Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils
Soils derived from volcanic ash are deposits formed from the weathering of the ejected material during volcanic activity. Volcanic ash is commonly known in geotechnical engineering as a difficult and unwanted material. The difficulties are related to the high-water content, high liquid limits, low u...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5758
- Acceso en línea:
- http://hdl.handle.net/11407/5758
- Palabra clave:
- Laboratory tests
Soil characterization
Variability
Volcanic ash soils
Economics
Geotechnical engineering
Minerals
Population dynamics
Population statistics
Soils
Tropics
Volcanoes
Weathering
Chemical characterization
Depositional environment
Geotechnical index properties
Laboratory test
Soil characterization
Variability
Volcanic ash soil
Water retention characteristics
Soil testing
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_51146d04e4cef09799db7d2c7c0374e5 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5758 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils |
title |
Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils |
spellingShingle |
Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils Laboratory tests Soil characterization Variability Volcanic ash soils Economics Geotechnical engineering Minerals Population dynamics Population statistics Soils Tropics Volcanoes Weathering Chemical characterization Depositional environment Geotechnical index properties Laboratory test Soil characterization Variability Volcanic ash soil Water retention characteristics Soil testing |
title_short |
Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils |
title_full |
Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils |
title_fullStr |
Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils |
title_full_unstemmed |
Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils |
title_sort |
Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils |
dc.subject.none.fl_str_mv |
Laboratory tests Soil characterization Variability Volcanic ash soils Economics Geotechnical engineering Minerals Population dynamics Population statistics Soils Tropics Volcanoes Weathering Chemical characterization Depositional environment Geotechnical index properties Laboratory test Soil characterization Variability Volcanic ash soil Water retention characteristics Soil testing |
topic |
Laboratory tests Soil characterization Variability Volcanic ash soils Economics Geotechnical engineering Minerals Population dynamics Population statistics Soils Tropics Volcanoes Weathering Chemical characterization Depositional environment Geotechnical index properties Laboratory test Soil characterization Variability Volcanic ash soil Water retention characteristics Soil testing |
description |
Soils derived from volcanic ash are deposits formed from the weathering of the ejected material during volcanic activity. Volcanic ash is commonly known in geotechnical engineering as a difficult and unwanted material. The difficulties are related to the high-water content, high liquid limits, low unit weights, and high void ratios, which translates into possible engineering problems (e.g. compressibility and collapsibility). The characterization of these materials is important because volcanic soils represent 0.84% of the terrestrial soil surface, 60% of which are located in tropical zones. These percentages represent areas with a high human population and constant demographic and economic growth. This paper presents the chemical, mineralogical and geotechnical index properties characterization of soils derived from volcanic ashes through laboratory testing and compares them with the results found in the literature. The SEM results shows the high void reported in the literature. The index properties obtained coincide with the ranges reported. However, lower values of dry unit weight were observed, which are related to the transportation processes of the particles and with higher index properties values due to mineralogical components such as allophane. Therefore, the study of volcanic ash soils requires a rigorous knowledge and understanding of the soil formation, depositional environment, and mineralogy. The chemical characterization of the volcanic ash plays an important role to understand water retention characteristics and their influence on the different geotechnical properties. © 2020, Springer Nature Switzerland AG. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:54Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:54Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
