Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer
Brick is one of the most common building materials, and it is also one of the largest components of waste generated from both construction and demolition. Reuse of this waste would reduce the environmental and social impacts of construction. One potential bulk use of such waste is as a cementing age...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6088
- Acceso en línea:
- http://hdl.handle.net/11407/6088
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_54dea576fa305cd1799d69c4c9e031b6 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6088 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer |
title |
Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer |
spellingShingle |
Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer |
title_short |
Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer |
title_full |
Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer |
title_fullStr |
Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer |
title_full_unstemmed |
Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer |
title_sort |
Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer |
description |
Brick is one of the most common building materials, and it is also one of the largest components of waste generated from both construction and demolition. Reuse of this waste would reduce the environmental and social impacts of construction. One potential bulk use of such waste is as a cementing agent for soil stabilization. However, this is currently limited by the need to mill the residue to a particle size below 0.035 mm. In this study, the behavior of two soil types stabilized using alkali-activated brick dust was investigated. The unconfined compression strength at different curing temperatures and moistures and the use of different types and concentrations of alkaline activators were investigated. It was found that the addition of brick dust resulted in an increase in the soil strength between 1.7-2.3 times with respect to the non-stabilized material, suggesting that the resulting materials will find practical applications in construction. © 2019 by the authors. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:18Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:18Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
20711050 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6088 |
dc.identifier.doi.none.fl_str_mv |
10.3390/su11040967 |
identifier_str_mv |
20711050 10.3390/su11040967 |
url |
http://hdl.handle.net/11407/6088 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061579637&doi=10.3390%2fsu11040967&partnerID=40&md5=06afaef93e6f7ab5872744526177274a |
dc.relation.citationvolume.none.fl_str_mv |
11 |
dc.relation.citationissue.none.fl_str_mv |
4 |
dc.relation.references.none.fl_str_mv |
Fang, S., Hong, H., Zhang, P., Mechanical Property Tests and Strength Formulas of Basalt Fiber Reinforced Recycled Aggregate Concrete (2018) Materials, 11, p. 1851 Silva, R., de Brito, J., Dhir, R., Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production (2014) Constr. Build. Mater., 65, pp. 201-217 Tam, V., Chapter 24-Recovery of Construction and DemolitionWastes (2014) Handbook of Recycling, pp. 385-396. , Elsevier: Amsterdam, The Netherlands Allahverdi, A., Kani, E.N., Construction wastes as raw materials for geopolymer binders (2009) Int. J. Civ. Eng., 7, pp. 154-160 Xuan, D.X., Molenaar, A.A.A., Houben, L.J.M., Evaluation of cement treatment of reclaimed construction and demolition waste as road bases (2015) J. Clean. Prod., 100, pp. 77-83 Colangelo, F., Petrillo, A., Cioffi, R., Borrelli, C., Forcina, A., Life cycle assessment of recycled concretes: A case study in southern Italy (2018) Sci. Total Environ., 615, pp. 1506-1517 