Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer

Brick is one of the most common building materials, and it is also one of the largest components of waste generated from both construction and demolition. Reuse of this waste would reduce the environmental and social impacts of construction. One potential bulk use of such waste is as a cementing age...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6088
Acceso en línea:
http://hdl.handle.net/11407/6088
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_54dea576fa305cd1799d69c4c9e031b6
oai_identifier_str oai:repository.udem.edu.co:11407/6088
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer
title Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer
spellingShingle Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer
title_short Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer
title_full Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer
title_fullStr Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer
title_full_unstemmed Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer
title_sort Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer
description Brick is one of the most common building materials, and it is also one of the largest components of waste generated from both construction and demolition. Reuse of this waste would reduce the environmental and social impacts of construction. One potential bulk use of such waste is as a cementing agent for soil stabilization. However, this is currently limited by the need to mill the residue to a particle size below 0.035 mm. In this study, the behavior of two soil types stabilized using alkali-activated brick dust was investigated. The unconfined compression strength at different curing temperatures and moistures and the use of different types and concentrations of alkaline activators were investigated. It was found that the addition of brick dust resulted in an increase in the soil strength between 1.7-2.3 times with respect to the non-stabilized material, suggesting that the resulting materials will find practical applications in construction. © 2019 by the authors.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:59:18Z
dc.date.available.none.fl_str_mv 2021-02-05T14:59:18Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 20711050
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6088
dc.identifier.doi.none.fl_str_mv 10.3390/su11040967
identifier_str_mv 20711050
10.3390/su11040967
url http://hdl.handle.net/11407/6088
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061579637&doi=10.3390%2fsu11040967&partnerID=40&md5=06afaef93e6f7ab5872744526177274a
dc.relation.citationvolume.none.fl_str_mv 11
dc.relation.citationissue.none.fl_str_mv 4
dc.relation.references.none.fl_str_mv Fang, S., Hong, H., Zhang, P., Mechanical Property Tests and Strength Formulas of Basalt Fiber Reinforced Recycled Aggregate Concrete (2018) Materials, 11, p. 1851
Silva, R., de Brito, J., Dhir, R., Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production (2014) Constr. Build. Mater., 65, pp. 201-217
Tam, V., Chapter 24-Recovery of Construction and DemolitionWastes (2014) Handbook of Recycling, pp. 385-396. , Elsevier: Amsterdam, The Netherlands
Allahverdi, A., Kani, E.N., Construction wastes as raw materials for geopolymer binders (2009) Int. J. Civ. Eng., 7, pp. 154-160
Xuan, D.X., Molenaar, A.A.A., Houben, L.J.M., Evaluation of cement treatment of reclaimed construction and demolition waste as road bases (2015) J. Clean. Prod., 100, pp. 77-83
Colangelo, F., Petrillo, A., Cioffi, R., Borrelli, C., Forcina, A., Life cycle assessment of recycled concretes: A case study in southern Italy (2018) Sci. Total Environ., 615, pp. 1506-1517
Colangelo, F., Cioffi, R., Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy (2017) Compos. Part B, 115, pp. 43-50
Aliabdo, A.A., Abd-Elmoaty, A.M., Hassan, H.H., Utilization of crushed clay brick in concrete industry (2014) Alex. Eng. J., 53, pp. 151-168
Evangelista, L., de Brito, J., Concrete with fine recycled aggregates: A review (2014) Eur. J. Environ. Civ. Eng., 18, pp. 129-172
Hossain, K., Lachemi, M., Easa, S., Stabilized soils for construction applications incorporating natural resources of Papua New Guinea (2007) Rosour. Conserv. Recycl., 51, pp. 711-731
Qiao, D., Qian, J., Wang, Q., Dang, Y., Zhang, H., Zenga, D., Utilization of sulfate-rich solid wastes in rural road construction in the Three Gorges Reservoir (2010) Rosour. Conserv. Recycl., 54, pp. 1368-1376
Xuan, D.X., Schlangen, E., Molenaar, A.A.A., Houben, L.J.M., Influence of quality and variation of recycled masonry aggregates on failure behavior of cement treated demolition waste (2014) Construct. Build. Mater., 71, pp. 521-527
Cabalar, A.F., Hassan, D.I., Abdulnafaa, M.D., Use of waste ceramic tiles for road pavement subgrade (2016) Road Mater. Pavement Des., 18, pp. 882-896
Cabalar, A.F., Zardikawi, O.A., Abdulnafaa, M.D., Utilisation of construction and demolition materials with clay for road pavement subgrade (2017) Road Mater. Pavement Des.
Poon, C.S., Chan, D., Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base (2006) Constr. Build. Mater., 20, pp. 578-585
Arulrajah, A., Disfani, M.M., Horpibulsuk, S., Suksiripattanapong, C., Prongmanee, N., Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications (2014) Construct. Build. Mater., 58, pp. 245-257
Arisha, A., Gabr, A., El-Badawy, S., Shwally, S., Using blends of construction and demolition waste materials and recycled clay masonry brick in pavement (2016) Procedia Eng., 143, pp. 1317-1324
Bektas, F., Wang, K., Ceylan, H., Effects of crushed clay brick aggregate on mortar durability (2009) Construct. Build. Mater., 23, pp. 1909-1914
Bektaş, F., Alkali reactivity of crushed clay brick aggregate (2014) Construct. Build. Mater., 52, pp. 79-85
Zong, L., Fei, Z., Zhang, S., Permeability of recycled aggregate concrete containing fly ash and clay brick waste (2014) J. Clean. Prod., 70, pp. 175-182
Kong, D.L.Y., Sanjayan, J.G., Damage behavior of geopolymer composites exposed to elevated temperatures (2008) Cem. Concr. Compos., 30, pp. 986-991
Robayo-Salazar, R.A., Mejía-Arcila, J.M., Mejía de Gutierrez, R., Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials (2017) J. Clean. Prod., 166, pp. 242-252
Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., Galetakis, M., Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers (2015) Adv. Powder Technol., 26, pp. 368-376
Robayo, R.A., Mulford, A., Munera, J., Mejía, R., Alternative cements based on alkali-activated red clay brick waste (2016) Construct. Build. Mater., 128, pp. 163-169
Zaharaki, D., Galetakis, M., Komnitsas, K., Valorization of construction and demolition (C&D) and industrial wastes through alkali activation (2016) Construct. Build. Mater., 121, pp. 686-693
Hidalgo, C.A., Arias, Y.P., Stabilized soils as an alternative for construction of low transit volume roads (2017) Vias de Bajo Volumen de Tránsito, 1, pp. 41-62. , 1st ed.
Montoya, L.J., López, L.D., Eds.
Sello Editorial Universidad de Medellín: Medellín, Colombia. (In Spanish)
Teutonico, J.M., McCaig, I., Burns, C., Ashurst, J., The Smeaton project: Factors affecting the properties of lime-based mortars (1993) APT Bull., 25, pp. 32-49
Nazari, A., Sanjayan, J.G., Synthesis of geopolymer from industrial wastes (2015) J. Clean. Prod., 99, pp. 297-304
Shekhovtsova, J., Zhernovsky, I., Kovtun, M., Kozhukhova, N., Zhernovskaya, I., Kearsley, E., Estimation of fly ash reactivity for use in alkali-activated cements-A step towards sustainable building material and waste utilization (2018) J. Clean. Prod., 178, pp. 22-33
Weng, L., Sagoe-Crentsil, K., Brown, T., Song, S., Effects of aluminates on the formation of geopolymers (2005) Mater. Sci. Eng., 117, pp. 163-168
Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S., Alkali-activated binders: A review. Part 2. About materials and binders manufacture (2008) Construct. Build. Mater., 22, pp. 1315-1322
Antoni, A., Wiyono, D., Vianthi, A., Putra, P., Kartadinata, G., Hardjito, D., Effect of particle size on properties of sidoarjo mud-based geopolymer (2015) Mater. Sci. Forum, 803, pp. 44-48
Ryu, G.S., Lee, Y.B., Koh, K.T., Chung, Y.S., The mechanical properties of fly ash-based geopolymer concrete with alkaline activators (2013) Construct. Build. Mater., 47, pp. 409-418
Hu, W., Nie, Q., Huang, B., Shu, X., He, Q., Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes (2018) J. Clean. Prod., 186, pp. 799-806
Rodríguez, E., Mejía de Gutiérrez, R., Bernal, S., Gordillo, M., Effect of the SiO2/Al2O3 and Na2O/SiO2ratios on the properties of geopolymers based on MK (2009) Revista Facultad de Ingeniería Universidad de Antioquia, 49, pp. 30-41. , (In Spanish)
Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures (Withdrawn 2018) (2009), www.astm.org, ASTM D5102-09
ASTM International: West Conshohocken, PA, USA
Lambe, T.W., Whitman, R.V., Soil Mechanics (1969), p. 582. , Wiley: New York, NY, USA
Murthy, V., Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering (2002), p. 1056. , Taylor & Francis Group: New York, NY, USA
Soares, P., Pinto, A.T., Ferreira, V.M., Labrincha, J.A., Geopolímeros basados en residuos de la producción de áridos ligeros (2008) Mater. Construcc., 58, pp. 23-34
Palomo, A., Grutzeck, M.W., Blanco, M.T., Alkali-activated fly ashes (1999) Cem. Concr. Res., 29, pp. 1323-1329
Mo, B., Zhu, H., Cui, X., He, Y., Gong, S., Effect of curing temperature on geopolymerization of metakaolin-based geopolymers (2014) Appl. Clay Sci., 99, pp. 144-148
Bakria, A.M.M.A., Kamarudin, H., BinHussain, M., Nizar, I.K., Zarina, Y., Rafiza, A.R., The effect of curing temperature on physical and chemical properties of geopolymers (2011) Phys. Procedia, 22, pp. 286-291
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv MDPI AG
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv Sustainability (Switzerland)
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159239075069952
spelling 20192021-02-05T14:59:18Z2021-02-05T14:59:18Z20711050http://hdl.handle.net/11407/608810.3390/su11040967Brick is one of the most common building materials, and it is also one of the largest components of waste generated from both construction and demolition. Reuse of this waste would reduce the environmental and social impacts of construction. One potential bulk use of such waste is as a cementing agent for soil stabilization. However, this is currently limited by the need to mill the residue to a particle size below 0.035 mm. In this study, the behavior of two soil types stabilized using alkali-activated brick dust was investigated. The unconfined compression strength at different curing temperatures and moistures and the use of different types and concentrations of alkaline activators were investigated. It was found that the addition of brick dust resulted in an increase in the soil strength between 1.7-2.3 times with respect to the non-stabilized material, suggesting that the resulting materials will find practical applications in construction. © 2019 by the authors.engMDPI AGIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061579637&doi=10.3390%2fsu11040967&partnerID=40&md5=06afaef93e6f7ab5872744526177274a114Fang, S., Hong, H., Zhang, P., Mechanical Property Tests and Strength Formulas of Basalt Fiber Reinforced Recycled Aggregate Concrete (2018) Materials, 11, p. 1851Silva, R., de Brito, J., Dhir, R., Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production (2014) Constr. Build. Mater., 65, pp. 201-217Tam, V., Chapter 24-Recovery of Construction and DemolitionWastes (2014) Handbook of Recycling, pp. 385-396. , Elsevier: Amsterdam, The NetherlandsAllahverdi, A., Kani, E.N., Construction wastes as raw materials for geopolymer binders (2009) Int. J. Civ. Eng., 7, pp. 154-160Xuan, D.X., Molenaar, A.A.A., Houben, L.J.M., Evaluation of cement treatment of reclaimed construction and demolition waste as road bases (2015) J. Clean. Prod., 100, pp. 77-83Colangelo, F., Petrillo, A., Cioffi, R., Borrelli, C., Forcina, A., Life cycle assessment of recycled concretes: A case study in southern Italy (2018) Sci. Total Environ., 615, pp. 1506-1517Colangelo, F., Cioffi, R., Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy (2017) Compos. Part B, 115, pp. 43-50Aliabdo, A.A., Abd-Elmoaty, A.M., Hassan, H.H., Utilization of crushed clay brick in concrete industry (2014) Alex. Eng. J., 53, pp. 151-168Evangelista, L., de Brito, J., Concrete with fine recycled aggregates: A review (2014) Eur. J. Environ. Civ. Eng., 18, pp. 129-172Hossain, K., Lachemi, M., Easa, S., Stabilized soils for construction applications incorporating natural resources of Papua New Guinea (2007) Rosour. Conserv. Recycl., 51, pp. 711-731Qiao, D., Qian, J., Wang, Q., Dang, Y., Zhang, H., Zenga, D., Utilization of sulfate-rich solid wastes in rural road construction in the Three Gorges Reservoir (2010) Rosour. Conserv. Recycl., 54, pp. 1368-1376Xuan, D.X., Schlangen, E., Molenaar, A.A.A., Houben, L.J.M., Influence of quality and variation of recycled masonry aggregates on failure behavior of cement treated demolition waste (2014) Construct. Build. Mater., 71, pp. 521-527Cabalar, A.F., Hassan, D.I., Abdulnafaa, M.D., Use of waste ceramic tiles for road pavement subgrade (2016) Road Mater. Pavement Des., 18, pp. 882-896Cabalar, A.F., Zardikawi, O.A., Abdulnafaa, M.D., Utilisation of construction and demolition materials with clay for road pavement subgrade (2017) Road Mater. Pavement Des.Poon, C.S., Chan, D., Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base (2006) Constr. Build. Mater., 20, pp. 578-585Arulrajah, A., Disfani, M.M., Horpibulsuk, S., Suksiripattanapong, C., Prongmanee, N., Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications (2014) Construct. Build. Mater., 58, pp. 245-257Arisha, A., Gabr, A., El-Badawy, S., Shwally, S., Using blends of construction and demolition waste materials and recycled clay masonry brick in pavement (2016) Procedia Eng., 143, pp. 1317-1324Bektas, F., Wang, K., Ceylan, H., Effects of crushed clay brick aggregate on mortar durability (2009) Construct. Build. Mater., 23, pp. 1909-1914Bektaş, F., Alkali reactivity of crushed clay brick aggregate (2014) Construct. Build. Mater., 52, pp. 79-85Zong, L., Fei, Z., Zhang, S., Permeability of recycled aggregate concrete containing fly ash and clay brick waste (2014) J. Clean. Prod., 70, pp. 175-182Kong, D.L.Y., Sanjayan, J.G., Damage behavior of geopolymer composites exposed to elevated temperatures (2008) Cem. Concr. Compos., 30, pp. 986-991Robayo-Salazar, R.A., Mejía-Arcila, J.M., Mejía de Gutierrez, R., Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials (2017) J. Clean. Prod., 166, pp. 242-252Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., Galetakis, M., Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers (2015) Adv. Powder Technol., 26, pp. 368-376Robayo, R.A., Mulford, A., Munera, J., Mejía, R., Alternative cements based on alkali-activated red clay brick waste (2016) Construct. Build. Mater., 128, pp. 163-169Zaharaki, D., Galetakis, M., Komnitsas, K., Valorization of construction and demolition (C&D) and industrial wastes through alkali activation (2016) Construct. Build. Mater., 121, pp. 686-693Hidalgo, C.A., Arias, Y.P., Stabilized soils as an alternative for construction of low transit volume roads (2017) Vias de Bajo Volumen de Tránsito, 1, pp. 41-62. , 1st ed.Montoya, L.J., López, L.D., Eds.Sello Editorial Universidad de Medellín: Medellín, Colombia. (In Spanish)Teutonico, J.M., McCaig, I., Burns, C., Ashurst, J., The Smeaton project: Factors affecting the properties of lime-based mortars (1993) APT Bull., 25, pp. 32-49Nazari, A., Sanjayan, J.G., Synthesis of geopolymer from industrial wastes (2015) J. Clean. Prod., 99, pp. 297-304Shekhovtsova, J., Zhernovsky, I., Kovtun, M., Kozhukhova, N., Zhernovskaya, I., Kearsley, E., Estimation of fly ash reactivity for use in alkali-activated cements-A step towards sustainable building material and waste utilization (2018) J. Clean. Prod., 178, pp. 22-33Weng, L., Sagoe-Crentsil, K., Brown, T., Song, S., Effects of aluminates on the formation of geopolymers (2005) Mater. Sci. Eng., 117, pp. 163-168Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S., Alkali-activated binders: A review. Part 2. About materials and binders manufacture (2008) Construct. Build. Mater., 22, pp. 1315-1322Antoni, A., Wiyono, D., Vianthi, A., Putra, P., Kartadinata, G., Hardjito, D., Effect of particle size on properties of sidoarjo mud-based geopolymer (2015) Mater. Sci. Forum, 803, pp. 44-48Ryu, G.S., Lee, Y.B., Koh, K.T., Chung, Y.S., The mechanical properties of fly ash-based geopolymer concrete with alkaline activators (2013) Construct. Build. Mater., 47, pp. 409-418Hu, W., Nie, Q., Huang, B., Shu, X., He, Q., Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes (2018) J. Clean. Prod., 186, pp. 799-806Rodríguez, E., Mejía de Gutiérrez, R., Bernal, S., Gordillo, M., Effect of the SiO2/Al2O3 and Na2O/SiO2ratios on the properties of geopolymers based on MK (2009) Revista Facultad de Ingeniería Universidad de Antioquia, 49, pp. 30-41. , (In Spanish)Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures (Withdrawn 2018) (2009), www.astm.org, ASTM D5102-09ASTM International: West Conshohocken, PA, USALambe, T.W., Whitman, R.V., Soil Mechanics (1969), p. 582. , Wiley: New York, NY, USAMurthy, V., Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering (2002), p. 1056. , Taylor & Francis Group: New York, NY, USASoares, P., Pinto, A.T., Ferreira, V.M., Labrincha, J.A., Geopolímeros basados en residuos de la producción de áridos ligeros (2008) Mater. Construcc., 58, pp. 23-34Palomo, A., Grutzeck, M.W., Blanco, M.T., Alkali-activated fly ashes (1999) Cem. Concr. Res., 29, pp. 1323-1329Mo, B., Zhu, H., Cui, X., He, Y., Gong, S., Effect of curing temperature on geopolymerization of metakaolin-based geopolymers (2014) Appl. Clay Sci., 99, pp. 144-148Bakria, A.M.M.A., Kamarudin, H., BinHussain, M., Nizar, I.K., Zarina, Y., Rafiza, A.R., The effect of curing temperature on physical and chemical properties of geopolymers (2011) Phys. Procedia, 22, pp. 286-291Sustainability (Switzerland)Laboratory Evaluation of Finely Milled Brick Debris as a Soil StabilizerArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hidalgo, C., School of Engineering, Civil Engineering Program, Universidad de Medellin, Medellin, 050026, ColombiaCarvajal, G., School of Engineering, Civil Engineering Program, Universidad de Medellin, Medellin, 050026, ColombiaMuñoz, F., School of Engineering, Civil Engineering Program, Universidad de Medellin, Medellin, 050026, Colombiahttp://purl.org/coar/access_right/c_16ecHidalgo C.Carvajal G.Muñoz F.11407/6088oai:repository.udem.edu.co:11407/60882021-02-05 09:59:18.805Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co