9603182 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5758 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s10706-020-01219-3 |
identifier_str_mv |
9603182 10.1007/s10706-020-01219-3 |
url |
http://hdl.handle.net/11407/5758 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078900338&doi=10.1007%2fs10706-020-01219-3&partnerID=40&md5=306a3b0211410c86243ba85985479917 |
dc.relation.references.none.fl_str_mv |
(2010) Reglamento De Construcción Sismo Resistente (NSR-10), , AIS Akbas, S.O., Kulhawy, F.H., Characterization and estimation of geotechnical variability in Ankara clay: a case history (2010) Geotech Geol Eng, 28, pp. 619-631 Arnalds, Ó., Bartoli, F., Buurman, P., Óskarsson, H., Stoops, G., García-Rodeja, E., (2007) Soils of volcanic regions in Europe, , Springer, Berlin (2011) Standard practice for classification of soils for engineering purposes (unified soil classification system), , ASTM International, West Conshohocken Baecher, G.B., Christian, J.T., (2003) Reliability and statistics in geotechnical engineering, 1. , Wiley, Hoboken Betancur, Y., Builes, M., Millán, Á., Variación de las Propiedades Mecánicas de Arcillas Alófanas en Colombia al Variar el Grado de Saturación (2013) Rev EIA, 10 (20), pp. 173-181 Dahlgren, R., Shoji, S., Nanzyo, M., Mineralogical characteristics of volcanic ash soils (1993) Volcanic ash soils: genesis, properties and utilization, pp. 101-143. , 1, Elsevier, Amsterdam Forero, C., Gálvez, P., Estudios de la estructura de las cenizas volcánicas de Armenia y su relación con el comportamiento geotécnico (1999) X Jornadas Geotécnicas De La Ingeniería Colombiana. Boletín Colombiano De Geotecnia, , Fino y Ulloa, Sociedad Colombiana de Geotecnia García-Leal, J.C., Colmenares, J.E., Predicción de la resistencia al corte en los suelos naturales derivados de ceniza volcánica (2011) Pan-Am CGS Geotechnical Conference Gonzalez de Vallejo, L.I., Jimenez Salas, J.A., Leguey, S., Engineering geology of the tropical volcanic soils of La Laguna, Tenerife (1981) Eng Geol, 17, pp. 1-17 Hermelín, M., El estudio de las cenizas volcánicas en el departamento de Antioquia (1984) DYNA, 103, pp. 53-58 Hermosilla, M., Cardenas, J., Evaluación e identificación del potencial de colapso en suelos derivados de cenizas volcánicas del Sur de Chile (2012) Revista Científico Tecnológica Departamento Ingeniería de Obras Civiles - RIOC, 1, pp. 30-37 Herrera, M.C., (2006) Suelos Derivados De Cenizas volcánicas En Colombia: Estudio Fundamental E Implicaciones En ingeniería, , University of the Andes Hürlimann, M., Ledesma, A., Martí, J., Characterisation of a volcanic residual soil and its implications for large landslide phenomena: application to Tenerife, Canary Islands (2001) Eng Geol, 59, pp. 115-132 Jungerius, P.D., The properties of volcanic ash soils in dry parts of the Colombian Andes and their relation to soil erodibility (1975) CATENA, 2, pp. 69-80 Kitazono, Y., Suzuki, A., Kajiwara, M., Aramaki, S., Contribution of micro structure to repeated loading effect on compacted allophaneous volcanic ash soil (1987) Soils Found, 27 (4), pp. 23-33 Knight, D.J., Geotechnical properties and behavior of the Monasavu halloysite clay, Fiji (1986) Clay Miner, 21, pp. 311-332 Lacasse, S., Nadim, F., Risk and reliability in geotechnical engineering (1998) Fourth International Conferrence on Case Histories in Geotechnical Engineering, pp. 1172-1192. , St. Louis Liu, X., Yang, J., Wang, G., Chen, L., Small-strain shear modulus of volcanic granular soil: an experimental investigation (2016) Soil Dyna Earthq Eng, 86, pp. 15-24 Lizcano, A., Herrera, M.C., Santamarina, J.C., Suelos derivados de cenizas volcánicas en Colombia (2006) Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 6 (2), pp. 167-198 Matsumura, S., Miura, S., Yokohama, S., Kawamura, S., Cyclic deformation-strength evaluation of compacted volcanic soil subjected to freeze-thaw sequence (2015) Soils Found, 55 (1), pp. 86-98 Mendoza, M.J., Remoldeling and drying effects