Colangelo, F., Cioffi, R., Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy (2017) Compos. Part B, 115, pp. 43-50 Aliabdo, A.A., Abd-Elmoaty, A.M., Hassan, H.H., Utilization of crushed clay brick in concrete industry (2014) Alex. Eng. J., 53, pp. 151-168 Evangelista, L., de Brito, J., Concrete with fine recycled aggregates: A review (2014) Eur. J. Environ. Civ. Eng., 18, pp. 129-172 Hossain, K., Lachemi, M., Easa, S., Stabilized soils for construction applications incorporating natural resources of Papua New Guinea (2007) Rosour. Conserv. Recycl., 51, pp. 711-731 Qiao, D., Qian, J., Wang, Q., Dang, Y., Zhang, H., Zenga, D., Utilization of sulfate-rich solid wastes in rural road construction in the Three Gorges Reservoir (2010) Rosour. Conserv. Recycl., 54, pp. 1368-1376 Xuan, D.X., Schlangen, E., Molenaar, A.A.A., Houben, L.J.M., Influence of quality and variation of recycled masonry aggregates on failure behavior of cement treated demolition waste (2014) Construct. Build. Mater., 71, pp. 521-527 Cabalar, A.F., Hassan, D.I., Abdulnafaa, M.D., Use of waste ceramic tiles for road pavement subgrade (2016) Road Mater. Pavement Des., 18, pp. 882-896 Cabalar, A.F., Zardikawi, O.A., Abdulnafaa, M.D., Utilisation of construction and demolition materials with clay for road pavement subgrade (2017) Road Mater. Pavement Des. Poon, C.S., Chan, D., Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base (2006) Constr. Build. Mater., 20, pp. 578-585 Arulrajah, A., Disfani, M.M., Horpibulsuk, S., Suksiripattanapong, C., Prongmanee, N., Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications (2014) Construct. Build. Mater., 58, pp. 245-257 Arisha, A., Gabr, A., El-Badawy, S., Shwally, S., Using blends of construction and demolition waste materials and recycled clay masonry brick in pavement (2016) Procedia Eng., 143, pp. 1317-1324 Bektas, F., Wang, K., Ceylan, H., Effects of crushed clay brick aggregate on mortar durability (2009) Construct. Build. Mater., 23, pp. 1909-1914 Bektaş, F., Alkali reactivity of crushed clay brick aggregate (2014) Construct. Build. Mater., 52, pp. 79-85 Zong, L., Fei, Z., Zhang, S., Permeability of recycled aggregate concrete containing fly ash and clay brick waste (2014) J. Clean. Prod., 70, pp. 175-182 Kong, D.L.Y., Sanjayan, J.G., Damage behavior of geopolymer composites exposed to elevated temperatures (2008) Cem. Concr. Compos., 30, pp. 986-991 Robayo-Salazar, R.A., Mejía-Arcila, J.M., Mejía de Gutierrez, R., Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials (2017) J. Clean. Prod., 166, pp. 242-252 Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., Galetakis, M., Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers (2015) Adv. Powder Technol., 26, pp. 368-376 Robayo, R.A., Mulford, A., Munera, J., Mejía, R., Alternative cements based on alkali-activated red clay brick waste (2016) Construct. Build. Mater., 128, pp. 163-169 Zaharaki, D., Galetakis, M., Komnitsas, K., Valorization of construction and demolition (C&D) and industrial wastes through alkali activation (2016) Construct. Build. Mater., 121, pp. 686-693 Hidalgo, C.A., Arias, Y.P., Stabilized soils as an alternative for construction of low transit volume roads (2017) Vias de Bajo Volumen de Tránsito, 1, pp. 41-62. , 1st ed. Montoya, L.J., López, L.D., Eds. Sello Editorial Universidad de Medellín: Medellín, Colombia. (In Spanish) Teutonico, J.M., McCaig, I., Burns, C., Ashurst, J., The Smeaton project: Factors affecting the properties of lime-based mortars (1993) APT Bull., 25, pp. 32-49 Nazari, A., Sanjayan, J.G., Synthesis of geopolymer from industrial wastes (2015) J. Clean. Prod., 99, pp. 297-304 Shekhovtsova, J., Zhernovsky, I., Kovtun, M., Kozhukhova, N., Zhernovskaya, I., Kearsley, E., Estimation of fly ash reactivity for use in alkali-activated cements-A step towards sustainable building material and waste utilization (2018) J. Clean. Prod., 178, pp. 22-33 Weng, L., Sagoe-Crentsil, K., Brown, T., Song, S., Effects of aluminates on the formation of geopolymers (2005) Mater. Sci. Eng., 117, pp. 163-168 Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S., Alkali-activated binders: A review. Part 2. About materials and binders manufacture (2008) Construct. Build. Mater., 22, pp. 1315-1322 Antoni, A., Wiyono, D., Vianthi, A., Putra, P., Kartadinata, G., Hardjito, D., Effect of particle size on properties of sidoarjo mud-based geopolymer (2015) Mater. Sci. Forum, 803, pp. 44-48 Ryu, G.S., Lee, Y.B., Koh, K.T., Chung, Y.S., The mechanical properties of fly ash-based geopolymer concrete with alkaline activators (2013) Construct. Build. Mater., 47, pp. 409-418 Hu, W., Nie, Q., Huang, B., Shu, X., He, Q., Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes (2018) J. Clean. Prod., 186, pp. 799-806 Rodríguez, E., Mejía de Gutiérrez, R., Bernal, S., Gordillo, M., Effect of the SiO2/Al2O3 and Na2O/SiO2ratios on the properties of geopolymers based on MK (2009) Revista Facultad de Ingeniería Universidad de Antioquia, 49, pp. 30-41. , (In Spanish) Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures (Withdrawn 2018) (2009), www.astm.org, ASTM D5102-09 ASTM International: West Conshohocken, PA, USA Lambe, T.W., Whitman, R.V., Soil Mechanics (1969), p. 582. , Wiley: New York, NY, USA Murthy, V., Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering (2002), p. 1056. , Taylor & Francis Group: New York, NY, USA Soares, P., Pinto, A.T., Ferreira, V.M., Labrincha, J.A., Geopolímeros basados en residuos de la producción de áridos ligeros (2008) Mater. Construcc., 58, pp. 23-34 Palomo, A., Grutzeck, M.W., Blanco, M.T., Alkali-activated fly ashes (1999) Cem. Concr. Res., 29, pp. 1323-1329 Mo, B., Zhu, H., Cui, X., He, Y., Gong, S., Effect of curing temperature on geopolymerization of metakaolin-based geopolymers (2014) Appl. Clay Sci., 99, pp. 144-148 Bakria, A.M.M.A., Kamarudin, H., BinHussain, M., Nizar, I.K., Zarina, Y., Rafiza, A.R., The effect of curing temperature on physical and chemical properties of geopolymers (2011) Phys. Procedia, 22, pp. 286-291 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
MDPI AG |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
Sustainability (Switzerland) |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159239075069952 |
spelling |
20192021-02-05T14:59:18Z2021-02-05T14:59:18Z20711050http://hdl.handle.net/11407/608810.3390/su11040967Brick is one of the most common building materials, and it is also one of the largest components of waste generated from both construction and demolition. Reuse of this waste would reduce the environmental and social impacts of construction. One potential bulk use of such waste is as a cementing agent for soil stabilization. However, this is currently limited by the need to mill the residue to a particle size below 0.035 mm. In this study, the behavior of two soil types stabilized using alkali-activated brick dust was investigated. The unconfined compression strength at different curing temperatures and moistures and the use of different types and concentrations of alkaline activators were investigated. It was found that the addition of brick dust resulted in an increase in the soil strength between 1.7-2.3 times with respect to the non-stabilized material, suggesting that the resulting materials will find practical applications in construction. © 2019 by the authors.engMDPI AGIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061579637&doi=10.3390%2fsu11040967&partnerID=40&md5=06afaef93e6f7ab5872744526177274a114Fang, S., Hong, H., Zhang, P., Mechanical Property Tests and Strength Formulas of Basalt Fiber Reinforced Recycled Aggregate Concrete (2018) Materials, 11, p. 1851Silva, R., de Brito, J., Dhir, R., Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production (2014) Constr. Build. Mater., 65, pp. 201-217Tam, V., Chapter 24-Recovery of Construction and DemolitionWastes (2014) Handbook of Recycling, pp. 385-396. , Elsevier: Amsterdam, The NetherlandsAllahverdi, A., Kani, E.N., Construction wastes as raw materials for geopolymer binders (2009) Int. J. Civ. Eng., 7, pp. 154-160Xuan, D.X., Molenaar, A.A.A., Houben, L.J.M., Evaluation of cement treatment of reclaimed construction and demolition waste as road bases (2015) J. Clean. Prod., 100, pp. 77-83Colangelo, F., Petrillo, A., Cioffi, R., Borrelli, C., Forcina, A., Life cycle assessment of recycled concretes: A case study in southern Italy (2018) Sci. Total Environ., 615, pp. 1506-1517Colangelo, F., Cioffi, R., Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy (2017) Compos. Part B, 115, pp. 43-50Aliabdo, A.A., Abd-Elmoaty, A.M., Hassan, H.H., Utilization of crushed clay brick in concrete industry (2014) Alex. Eng. J., 53, pp. 151-168Evangelista, L., de Brito, J., Concrete with fine recycled aggregates: A review (2014) Eur. J. Environ. Civ. Eng., 18, pp. 129-172Hossain, K., Lachemi, M., Easa, S., Stabilized soils for construction applications incorporating natural resources of Papua New Guinea (2007) Rosour. Conserv. Recycl., 51, pp. 711-731Qiao, D., Qian, J., Wang, Q., Dang, Y., Zhang, H., Zenga, D., Utilization of sulfate-rich solid wastes in rural road construction in the Three Gorges Reservoir (2010) Rosour. Conserv. Recycl., 54, pp. 1368-1376Xuan, D.X., Schlangen, E., Molenaar, A.A.A., Houben, L.J.M., Influence of quality and variation of recycled masonry aggregates on failure behavior of cement treated demolition waste (2014) Construct. Build. Mater., 71, pp. 521-527Cabalar, A.F., Hassan, D.I., Abdulnafaa, M.D., Use of waste ceramic tiles for road pavement subgrade (2016) Road Mater. Pavement Des., 18, pp. 882-896Cabalar, A.F., Zardikawi, O.A., Abdulnafaa, M.D., Utilisation of construction and demolition materials with clay for road pavement subgrade (2017) Road Mater. Pavement Des.Poon, C.S., Chan, D., Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base (2006) Constr. Build. Mater., 20, pp. 578-585Arulrajah, A., Disfani, M.M., Horpibulsuk, S., Suksiripattanapong, C., Prongmanee, N., Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications (2014) Construct. Build. Mater., 58, pp. 245-257Arisha, A., Gabr, A., El-Badawy, S., Shwally, S., Using blends of construction and demolition waste materials and recycled clay masonry brick in pavement (2016) Procedia Eng., 143, pp. 1317-1324Bektas, F., Wang, K., Ceylan, H., Effects of crushed clay brick aggregate on mortar durability (2009) Construct. Build. Mater., 23, pp. 1909-1914Bektaş, F., Alkali reactivity of crushed clay brick aggregate (2014) Construct. Build. Mater., 52, pp. 79-85Zong, L., Fei, Z., Zhang, S., Permeability of recycled aggregate concrete containing fly ash and clay brick waste (2014) J. Clean. Prod., 70, pp. 175-182Kong, D.L.Y., Sanjayan, J.G., Damage behavior of geopolymer composites exposed to elevated temperatures (2008) Cem. Concr. Compos., 30, pp. 986-991Robayo-Salazar, R.A., Mejía-Arcila, J.M., Mejía de Gutierrez, R., Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials (2017) J. Clean. Prod., 166, pp. 242-252Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., Galetakis, M., Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers (2015) Adv. Powder Technol., 26, pp. 368-376Robayo, R.A., Mulford, A., Munera, J., Mejía, R., Alternative cements based on alkali-activated red clay brick waste (2016) Construct. Build. Mater., 128, pp. 163-169Zaharaki, D., Galetakis, M., Komnitsas, K., Valorization of construction and demolition (C&D) and industrial wastes through alkali activation (2016) Construct. Build. Mater., 121, pp. 686-693Hidalgo, C.A., Arias, Y.P., Stabilized soils as an alternative for construction of low transit volume roads (2017) Vias de Bajo Volumen de Tránsito, 1, pp. 41-62. , 1st ed.Montoya, L.J., López, L.D., Eds.Sello Editorial Universidad de Medellín: Medellín, Colombia. (In Spanish)Teutonico, J.M., McCaig, I., Burns, C., Ashurst, J., The Smeaton project: Factors affecting the properties of lime-based mortars (1993) APT Bull., 25, pp. 32-49Nazari, A., Sanjayan, J.G., Synthesis of geopolymer from industrial wastes (2015) J. Clean. Prod., 99, pp. 297-304Shekhovtsova, J., Zhernovsky, I., Kovtun, M., Kozhukhova, N., Zhernovskaya, I., Kearsley, E., Estimation of fly ash reactivity for use in alkali-activated cements-A step towards sustainable building material and waste utilization (2018) J. Clean. Prod., 178, pp. 22-33Weng, L., Sagoe-Crentsil, K., Brown, T., Song, S., Effects of aluminates on the formation of geopolymers (2005) Mater. Sci. Eng., 117, pp. 163-168Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S., Alkali-activated binders: A review. Part 2. About materials and binders manufacture (2008) Construct. Build. Mater., 22, pp. 1315-1322Antoni, A., Wiyono, D., Vianthi, A., Putra, P., Kartadinata, G., Hardjito, D., Effect of particle size on properties of sidoarjo mud-based geopolymer (2015) Mater. Sci. Forum, 803, pp. 44-48Ryu, G.S., Lee, Y.B., Koh, K.T., Chung, Y.S., The mechanical properties of fly ash-based geopolymer concrete with alkaline activators (2013) Construct. Build. Mater., 47, pp. 409-418Hu, W., Nie, Q., Huang, B., Shu, X., He, Q., Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes (2018) J. Clean. Prod., 186, pp. 799-806Rodríguez, E., Mejía de Gutiérrez, R., Bernal, S., Gordillo, M., Effect of the SiO2/Al2O3 and Na2O/SiO2ratios on the properties of geopolymers based on MK (2009) Revista Facultad de Ingeniería Universidad de Antioquia, 49, pp. 30-41. , (In Spanish)Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures (Withdrawn 2018) (2009), www.astm.org, ASTM D5102-09ASTM International: West Conshohocken, PA, USALambe, T.W., Whitman, R.V., Soil Mechanics (1969), p. 582. , Wiley: New York, NY, USAMurthy, V., Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering (2002), p. 1056. , Taylor & Francis Group: New York, NY, USASoares, P., Pinto, A.T., Ferreira, V.M., Labrincha, J.A., Geopolímeros basados en residuos de la producción de áridos ligeros (2008) Mater. Construcc., 58, pp. 23-34Palomo, A., Grutzeck, M.W., Blanco, M.T., Alkali-activated fly ashes (1999) Cem. Concr. Res., 29, pp. 1323-1329Mo, B., Zhu, H., Cui, X., He, Y., Gong, S., Effect of curing temperature on geopolymerization of metakaolin-based geopolymers (2014) Appl. Clay Sci., 99, pp. 144-148Bakria, A.M.M.A., Kamarudin, H., BinHussain, M., Nizar, I.K., Zarina, Y., Rafiza, A.R., The effect of curing temperature on physical and chemical properties of geopolymers (2011) Phys. Procedia, 22, pp. 286-291Sustainability (Switzerland)Laboratory Evaluation of Finely Milled Brick Debris as a Soil StabilizerArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hidalgo, C., School of Engineering, Civil Engineering Program, Universidad de Medellin, Medellin, 050026, ColombiaCarvajal, G., School of Engineering, Civil Engineering Program, Universidad de Medellin, Medellin, 050026, ColombiaMuñoz, F., School of Engineering, Civil Engineering Program, Universidad de Medellin, Medellin, 050026, Colombiahttp://purl.org/coar/access_right/c_16ecHidalgo C.Carvajal G.Muñoz F.11407/6088oai:repository.udem.edu.co:11407/60882021-02-05 09:59:18.805Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |