_short Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces
title_full Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces
title_fullStr Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces
title_full_unstemmed Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces
title_sort Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces
dc.contributor.affiliation.spa.fl_str_mv Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
Departamento de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia
Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States
dc.subject.keyword.eng.fl_str_mv Adsorption
Binding energy
Bins
Carbides
Carbon
Chemical bonds
Electronic properties
Ethylene
Platinum
Titanium carbide
Van der Waals forces
Zirconium compounds
Adsorbate-geometry
Adsorption process
Binding geometries
Bonding mechanism
Ethylene adsorption
Hydrogenation of olefins
Periodic density functional theory
Van der Waals correction
Density functional theory
topic Adsorption
Binding energy
Bins
Carbides
Carbon
Chemical bonds
Electronic properties
Ethylene
Platinum
Titanium carbide
Van der Waals forces
Zirconium compounds
Adsorbate-geometry
Adsorption process
Binding geometries
Bonding mechanism
Ethylene adsorption
Hydrogenation of olefins
Periodic density functional theory
Van der Waals correction
Density functional theory
description A systematic study of ethylene adsorption over δ-MoC(001), TiC(001), and ZrC(001) surfaces was conducted by means of calculations based on periodic density functional theory. The structure and electronic properties of each carbide pristine surface had a strong influence in the bonding of ethylene. It was found that the metal and carbon sites of the carbide could participate in the adsorption process. As a consequence of this, very different bonding mechanisms were seen on δ-MoC(001) and TiC(001). The bonding of the molecule on the TMC(001) systems showed only minor similarities to the type of bonding found on a typical metal like Pt(111). In general, the ethylene binding energy follow the trend in stability: ZrC(001) < TiC(001) < δ-MoC(001) < Pt(111). The van der Waals correction to the energy produces large binding energy values, modifies the stability orders and drives the ethylene closer to the surface but the adsorbate geometry parameters remain unchanged. Ethylene was activated on clearly defined binding geometries, changing its hybridization from sp2 to sp3 with an elongation (0.16–0.31 Å) of the C═C bond. On the basis of this theoretical study, δ-MoC(001) is proposed as a potential catalyst for the hydrogenation of olefins, whereas TiC(001) could be useful for their hydrogenolysis.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2016-10-28T16:44:56Z
dc.date.available.none.fl_str_mv 2016-10-28T16:44:56Z
dc.date.created.none.fl_str_mv 2016
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 19327447
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/2872
dc.identifier.doi.none.fl_str_mv 10.1021/acs.jpcc.6b03106
identifier_str_mv 19327447
10.1021/acs.jpcc.6b03106
url http://hdl.handle.net/11407/2872
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b03106
dc.relation.ispartofes.spa.fl_str_mv Journal of Physical Chemistry C
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv American Chemical Society
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159136853590016