upon plasticity limits of residual soils (1985) Proceedings of the first international conference on geomechanics in tropical lateritic and saprolitic soils, 2, pp. 145-155. , Technical Sessions, Brasilia, Brazil Meyer, V., Larkin, T., Pender, M., The shear strenght and dynamic shear stiffness of some New Zealand volcanic ash soils (2005) Soils Found, 45 (3), pp. 9-20 Miura, S., Yagi, K., Mechanical behaviour and particle crushing of volcanic coarse-grained soils in Japan (2003) Characterisation and engineering properties of natural soils, 2, pp. 1169-1204. , Tan TS, Phoon KK, Hight DW, Leroueil S, (eds), Swets Zeitlinger B.V/A.A. Balkema, Lisse Molina, G., Hernández, E., Castillo, C., Determinación de la correlación entre el coeficiente de compresión y propiedades índice en suelos de expansión urbana de Pereira (2012) AVANCES Investigación En Ingeniería, 9 (2), pp. 72-79 Moore, P.J., Styles, J.R., Some characteristics of a volcanic ash soil, geomechanics in tropical soils (1988) Procedings of the Second International Conference in Tropical Soils, p. 161. , Singapore Moroto, N., Mechanical behavior of two typical compacted volcanic soils in Hachinohe, Japan under different sample preparation methods (1991) Soils Found, 31 (2), pp. 108-116 Nanzyo, M., Shoji, S., Dahlgren, R., Chapter 7 Physical Characteristics of Volcanic Ash Soils (1993) Developments in Soil Science, pp. 189-207 O Rourke, T.D., Crespo, E., Geotechnical properties of cemented volcanic soil (1989) J Geotech Eng, 114 (10), pp. 1126-1147 Phoon, K.-K., Kulhawy, F.H., Characterization of geotechnical variability (1999) Can Geotech J, 36, pp. 612-624 Picarelli, L., Evangelista, A., Rolandi, G., Paone, A., Nicotera, M.V., Olivares, L., Scotto di Santolo, A., Rolandi, M., Mechanical properties of pyroclastic soils in Campania Region (2007) Characterisation and engineering properties of natural soils, 4, pp. 2331-2383. , Phoon KK, Hight DW, Leroueil S, Tan TS, (eds), Taylor & Francis/Balkema, London Rao, S.M., Mechanistic approach to the shear strength behaviour of allophanitic soils (1995) Eng Geol, 40, pp. 215-221 Rao, S.M., Role of apparent cohesion in the stability of Dominican allophane soil slopes (1996) Eng Geol, 43, pp. 265-279 Sezaki, M., Kitamura, R., Yasufuku, N., Hirooka, A., Ochiai, H., Yokota, H., Sawayama, S., Matsumoto, K., Geodisasters in Kyushu area caused by typhoon No. 14 in September 2005 (2006) Soils Found, 46 (6), pp. 855-867 Shoji, S., Dahlgren, R., Nanzyo, M., Chapter 1 Terminology, Concepts and Geographic Distribution of Volcanic Ash Soils (1993) Developments in Soil Science, pp. 1-5 Nanzyo, M., Shoji, S., Dahlgren, R., Chapter 7 Physical Characteristics of Volcanic Ash Soils (1993) Developments in Soil Science, pp. 189-207 Shoji, S., Nanzyo, M., Dahlgren, R., Chapter 8 Productivity and Utilization of Volcanic Ash Soils (1993) Developments in Soil Science, pp. 209-251 So, E.-K., Statistical correlation between allophane content and index properties for volcanic cohesive soil (1998) Soils Found, 38 (4), pp. 85-93 Terlien, M.T.J., Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) (1997) Geomorphology, 20, pp. 165-175 Tobón, J.I., Arias, D.E., Jaramillo, M., Propiedades físicas e hidráulicas de las cenizas volcánicas en la terraza de Llanogrande (Rionegro, Antioquia) (2004) DYNA, 71 (142), pp. 1-10 Toro, G., Hermelín, M., Tefraestratigrafía Colombiana (2012) Revista Universidad Eafit, 86, pp. 81-84 Van Ranst, E., Utami, S.R., Shamshuddin, J., Andisols on volcanic ash from Java island, Indonesia: physico-chemical properties and classification (2002) Soil Sci, 167 (1), pp. 68-79 Verdugo, R., Singularities of geotechnical properties of complex soils in seismic regions (2008) J Geotechn Geoenviron Eng, 134 (7), pp. 982-992 Viviescas, J.C., Osorio, J.P., Cañón, J.E., Reliability-based designs procedure of earth retaining walls in geotechnical engineering (2017) Obras y Proyectos, 22, pp. 50-60 Viviescas, J.C., Osorio, J.P., Griffiths, D.V., Cluster analysis for the determination of the undrained strength tendency from SPT in mudflows and residual soils (2019) Bull Eng Geol Environ, 78 (7), pp. 5039-5054 Wesley, L.D., Some basic engineering properties of halloysite and allophane clays in Java, Indonesia (1973) Géotechnique, 23 (4), pp. 471-494 Wesley, L.D., Shear strength properties of halloysite and allophane clays in Java, Indonesia (1977) Géotechnique, 27 (2), pp. 125-136 Wesley, L.D., Consolidation behaviour of allophane clays (2001) Géotechnique, 51 (10), pp. 901-904 Wesley, L.D., (2003) Geotechnical Properties of Two Volcanic Soils. In: Geotechnics on the Volcanic Edge, , Tauranga, March 2003, New Zealand geotechnical society symposium. The institution of professional engineers New Zealand Yamashita, S., Ito, Y., Hori, T., Suzuki, T., Murata, Y., Geotechnical properties of liquefied volcanic soil ground by 2003 Tokachi-Oki Earthquake (2005) Proceedings of the 16Th International Conference on Soil Mechanics and Geotechnical Engineering, 16 (4), pp. 2737-2740. , https://doi.org/10.3233/978-1-61499-656-9-2737 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Springer |
dc.publisher.program.none.fl_str_mv |
Ingeniería Civil |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Geotechnical and Geological Engineering |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159190386540544 |
spelling |
20202020-04-29T14:53:54Z2020-04-29T14:53:54Z9603182http://hdl.handle.net/11407/575810.1007/s10706-020-01219-3Soils derived from volcanic ash are deposits formed from the weathering of the ejected material during volcanic activity. Volcanic ash is commonly known in geotechnical engineering as a difficult and unwanted material. The difficulties are related to the high-water content, high liquid limits, low unit weights, and high void ratios, which translates into possible engineering problems (e.g. compressibility and collapsibility). The characterization of these materials is important because volcanic soils represent 0.84% of the terrestrial soil surface, 60% of which are located in tropical zones. These percentages represent areas with a high human population and constant demographic and economic growth. This paper presents the chemical, mineralogical and geotechnical index properties characterization of soils derived from volcanic ashes through laboratory testing and compares them with the results found in the literature. The SEM results shows the high void reported in the literature. The index properties obtained coincide with the ranges reported. However, lower values of dry unit weight were observed, which are related to the transportation processes of the particles and with higher index properties values due to mineralogical components such as allophane. Therefore, the study of volcanic ash soils requires a rigorous knowledge and understanding of the soil formation, depositional environment, and mineralogy. The chemical characterization of the volcanic ash plays an important role to understand water retention characteristics and their influence on the different geotechnical properties. © 2020, Springer Nature Switzerland AG.engSpringerIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85078900338&doi=10.1007%2fs10706-020-01219-3&partnerID=40&md5=306a3b0211410c86243ba85985479917(2010) Reglamento De Construcción Sismo Resistente (NSR-10), , AISAkbas, S.O., Kulhawy, F.H., Characterization and estimation of geotechnical variability in Ankara clay: a case history (2010) Geotech Geol Eng, 28, pp. 619-631Arnalds, Ó., Bartoli, F., Buurman, P., Óskarsson, H., Stoops, G., García-Rodeja, E., (2007) Soils of volcanic regions in Europe, , Springer, Berlin(2011) Standard practice for classification of soils for engineering purposes (unified soil classification system), , ASTM International, West ConshohockenBaecher, G.B., Christian, J.T., (2003) Reliability and statistics in geotechnical engineering, 1. , Wiley, HobokenBetancur, Y., Builes, M., Millán, Á., Variación de las Propiedades Mecánicas de Arcillas Alófanas en Colombia al Variar el Grado de Saturación (2013) Rev EIA, 10 (20), pp. 173-181Dahlgren, R., Shoji, S., Nanzyo, M., Mineralogical characteristics of volcanic ash soils (1993) Volcanic ash soils: genesis, properties and utilization, pp. 101-143. , 1, Elsevier, AmsterdamForero, C., Gálvez, P., Estudios de la estructura de las cenizas volcánicas de Armenia y su relación con el comportamiento geotécnico (1999) X Jornadas Geotécnicas De La Ingeniería Colombiana. Boletín Colombiano De Geotecnia, , Fino y Ulloa, Sociedad Colombiana de GeotecniaGarcía-Leal, J.C., Colmenares, J.E., Predicción de la resistencia al corte en los suelos naturales derivados de ceniza volcánica (2011) Pan-Am CGS Geotechnical ConferenceGonzalez de Vallejo, L.I., Jimenez Salas, J.A., Leguey, S., Engineering geology of the tropical volcanic soils of La Laguna, Tenerife (1981) Eng Geol, 17, pp. 1-17Hermelín, M., El estudio de las cenizas volcánicas en el departamento de Antioquia (1984) DYNA, 103, pp. 53-58Hermosilla, M., Cardenas, J., Evaluación e identificación del potencial de colapso en suelos derivados de cenizas volcánicas del Sur de Chile (2012) Revista Científico Tecnológica Departamento Ingeniería de Obras Civiles - RIOC, 1, pp. 30-37Herrera, M.C., (2006) Suelos Derivados De Cenizas volcánicas En Colombia: Estudio Fundamental E Implicaciones En ingeniería, , University of the AndesHürlimann, M., Ledesma, A., Martí, J., Characterisation of a volcanic residual soil and its implications for large landslide phenomena: application to Tenerife, Canary Islands (2001) Eng Geol, 59, pp. 115-132Jungerius, P.D., The properties of volcanic ash soils in dry parts of the Colombian Andes and their relation to soil erodibility (1975) CATENA, 2, pp. 69-80Kitazono, Y., Suzuki, A., Kajiwara, M., Aramaki, S., Contribution of micro structure to repeated loading effect on compacted allophaneous volcanic ash soil (1987) Soils Found, 27 (4), pp. 23-33Knight, D.J., Geotechnical properties and behavior of the Monasavu halloysite clay, Fiji (1986) Clay Miner, 21, pp. 311-332Lacasse, S., Nadim, F., Risk and reliability in geotechnical engineering (1998) Fourth International Conferrence on Case Histories in Geotechnical Engineering, pp. 1172-1192. , St. LouisLiu, X., Yang, J., Wang, G., Chen, L., Small-strain shear modulus of volcanic granular soil: an experimental investigation (2016) Soil Dyna Earthq Eng, 86, pp. 15-24Lizcano, A., Herrera, M.C., Santamarina, J.C., Suelos derivados de cenizas volcánicas en Colombia (2006) Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 6 (2), pp. 167-198Matsumura, S., Miura, S., Yokohama, S., Kawamura, S., Cyclic deformation-strength evaluation of compacted volcanic soil subjected to freeze-thaw sequence (2015) Soils Found, 55 (1), pp. 86-98Mendoza, M.J., Remoldeling and drying effects upon plasticity limits of residual soils (1985) Proceedings of the first international conference on geomechanics in tropical lateritic and saprolitic soils, 2, pp. 145-155. , Technical Sessions, Brasilia, BrazilMeyer, V., Larkin, T., Pender, M., The shear strenght and dynamic shear stiffness of some New Zealand volcanic ash soils (2005) Soils Found, 45 (3), pp. 9-20Miura, S., Yagi, K., Mechanical behaviour and particle crushing of volcanic coarse-grained soils in Japan (2003) Characterisation and engineering properties of natural soils, 2, pp. 1169-1204. , Tan TS, Phoon KK, Hight DW, Leroueil S, (eds), Swets Zeitlinger B.V/A.A. Balkema, LisseMolina, G., Hernández, E., Castillo, C., Determinación de la correlación entre el coeficiente de compresión y propiedades índice en suelos de expansión urbana de Pereira (2012) AVANCES Investigación En Ingeniería, 9 (2), pp. 72-79Moore, P.J., Styles, J.R., Some characteristics of a volcanic ash soil, geomechanics in tropical soils (1988) Procedings of the Second International Conference in Tropical Soils, p. 161. , SingaporeMoroto, N., Mechanical behavior of two typical compacted volcanic soils in Hachinohe, Japan under different sample preparation methods (1991) Soils Found, 31 (2), pp. 108-116Nanzyo, M., Shoji, S., Dahlgren, R., Chapter 7 Physical Characteristics of Volcanic Ash Soils (1993) Developments in Soil Science, pp. 189-207O Rourke, T.D., Crespo, E., Geotechnical properties of cemented volcanic soil (1989) J Geotech Eng, 114 (10), pp. 1126-1147Phoon, K.-K., Kulhawy, F.H., Characterization of geotechnical variability (1999) Can Geotech J, 36, pp. 612-624Picarelli, L., Evangelista, A., Rolandi, G., Paone, A., Nicotera, M.V., Olivares, L., Scotto di Santolo, A., Rolandi, M., Mechanical properties of pyroclastic soils in Campania Region (2007) Characterisation and engineering properties of natural soils, 4, pp. 2331-2383. , Phoon KK, Hight DW, Leroueil S, Tan TS, (eds), Taylor & Francis/Balkema, LondonRao, S.M., Mechanistic approach to the shear strength behaviour of allophanitic soils (1995) Eng Geol, 40, pp. 215-221Rao, S.M., Role of apparent cohesion in the stability of Dominican allophane soil slopes (1996) Eng Geol, 43, pp. 265-279Sezaki, M., Kitamura, R., Yasufuku, N., Hirooka, A., Ochiai, H., Yokota, H., Sawayama, S., Matsumoto, K., Geodisasters in Kyushu area caused by typhoon No. 14 in September 2005 (2006) Soils Found, 46 (6), pp. 855-867Shoji, S., Dahlgren, R., Nanzyo, M., Chapter 1 Terminology, Concepts and Geographic Distribution of Volcanic Ash Soils (1993) Developments in Soil Science, pp. 1-5Nanzyo, M., Shoji, S., Dahlgren, R., Chapter 7 Physical Characteristics of Volcanic Ash Soils (1993) Developments in Soil Science, pp. 189-207Shoji, S., Nanzyo, M., Dahlgren, R., Chapter 8 Productivity and Utilization of Volcanic Ash Soils (1993) Developments in Soil Science, pp. 209-251So, E.-K., Statistical correlation between allophane content and index properties for volcanic cohesive soil (1998) Soils Found, 38 (4), pp. 85-93Terlien, M.T.J., Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) (1997) Geomorphology, 20, pp. 165-175Tobón, J.I., Arias, D.E., Jaramillo, M., Propiedades físicas e hidráulicas de las cenizas volcánicas en la terraza de Llanogrande (Rionegro, Antioquia) (2004) DYNA, 71 (142), pp. 1-10Toro, G., Hermelín, M., Tefraestratigrafía Colombiana (2012) Revista Universidad Eafit, 86, pp. 81-84Van Ranst, E., Utami, S.R., Shamshuddin, J., Andisols on volcanic ash from Java island, Indonesia: physico-chemical properties and classification (2002) Soil Sci, 167 (1), pp. 68-79Verdugo, R., Singularities of geotechnical properties of complex soils in seismic regions (2008) J Geotechn Geoenviron Eng, 134 (7), pp. 982-992Viviescas, J.C., Osorio, J.P., Cañón, J.E., Reliability-based designs procedure of earth retaining walls in geotechnical engineering (2017) Obras y Proyectos, 22, pp. 50-60Viviescas, J.C., Osorio, J.P., Griffiths, D.V., Cluster analysis for the determination of the undrained strength tendency from SPT in mudflows and residual soils (2019) Bull Eng Geol Environ, 78 (7), pp. 5039-5054Wesley, L.D., Some basic engineering properties of halloysite and allophane clays in Java, Indonesia (1973) Géotechnique, 23 (4), pp. 471-494Wesley, L.D., Shear strength properties of halloysite and allophane clays in Java, Indonesia (1977) Géotechnique, 27 (2), pp. 125-136Wesley, L.D., Consolidation behaviour of allophane clays (2001) Géotechnique, 51 (10), pp. 901-904Wesley, L.D., (2003) Geotechnical Properties of Two Volcanic Soils. In: Geotechnics on the Volcanic Edge, , Tauranga, March 2003, New Zealand geotechnical society symposium. The institution of professional engineers New ZealandYamashita, S., Ito, Y., Hori, T., Suzuki, T., Murata, Y., Geotechnical properties of liquefied volcanic soil ground by 2003 Tokachi-Oki Earthquake (2005) Proceedings of the 16Th International Conference on Soil Mechanics and Geotechnical Engineering, 16 (4), pp. 2737-2740. , https://doi.org/10.3233/978-1-61499-656-9-2737Geotechnical and Geological EngineeringLaboratory testsSoil characterizationVariabilityVolcanic ash soilsEconomicsGeotechnical engineeringMineralsPopulation dynamicsPopulation statisticsSoilsTropicsVolcanoesWeatheringChemical characterizationDepositional environmentGeotechnical index propertiesLaboratory testSoil characterizationVariabilityVolcanic ash soilWater retention characteristicsSoil testingChemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash SoilsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Rendón, M.I., GeoResearch International GeoR, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Viviescas, J.C., GeoResearch International GeoR, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Osorio, J.P., GeoResearch International GeoR, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, School of Civil and Structural Engineering, Technological University Dublin, City Campus, Bolton Street, Dublin 1, D01 K822, Ireland; Hernández, M.S., GeoResearch International GeoR, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, School of Engineering, Civil Engineering Program, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecRendón M.I.Viviescas J.C.Osorio J.P.Hernández M.S.11407/5758oai:repository.udem.edu.co:11407/57582020-05-27 17:51:50.15Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |