Double-walled carbon nanotube deformation by interacting with a nickel surface: A DFT study

The effect of interaction between (4,4)@(9,9) double-walled carbon nanotube and Ni(111) surface is studied by density functional theory calculations, including van der Waals interaction effects. Different modes of adsorption were evaluated. Calculations of adsorption energy, density of states, and c...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5780
Acceso en línea:
http://hdl.handle.net/11407/5780
Palabra clave:
dipole formation
structural deformation
van der Waals interaction
Adsorption
Deformation
Density functional theory
Nanotubes
Nickel
Van der Waals forces
Adsorption energies
Charge redistribution
Density of state
dipole formation
Double walled carbon nanotubes
Structural deformation
Van der Waals interaction effect
Van Der Waals interactions
Multiwalled carbon nanotubes (MWCN)
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_50d662b6c31004d37b8f556b161d8efd
oai_identifier_str oai:repository.udem.edu.co:11407/5780
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Double-walled carbon nanotube deformation by interacting with a nickel surface: A DFT study
title Double-walled carbon nanotube deformation by interacting with a nickel surface: A DFT study
spellingShingle Double-walled carbon nanotube deformation by interacting with a nickel surface: A DFT study
dipole formation
structural deformation
van der Waals interaction
Adsorption
Deformation
Density functional theory
Nanotubes
Nickel
Van der Waals forces
Adsorption energies
Charge redistribution
Density of state
dipole formation
Double walled carbon nanotubes
Structural deformation
Van der Waals interaction effect
Van Der Waals interactions
Multiwalled carbon nanotubes (MWCN)
title_short Double-walled carbon nanotube deformation by interacting with a nickel surface: A DFT study
title_full Double-walled carbon nanotube deformation by interacting with a nickel surface: A DFT study
title_fullStr Double-walled carbon nanotube deformation by interacting with a nickel surface: A DFT study
title_full_unstemmed Double-walled carbon nanotube deformation by interacting with a nickel surface: A DFT study
title_sort Double-walled carbon nanotube deformation by interacting with a nickel surface: A DFT study
dc.subject.none.fl_str_mv dipole formation
structural deformation
van der Waals interaction
Adsorption
Deformation
Density functional theory
Nanotubes
Nickel
Van der Waals forces
Adsorption energies
Charge redistribution
Density of state
dipole formation
Double walled carbon nanotubes
Structural deformation
Van der Waals interaction effect
Van Der Waals interactions
Multiwalled carbon nanotubes (MWCN)
topic dipole formation
structural deformation
van der Waals interaction
Adsorption
Deformation
Density functional theory
Nanotubes
Nickel
Van der Waals forces
Adsorption energies
Charge redistribution
Density of state
dipole formation
Double walled carbon nanotubes
Structural deformation
Van der Waals interaction effect
Van Der Waals interactions
Multiwalled carbon nanotubes (MWCN)
description The effect of interaction between (4,4)@(9,9) double-walled carbon nanotube and Ni(111) surface is studied by density functional theory calculations, including van der Waals interaction effects. Different modes of adsorption were evaluated. Calculations of adsorption energy, density of states, and charge redistribution are performed. According to adsorption energy, it was found that the most probable adsorption mode is the called bridge/top mode, were Ni atoms of surface top layer form a bridge with carbon bonds of the double-walled carbon nanotube. Additionally, a strong structural deformation for bridge/top adsorption mode is observed together with dipoles induction on the external wall of the double-walled carbon nanotube. The presence of dipoles suggests that the double-walled carbon nanotube over Ni(111) surface is more reactive than the isolated carbon nanotube and this could be employed as an electron donor system. © 2019 Elsevier B.V.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:59Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:59Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 9270256
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5780
dc.identifier.doi.none.fl_str_mv 10.1016/j.commatsci.2019.109457
identifier_str_mv 9270256
10.1016/j.commatsci.2019.109457
url http://hdl.handle.net/11407/5780
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076670739&doi=10.1016%2fj.commatsci.2019.109457&partnerID=40&md5=79264226de8eb3725bc76ea02e93e37b
dc.relation.citationvolume.none.fl_str_mv 174
dc.relation.references.none.fl_str_mv Frank, S., Poncharal, P., Wang, Z.L., Heer, W.A.D., Carbon nanotube quantum resistors (1998) Science, 280 (5370), pp. 1744-1746
Tans, S.J., Verschueren, A.R.M., Dekker, C., Room-temperature transistor based on a single carbon nanotube (1998) Nature, 393, pp. 49-52
Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H., Ballistic carbon nanotube field-effect transistors (2003) Nature, 424, pp. 654-657
Kong, J., Chapline, M.G., Dai, H., Functionalized carbon nanotubes for molecular hydrogen sensors (2001) Adv. Mater., 13 (18), pp. 1384-1386
Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., Meyyappan, M., Carbon nanotube sensors for gas and organic vapor detection (2003) Nano Lett., 3 (7), pp. 929-933
Wang, J., Carbon-nanotube based electrochemical biosensors: a review (2005) Electroanalysis, 17 (1), pp. 7-14
Xie, X.-L., Mai, Y.-W., Zhou, X.-P., Dispersion and alignment of carbon nanotubes in polymer matrix: a review (2005) Mater. Sci. Eng.: R: Rep., 49 (4), pp. 89-112
Coleman, J.N., Khan, U., Blau, W.J., Gun, Y.K., Small but strong: a review of the mechanical properties of carbon nanotube polymer composites (2006) Carbon, 44 (9), pp. 1624-1652
Ma, P.-C., Siddiqui, N.A., Marom, G., Kim, J.-K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review (2010) Compos.: Part A, 41 (10), pp. 1345-1367
Li, Y.-H., Wang, S., Luan, Z., Ding, J., Xu, C., Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes (2003) Carbon, 41 (5), pp. 1057-1062
Rao, G.P., Lu, C., Su, F., Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review (2007) Sep. Purif. Technol., 58 (1), pp. 224-231
Ai, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L., Jiang, J., Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis (2011) J. Hazard. Mater., 198, pp. 282-290
Baughman, R.H., Zakhidov, A.A., de Heer, W.A., Carbon nanotubes-the route toward applications (2002) Science, 297 (5582), pp. 787-792
Teradal, N.L., Jelinek, R., Carbon nanomaterials in biological studies and biomedicine (2017) Adv. Healthc. Mater., 6 (17), pp. 1-36
Kumar, T., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., Kim, K.-H., Carbon nanotubes: a potential material for energy conversion and storage (2018) Prog. Energy Combust. Sci., 64, pp. 219-253
Hirsch, A., Functionalization of single-walled carbon nanotubes (2002) Angew. Chem.-Int. Ed., 41 (11), pp. 1853-1859
Sun, Y.-P., Fu, K., Lin, Y.I., Huang, W., Functionalized carbon nanotubes: properties and applications (2002) Acc. Chem. Res., 35 (12), pp. 1096-1104
Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chemistry of carbon nanotubes (2006) Chem. Rev., 106 (3), pp. 1105-1136
Georgakilas, V., Gournis, D., Tzitzios, V., Pasquato, L., Guldi, M., Prato, M., Decorating carbon nanotubes with metal or semiconductor nanoparticles (2007) J. Mater. Chem., 17, pp. 2679-2694
Qi, Q., Liu, H., Feng, W., Tian, H., Xu, H., Huang, X., Theoretical investigation on the interaction of subnano platinum clusters with graphene using DFT methods (2015) Comput. Mater. Sci., 96, pp. 268-276
Liu, Q., Tian, J., Cui, W., Jiang, P., Cheng, N., Asiri, A.M., Sun, X., Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution (2014) Angew. Chem.-Int. Ed., 53 (26), pp. 6710-6714
Deng, J., Ren, P., Deng, D., Yu, L., Yang, F., Bao, X., Environmental Science Highly active and durable non-precious-metal hydrogen evolution reaction (2014) Energy Environ. Sci., 7, pp. 1919-1923
Tessonnier, J.-P., Pesant, L., Ehret, G., Ledoux, M.J., Pham-huu, C., Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde (2005) Appl. Catal. A: General, 288 (1-2), pp. 203-210
Reyhani, A., Mortazavi, S.Z., Mirershadi, S., Moshfegh, A.Z., Parvin, P., Golikand, A.N., Hydrogen storage in decorated multiwalled carbon nanotubes by Ca Co, Fe, Ni, and Pd nanoparticles under ambient conditions (2011) J. Phys. Chem. C, 115 (14), pp. 6994-7001
Huang, Z.P., Wang, D.Z., Wen, J.G., Sennett, M., Gibson, H., Ren, Z.F., Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes (2002) Appl. Phys. A, 74 (3), pp. 387-391
Vander Wal, R.L., Ticich, T.M., Curtis, V.E., Substrate support interactions in metal-catalyzed carbon nanofiber growth (2001) Carbon, 39 (15), pp. 2277-2289
Barcaro, G., Zhu, B., Hou, M., Fortunelli, A., Carbon clusters, surface growth, nickel surfaces, empirical potentials, density functional calculations (2012) Comput. Mater. Sci., 63, pp. 74-81
Singh, N.B., Bhattacharya, B., Mondal, R., Nickel cluster functionalised carbon nanotube for CO molecule detection: a theoretical study (2016) Mol. Phys., 114 (5), pp. 671-680
Xu, H., Chu, W., Sun, W., Liu, Z., DFT studies of Ni cluster on graphene surface: effect of CO2 activation (2016) RSC Adv., 6, pp. 96545-96553
Thu, T., Nguyen, H., Le, V.K., Minh, C.L., Nguyen, N.H., A theoretical study of carbon dioxide adsorption and activation on metal-doped (Fe Co, Ni) carbon nanotube (2017) Comput. Theor. Chem., 1100, pp. 46-51
Banhart, F., Charlier, J., Ajayan, P.M., Dynamic behavior of nickel atoms in graphitic networks (2000) Phys. Rev. Lett., 84 (4), pp. 686-689
Gallego, J., Barrault, J., Batiot-dupeyrat, C., Mondragon, F., Intershell spacing changes in MWCNT induced by metal CNT interactions (2013) Micron, 44, pp. 463-467
Dahal, A., Batzill, M., Graphene nickel interfaces: a review (2014) Nanoscale, 6 (5), pp. 2548-2562
Kuzubov, A.A., Kovaleva, E.A., Tomilin, F.N., Mikhaleva, N.S., Kuklin, A.V., On the possibility of contact-induced spin polarization in interfaces of armchair nanotubes with transition metal substrates (2015) J. Magn. Magn. Mater., 396, pp. 102-105
Cha, J.J., Weyland, M., Briere, J.-F., Daykov, I.P., Three-dimensional imaging of carbon nanotubes deformed by metal islands (2007) Nano Lett., 7 (12), pp. 3770-3773
Nemec, N., Tománek, D., Cuniberti, G., Contact dependence of carrier injection in carbon nanotubes: an ab initio study (2006) Phys. Rev. Lett., 96 (76802), pp. 1-4
Sung, C.-M., Tai, M.-F., Reactivities of transition metals with carbon: implications to the mechanism of diamond synthesis under high pressure (1997) Int. J. Refractory Met. Hard Mater., 15 (4), pp. 237-256
Menon, M., Andriotis, A.N., Froudakis, G.E., Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls (2000) Chem. Phys. Lett., 320 (5-6), pp. 425-434
Star, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.-C.P., Emery, V., Gas sensor array based on metal-decorated carbon nanotubes (2006) J. Phys. Chem. B, 110 (42), pp. 21014-21020
Durgun, E., Dag, S., Bagci, V.M.K., Gülseren, O., Yildirim, T., Ciraci, S., Systematic study of adsorption of single atoms on a carbon nanotube (2003) Phys. Rev. B, 67 201401, pp. 1-4
Vitale, V., Curioni, A., Andreoni, W., Metal-carbon nanotube contacts: the link between schottky barrier and chemical bonding (2008) J. Am. Chem. Soc., 130 (18), pp. 5848-5849
Fuentes-cabrera, M., Baskes, M.I., Melechko, A.V., Simpson, M.L., Bridge structure for the graphene/Ni(111) system: a first principles study (2008) Phys. Rev. B, 77 (35405), pp. 1-5
Sun, X., Entani, S., Yamauchi, Y., Pratt, A., Kurahashi, M., Spin polarization study of graphene on the Ni(111) surface by density functional theory calculations with a semiempirical long-range dispersion correction (2014) J. Appl. Phys., 114 143713, pp. 1-7
Soler, M., Artacho, E., Gale, J.D., Garc, A., Junquera, J., Ordej, P., Daniel, S., The SIESTA method for ab initio order-N materials (2002) J. Phys.: Condensed Matter, 14, pp. 2745-2779
Moseler, M., Gumbsch, P., Structural relaxation made simple (2006) Phys. Rev. Lett., 97 170201, pp. 1-4
Klime , J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der Waals (2010) J. Phys.: Condensed Matter, 22 (22201), pp. 1-5
Carrasco, J., Liu, W., Michaelides, A., Tkatchenko, A., Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces (2014) J. Chem. Phys., 140 (84704), pp. 1-10
Mittendorfer, F., Garhofer, A., Redinger, J., Klime , J., Harl, J., Kresse, G., Graphene on Ni(111): strong interaction and weak adsorption (2011) Phys. Rev. B, 84 201401, pp. 1-4
Rivero, P., García-suárez, V.M., Pereñiguez, D., Utt, K., Yang, Y., Bellaiche, L., Park, K., Barraza-lopez, S., Systematic pseudopotentials from reference eigenvalue sets for DFT calculations (2015) Comput. Mater. Sci., 98, pp. 372-389
Qin, L.-C., Zhao, X., Hirahara, K., Miyamoto, Y., Ando, Y., Iijima, S., The smallest carbon nanotube (2000) Nature, 408, p. 50
Taylor, P., Boys, S.F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (1970) Mol. Phys., 19 (4), pp. 553-566
Rance, G.A., Marsh, D.H., Bourne, S.J., Reade, T.J., Khlobystov, A.N., van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures (2010) ACS Nano, 4 (8), pp. 4920-4928
Patra, A., Bates, J.E., Sun, J., Perdew, J.P., Properties of real metallic surfaces: effects of density functional semilocality and van der waals nonlocality (2017) Proc. Natl. Acad. Sci., 114 (44), pp. E9188-E9196
Zhang, W.-B., Chen, C., Tang, P.-Y., Zhang, W.-B., Chen, C., Tang, P.-Y., First-principles study for stability and binding mechanism of graphene/Ni(111) interface: role of vdW interaction (2014) J. Chem. Phys., 141 (44708), pp. 1-9
Christian, M.S., Otero-de-la roza, E.R. Johnson, A., Johnson, E.R., Adsorption of graphene to nickel (111) using the exchange-hole dipole moment model (2017) Carbon, 118, pp. 184-191
Gebhardt, J., Vi, F., Andreas, G., Influence of the surface dipole layer and Pauli repulsion on band energies and doping in graphene adsorbed on metal surfaces (2012) Phys. Rev. B, 86 195431, pp. 1-15
Cusati, T., Fiori, G., Gahoi, A., Passi, V., Lemme, M.C., Fortunelli, A., Iannaccone, G., Electrical properties of graphene- metal contacts (2017) Scientific Rep., 7, pp. 1-11
Zhang, C., Lee, B.-J., Li, H., Samdani, J., Kang, T.-H., Yu, J.-S., Catalytic mechanism of graphene-nickel interface dipole layer for binder free electrochemical sensor applications (2018) Commun. Chem., 1, pp. 1-10
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Computational Materials Science
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159103066374144
spelling 20202020-04-29T14:53:59Z2020-04-29T14:53:59Z9270256http://hdl.handle.net/11407/578010.1016/j.commatsci.2019.109457The effect of interaction between (4,4)@(9,9) double-walled carbon nanotube and Ni(111) surface is studied by density functional theory calculations, including van der Waals interaction effects. Different modes of adsorption were evaluated. Calculations of adsorption energy, density of states, and charge redistribution are performed. According to adsorption energy, it was found that the most probable adsorption mode is the called bridge/top mode, were Ni atoms of surface top layer form a bridge with carbon bonds of the double-walled carbon nanotube. Additionally, a strong structural deformation for bridge/top adsorption mode is observed together with dipoles induction on the external wall of the double-walled carbon nanotube. The presence of dipoles suggests that the double-walled carbon nanotube over Ni(111) surface is more reactive than the isolated carbon nanotube and this could be employed as an electron donor system. © 2019 Elsevier B.V.engElsevier B.V.Facultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076670739&doi=10.1016%2fj.commatsci.2019.109457&partnerID=40&md5=79264226de8eb3725bc76ea02e93e37b174Frank, S., Poncharal, P., Wang, Z.L., Heer, W.A.D., Carbon nanotube quantum resistors (1998) Science, 280 (5370), pp. 1744-1746Tans, S.J., Verschueren, A.R.M., Dekker, C., Room-temperature transistor based on a single carbon nanotube (1998) Nature, 393, pp. 49-52Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H., Ballistic carbon nanotube field-effect transistors (2003) Nature, 424, pp. 654-657Kong, J., Chapline, M.G., Dai, H., Functionalized carbon nanotubes for molecular hydrogen sensors (2001) Adv. Mater., 13 (18), pp. 1384-1386Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., Meyyappan, M., Carbon nanotube sensors for gas and organic vapor detection (2003) Nano Lett., 3 (7), pp. 929-933Wang, J., Carbon-nanotube based electrochemical biosensors: a review (2005) Electroanalysis, 17 (1), pp. 7-14Xie, X.-L., Mai, Y.-W., Zhou, X.-P., Dispersion and alignment of carbon nanotubes in polymer matrix: a review (2005) Mater. Sci. Eng.: R: Rep., 49 (4), pp. 89-112Coleman, J.N., Khan, U., Blau, W.J., Gun, Y.K., Small but strong: a review of the mechanical properties of carbon nanotube polymer composites (2006) Carbon, 44 (9), pp. 1624-1652Ma, P.-C., Siddiqui, N.A., Marom, G., Kim, J.-K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review (2010) Compos.: Part A, 41 (10), pp. 1345-1367Li, Y.-H., Wang, S., Luan, Z., Ding, J., Xu, C., Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes (2003) Carbon, 41 (5), pp. 1057-1062Rao, G.P., Lu, C., Su, F., Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review (2007) Sep. Purif. Technol., 58 (1), pp. 224-231Ai, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L., Jiang, J., Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis (2011) J. Hazard. Mater., 198, pp. 282-290Baughman, R.H., Zakhidov, A.A., de Heer, W.A., Carbon nanotubes-the route toward applications (2002) Science, 297 (5582), pp. 787-792Teradal, N.L., Jelinek, R., Carbon nanomaterials in biological studies and biomedicine (2017) Adv. Healthc. Mater., 6 (17), pp. 1-36Kumar, T., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., Kim, K.-H., Carbon nanotubes: a potential material for energy conversion and storage (2018) Prog. Energy Combust. Sci., 64, pp. 219-253Hirsch, A., Functionalization of single-walled carbon nanotubes (2002) Angew. Chem.-Int. Ed., 41 (11), pp. 1853-1859Sun, Y.-P., Fu, K., Lin, Y.I., Huang, W., Functionalized carbon nanotubes: properties and applications (2002) Acc. Chem. Res., 35 (12), pp. 1096-1104Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chemistry of carbon nanotubes (2006) Chem. Rev., 106 (3), pp. 1105-1136Georgakilas, V., Gournis, D., Tzitzios, V., Pasquato, L., Guldi, M., Prato, M., Decorating carbon nanotubes with metal or semiconductor nanoparticles (2007) J. Mater. Chem., 17, pp. 2679-2694Qi, Q., Liu, H., Feng, W., Tian, H., Xu, H., Huang, X., Theoretical investigation on the interaction of subnano platinum clusters with graphene using DFT methods (2015) Comput. Mater. Sci., 96, pp. 268-276Liu, Q., Tian, J., Cui, W., Jiang, P., Cheng, N., Asiri, A.M., Sun, X., Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution (2014) Angew. Chem.-Int. Ed., 53 (26), pp. 6710-6714Deng, J., Ren, P., Deng, D., Yu, L., Yang, F., Bao, X., Environmental Science Highly active and durable non-precious-metal hydrogen evolution reaction (2014) Energy Environ. Sci., 7, pp. 1919-1923Tessonnier, J.-P., Pesant, L., Ehret, G., Ledoux, M.J., Pham-huu, C., Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde (2005) Appl. Catal. A: General, 288 (1-2), pp. 203-210Reyhani, A., Mortazavi, S.Z., Mirershadi, S., Moshfegh, A.Z., Parvin, P., Golikand, A.N., Hydrogen storage in decorated multiwalled carbon nanotubes by Ca Co, Fe, Ni, and Pd nanoparticles under ambient conditions (2011) J. Phys. Chem. C, 115 (14), pp. 6994-7001Huang, Z.P., Wang, D.Z., Wen, J.G., Sennett, M., Gibson, H., Ren, Z.F., Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes (2002) Appl. Phys. A, 74 (3), pp. 387-391Vander Wal, R.L., Ticich, T.M., Curtis, V.E., Substrate support interactions in metal-catalyzed carbon nanofiber growth (2001) Carbon, 39 (15), pp. 2277-2289Barcaro, G., Zhu, B., Hou, M., Fortunelli, A., Carbon clusters, surface growth, nickel surfaces, empirical potentials, density functional calculations (2012) Comput. Mater. Sci., 63, pp. 74-81Singh, N.B., Bhattacharya, B., Mondal, R., Nickel cluster functionalised carbon nanotube for CO molecule detection: a theoretical study (2016) Mol. Phys., 114 (5), pp. 671-680Xu, H., Chu, W., Sun, W., Liu, Z., DFT studies of Ni cluster on graphene surface: effect of CO2 activation (2016) RSC Adv., 6, pp. 96545-96553Thu, T., Nguyen, H., Le, V.K., Minh, C.L., Nguyen, N.H., A theoretical study of carbon dioxide adsorption and activation on metal-doped (Fe Co, Ni) carbon nanotube (2017) Comput. Theor. Chem., 1100, pp. 46-51Banhart, F., Charlier, J., Ajayan, P.M., Dynamic behavior of nickel atoms in graphitic networks (2000) Phys. Rev. Lett., 84 (4), pp. 686-689Gallego, J., Barrault, J., Batiot-dupeyrat, C., Mondragon, F., Intershell spacing changes in MWCNT induced by metal CNT interactions (2013) Micron, 44, pp. 463-467Dahal, A., Batzill, M., Graphene nickel interfaces: a review (2014) Nanoscale, 6 (5), pp. 2548-2562Kuzubov, A.A., Kovaleva, E.A., Tomilin, F.N., Mikhaleva, N.S., Kuklin, A.V., On the possibility of contact-induced spin polarization in interfaces of armchair nanotubes with transition metal substrates (2015) J. Magn. Magn. Mater., 396, pp. 102-105Cha, J.J., Weyland, M., Briere, J.-F., Daykov, I.P., Three-dimensional imaging of carbon nanotubes deformed by metal islands (2007) Nano Lett., 7 (12), pp. 3770-3773Nemec, N., Tománek, D., Cuniberti, G., Contact dependence of carrier injection in carbon nanotubes: an ab initio study (2006) Phys. Rev. Lett., 96 (76802), pp. 1-4Sung, C.-M., Tai, M.-F., Reactivities of transition metals with carbon: implications to the mechanism of diamond synthesis under high pressure (1997) Int. J. Refractory Met. Hard Mater., 15 (4), pp. 237-256Menon, M., Andriotis, A.N., Froudakis, G.E., Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls (2000) Chem. Phys. Lett., 320 (5-6), pp. 425-434Star, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.-C.P., Emery, V., Gas sensor array based on metal-decorated carbon nanotubes (2006) J. Phys. Chem. B, 110 (42), pp. 21014-21020Durgun, E., Dag, S., Bagci, V.M.K., Gülseren, O., Yildirim, T., Ciraci, S., Systematic study of adsorption of single atoms on a carbon nanotube (2003) Phys. Rev. B, 67 201401, pp. 1-4Vitale, V., Curioni, A., Andreoni, W., Metal-carbon nanotube contacts: the link between schottky barrier and chemical bonding (2008) J. Am. Chem. Soc., 130 (18), pp. 5848-5849Fuentes-cabrera, M., Baskes, M.I., Melechko, A.V., Simpson, M.L., Bridge structure for the graphene/Ni(111) system: a first principles study (2008) Phys. Rev. B, 77 (35405), pp. 1-5Sun, X., Entani, S., Yamauchi, Y., Pratt, A., Kurahashi, M., Spin polarization study of graphene on the Ni(111) surface by density functional theory calculations with a semiempirical long-range dispersion correction (2014) J. Appl. Phys., 114 143713, pp. 1-7Soler, M., Artacho, E., Gale, J.D., Garc, A., Junquera, J., Ordej, P., Daniel, S., The SIESTA method for ab initio order-N materials (2002) J. Phys.: Condensed Matter, 14, pp. 2745-2779Moseler, M., Gumbsch, P., Structural relaxation made simple (2006) Phys. Rev. Lett., 97 170201, pp. 1-4Klime , J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der Waals (2010) J. Phys.: Condensed Matter, 22 (22201), pp. 1-5Carrasco, J., Liu, W., Michaelides, A., Tkatchenko, A., Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces (2014) J. Chem. Phys., 140 (84704), pp. 1-10Mittendorfer, F., Garhofer, A., Redinger, J., Klime , J., Harl, J., Kresse, G., Graphene on Ni(111): strong interaction and weak adsorption (2011) Phys. Rev. B, 84 201401, pp. 1-4Rivero, P., García-suárez, V.M., Pereñiguez, D., Utt, K., Yang, Y., Bellaiche, L., Park, K., Barraza-lopez, S., Systematic pseudopotentials from reference eigenvalue sets for DFT calculations (2015) Comput. Mater. Sci., 98, pp. 372-389Qin, L.-C., Zhao, X., Hirahara, K., Miyamoto, Y., Ando, Y., Iijima, S., The smallest carbon nanotube (2000) Nature, 408, p. 50Taylor, P., Boys, S.F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (1970) Mol. Phys., 19 (4), pp. 553-566Rance, G.A., Marsh, D.H., Bourne, S.J., Reade, T.J., Khlobystov, A.N., van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures (2010) ACS Nano, 4 (8), pp. 4920-4928Patra, A., Bates, J.E., Sun, J., Perdew, J.P., Properties of real metallic surfaces: effects of density functional semilocality and van der waals nonlocality (2017) Proc. Natl. Acad. Sci., 114 (44), pp. E9188-E9196Zhang, W.-B., Chen, C., Tang, P.-Y., Zhang, W.-B., Chen, C., Tang, P.-Y., First-principles study for stability and binding mechanism of graphene/Ni(111) interface: role of vdW interaction (2014) J. Chem. Phys., 141 (44708), pp. 1-9Christian, M.S., Otero-de-la roza, E.R. Johnson, A., Johnson, E.R., Adsorption of graphene to nickel (111) using the exchange-hole dipole moment model (2017) Carbon, 118, pp. 184-191Gebhardt, J., Vi, F., Andreas, G., Influence of the surface dipole layer and Pauli repulsion on band energies and doping in graphene adsorbed on metal surfaces (2012) Phys. Rev. B, 86 195431, pp. 1-15Cusati, T., Fiori, G., Gahoi, A., Passi, V., Lemme, M.C., Fortunelli, A., Iannaccone, G., Electrical properties of graphene- metal contacts (2017) Scientific Rep., 7, pp. 1-11Zhang, C., Lee, B.-J., Li, H., Samdani, J., Kang, T.-H., Yu, J.-S., Catalytic mechanism of graphene-nickel interface dipole layer for binder free electrochemical sensor applications (2018) Commun. Chem., 1, pp. 1-10Computational Materials Sciencedipole formationstructural deformationvan der Waals interactionAdsorptionDeformationDensity functional theoryNanotubesNickelVan der Waals forcesAdsorption energiesCharge redistributionDensity of statedipole formationDouble walled carbon nanotubesStructural deformationVan der Waals interaction effectVan Der Waals interactionsMultiwalled carbon nanotubes (MWCN)Double-walled carbon nanotube deformation by interacting with a nickel surface: A DFT studyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Usuga, A.F., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Gallego, J., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Espinal, J.F., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecUsuga A.F.Correa J.D.Gallego J.Espinal J.F.11407/5780oai:repository.udem.edu.co:11407/57802020-05-27 15:43:05.079Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co