Comparison between unipolar and bipolar electrograms for detecting rotor tip from 2D fibrillation model using image fusion. A simulation study

The atrial fibrillation (AF) is the most common arrhythmia, which generates the highest costs on clinical systems. Theory of the rotor is one of the most recent approaches to explain the mechanisms that maintain AF. The most promising treatment is the ablation, whose success depends on rotor tip loc...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4278
Acceso en línea:
http://hdl.handle.net/11407/4278
Palabra clave:
Atrial Fibrillation
Electrograms
Image Fusion
Rotor Tip
Artificial intelligence
Computation theory
Costs
Diseases
Approximate entropy
Atrial fibrillation
Bipolar electrograms
Comparative analysis
Computational costs
Electrograms
Rotor tip
Simulation studies
Image fusion
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_50263e10e13fa156a7fa59f1ff611e51
oai_identifier_str oai:repository.udem.edu.co:11407/4278
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Comparison between unipolar and bipolar electrograms for detecting rotor tip from 2D fibrillation model using image fusion. A simulation study
title Comparison between unipolar and bipolar electrograms for detecting rotor tip from 2D fibrillation model using image fusion. A simulation study
spellingShingle Comparison between unipolar and bipolar electrograms for detecting rotor tip from 2D fibrillation model using image fusion. A simulation study
Atrial Fibrillation
Electrograms
Image Fusion
Rotor Tip
Artificial intelligence
Computation theory
Costs
Diseases
Approximate entropy
Atrial fibrillation
Bipolar electrograms
Comparative analysis
Computational costs
Electrograms
Rotor tip
Simulation studies
Image fusion
title_short Comparison between unipolar and bipolar electrograms for detecting rotor tip from 2D fibrillation model using image fusion. A simulation study
title_full Comparison between unipolar and bipolar electrograms for detecting rotor tip from 2D fibrillation model using image fusion. A simulation study
title_fullStr Comparison between unipolar and bipolar electrograms for detecting rotor tip from 2D fibrillation model using image fusion. A simulation study
title_full_unstemmed Comparison between unipolar and bipolar electrograms for detecting rotor tip from 2D fibrillation model using image fusion. A simulation study
title_sort Comparison between unipolar and bipolar electrograms for detecting rotor tip from 2D fibrillation model using image fusion. A simulation study
dc.contributor.affiliation.spa.fl_str_mv Duarte-Salazar, C.A., GEA Research Group, Institución Universitaria Salazar y Herrera, Medellín, Colombia
Orozco-Duque, A., GI2B Research Group, Instituto Tecnológico Metropolitano, Medellín, Colombia
Tobón, C., Nanostructured Materials Research Group, Universidad de Medellín, Medellín, Colombia
Peluffo-Ordóñez, D.H., Facultad de Ingeniería en Ciencias Aplicadas-FICA, Universidad Técnica Del Norte, Ecuador, Department of Electronics from Universidad de Nariño, Colombia
Luna, J.A.G., SINTELWEB Research Group, Universidad Nacional de Colombia, Medellín, Colombia
Becerra, M.A., GEA Research Group, Institución Universitaria Salazar y Herrera, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv Atrial Fibrillation
Electrograms
Image Fusion
Rotor Tip
Artificial intelligence
Computation theory
Costs
Diseases
Approximate entropy
Atrial fibrillation
Bipolar electrograms
Comparative analysis
Computational costs
Electrograms
Rotor tip
Simulation studies
Image fusion
topic Atrial Fibrillation
Electrograms
Image Fusion
Rotor Tip
Artificial intelligence
Computation theory
Costs
Diseases
Approximate entropy
Atrial fibrillation
Bipolar electrograms
Comparative analysis
Computational costs
Electrograms
Rotor tip
Simulation studies
Image fusion
description The atrial fibrillation (AF) is the most common arrhythmia, which generates the highest costs on clinical systems. Theory of the rotor is one of the most recent approaches to explain the mechanisms that maintain AF. The most promising treatment is the ablation, whose success depends on rotor tip location. In a previous research, the approximate entropy (ApEn) calculated on simulated electrograms from atrial models has shown high capability for detecting the rotor tip, however it needed a human final adjustment. In addition, this technique involves a high computational cost, which is a problem for its effective application. In this study, multiple features maps were generated and different combinations of them were conducted using wavelet image fusion. The rotor tip location when using image fusion, was similar to the results achieved with the methodology based on ApEn, however, our methodology did not require any manual adjustment, and the computational cost was reduced to 85%. This study includes a comparative analysis between unipolar and bipolar electrograms obtained from a simulated 2D model of a human atrial tissue under chronic AF. © 2016 IEEE.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:44Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:44Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.identifier.isbn.none.fl_str_mv 9781509051052
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4278
dc.identifier.doi.none.fl_str_mv 10.1109/LA-CCI.2016.7885712
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 9781509051052
10.1109/LA-CCI.2016.7885712
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4278
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv http://ieeexplore.ieee.org/document/7885712/?reload=true
dc.relation.ispartofes.spa.fl_str_mv 2016 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2016 - Proceedings
dc.relation.references.spa.fl_str_mv Cappato, R., Calkins, H., Chen, S. -., Davies, W., Iesaka, Y., Kalman, J., . . . Biganzoli, E. (2010). Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation: Arrhythmia and Electrophysiology, 3(1), 32-38. doi:10.1161/CIRCEP.109.859116
Ganesan, A. N., Kuklik, P., Lau, D. H., Brooks, A. G., Baumert, M., Lim, W. W., . . . Sanders, P. (2013). Bipolar electrogram shannon entropy at sites of rotational activation implications for ablation of atrial fibrillation. Circulation: Arrhythmia and Electrophysiology, 6(1), 48-57. doi:10.1161/CIRCEP.112.976654
Habel, N., Znojkiewicz, P., Thompson, N., Müller, J. G., Mason, B., Calame, J., . . . Spector, P. (2010). The temporal variability of dominant frequency and complex fractionated atrial electrograms constrains the validity of sequential mapping in human atrial fibrillation. Heart Rhythm, 7(5), 586-593. doi:10.1016/j.hrthm.2010.01.010
Henriquez, C. S., & Plonsey, R. (1990). Simulation of propagation along a cylindrical bundle of cardiac Tissue—I: Mathematical formulation. IEEE Transactions on Biomedical Engineering, 37(9), 850-860. doi:10.1109/10.58596
Lin, Y. -., Tai, C. -., Chang, S. -., Lo, L. -., Tuan, T. -., Wongcharoen, W., . . . Chen, S. -. (2009). Efficacy of additional ablation of complex fractionated atrial electrograms for catheter ablation of nonparoxysmal atrial fibrillation. Journal of Cardiovascular Electrophysiology, 20(6), 607-615. doi:10.1111/j.1540-8167.2008.01393.x
Nademanee, K., Lockwood, E., Oketani, N., & Gidney, B. (2010). Catheter ablation of atrial fibrillation guided by complex fractionated atrial electrogram mapping of atrial fibrillation substrate. Journal of Cardiology, 55(1), 1-12. doi:10.1016/j.jjcc.2009.11.002
Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., . . . Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: Mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054
Otsu, N. (1979). THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS. IEEE Trans Syst Man Cybern, SMC-9(1), 62-66.
Pajares, G., & de la Cruz, J. M. (2004). A wavelet-based image fusion tutorial. Pattern Recognition, 37(9), 1855-1872. doi:10.1016/j.patcog.2004.03.010
Pappone, C., Santinelli, V., Manguso, F., Vicedomini, G., Gugliotta, F., Augello, G., . . . Alfieri, O. (2004). Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation, 109(3), 327-334. doi:10.1161/01.CIR.0000112641.16340.C7
Pour, M. (2015). Simultaneous application of time series analysis and wavelet transform for determining surface roughness of the ground workpieces. Int.J.Adv.Manuf.Technol., , 1-13.
Poza, J., Hornero, R., Abásolo, D., Fernández, A., & García, M. (2007). Extraction of spectral based measures from MEG background oscillations in alzheimer's disease. Medical Engineering and Physics, 29(10), 1073-1083. doi:10.1016/j.medengphy.2006.11.006
Roten, L., Derval, N., & Jaïs, P. (2012). Catheter ablation for persistent atrial fibrillation: Elimination of triggers is not sufficient. Circulation: Arrhythmia and Electrophysiology, 5(6), 1224-1231. doi:10.1161/CIRCEP.112.974873
Salazar, Á. (2008). Wavelet processing applications with photorefractive materials. Bistua: Journal of the Faculty of Basic Sciences.
Schilling, C. (2012). Analysis of Atrial Electrogram, 17.
Tobón, C., Palacio, L. C., Duque, J. E., Cardona, E. A., Ugarte, J. P., Orozco-Duque, A., . . . Bustamante, J. (2014). Simple ablation guided by ApEn mapping in a 2D model during permanent atrial fibrillation. Paper presented at the Computing in Cardiology, , 41(January) 1029-1032.
Ugarte, J. P., Tobón, C., Orozco-Duque, A., Becerra, M. A., & Bustamante, J. (2015). Effect of the electrograms density in detecting and ablating the tip of the rotor during chronic atrial fibrillation: An in silico study. Europace, 17, ii97-ii104. doi:10.1093/europace/euv244
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159115424890880
spelling 2017-12-19T19:36:44Z2017-12-19T19:36:44Z20179781509051052http://hdl.handle.net/11407/427810.1109/LA-CCI.2016.7885712reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThe atrial fibrillation (AF) is the most common arrhythmia, which generates the highest costs on clinical systems. Theory of the rotor is one of the most recent approaches to explain the mechanisms that maintain AF. The most promising treatment is the ablation, whose success depends on rotor tip location. In a previous research, the approximate entropy (ApEn) calculated on simulated electrograms from atrial models has shown high capability for detecting the rotor tip, however it needed a human final adjustment. In addition, this technique involves a high computational cost, which is a problem for its effective application. In this study, multiple features maps were generated and different combinations of them were conducted using wavelet image fusion. The rotor tip location when using image fusion, was similar to the results achieved with the methodology based on ApEn, however, our methodology did not require any manual adjustment, and the computational cost was reduced to 85%. This study includes a comparative analysis between unipolar and bipolar electrograms obtained from a simulated 2D model of a human atrial tissue under chronic AF. © 2016 IEEE.engInstitute of Electrical and Electronics Engineers Inc.Facultad de Ciencias Básicashttp://ieeexplore.ieee.org/document/7885712/?reload=true2016 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2016 - ProceedingsCappato, R., Calkins, H., Chen, S. -., Davies, W., Iesaka, Y., Kalman, J., . . . Biganzoli, E. (2010). Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation: Arrhythmia and Electrophysiology, 3(1), 32-38. doi:10.1161/CIRCEP.109.859116Ganesan, A. N., Kuklik, P., Lau, D. H., Brooks, A. G., Baumert, M., Lim, W. W., . . . Sanders, P. (2013). Bipolar electrogram shannon entropy at sites of rotational activation implications for ablation of atrial fibrillation. Circulation: Arrhythmia and Electrophysiology, 6(1), 48-57. doi:10.1161/CIRCEP.112.976654Habel, N., Znojkiewicz, P., Thompson, N., Müller, J. G., Mason, B., Calame, J., . . . Spector, P. (2010). The temporal variability of dominant frequency and complex fractionated atrial electrograms constrains the validity of sequential mapping in human atrial fibrillation. Heart Rhythm, 7(5), 586-593. doi:10.1016/j.hrthm.2010.01.010Henriquez, C. S., & Plonsey, R. (1990). Simulation of propagation along a cylindrical bundle of cardiac Tissue—I: Mathematical formulation. IEEE Transactions on Biomedical Engineering, 37(9), 850-860. doi:10.1109/10.58596Lin, Y. -., Tai, C. -., Chang, S. -., Lo, L. -., Tuan, T. -., Wongcharoen, W., . . . Chen, S. -. (2009). Efficacy of additional ablation of complex fractionated atrial electrograms for catheter ablation of nonparoxysmal atrial fibrillation. Journal of Cardiovascular Electrophysiology, 20(6), 607-615. doi:10.1111/j.1540-8167.2008.01393.xNademanee, K., Lockwood, E., Oketani, N., & Gidney, B. (2010). Catheter ablation of atrial fibrillation guided by complex fractionated atrial electrogram mapping of atrial fibrillation substrate. Journal of Cardiology, 55(1), 1-12. doi:10.1016/j.jjcc.2009.11.002Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., . . . Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: Mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054Otsu, N. (1979). THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS. IEEE Trans Syst Man Cybern, SMC-9(1), 62-66.Pajares, G., & de la Cruz, J. M. (2004). A wavelet-based image fusion tutorial. Pattern Recognition, 37(9), 1855-1872. doi:10.1016/j.patcog.2004.03.010Pappone, C., Santinelli, V., Manguso, F., Vicedomini, G., Gugliotta, F., Augello, G., . . . Alfieri, O. (2004). Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation, 109(3), 327-334. doi:10.1161/01.CIR.0000112641.16340.C7Pour, M. (2015). Simultaneous application of time series analysis and wavelet transform for determining surface roughness of the ground workpieces. Int.J.Adv.Manuf.Technol., , 1-13.Poza, J., Hornero, R., Abásolo, D., Fernández, A., & García, M. (2007). Extraction of spectral based measures from MEG background oscillations in alzheimer's disease. Medical Engineering and Physics, 29(10), 1073-1083. doi:10.1016/j.medengphy.2006.11.006Roten, L., Derval, N., & Jaïs, P. (2012). Catheter ablation for persistent atrial fibrillation: Elimination of triggers is not sufficient. Circulation: Arrhythmia and Electrophysiology, 5(6), 1224-1231. doi:10.1161/CIRCEP.112.974873Salazar, Á. (2008). Wavelet processing applications with photorefractive materials. Bistua: Journal of the Faculty of Basic Sciences.Schilling, C. (2012). Analysis of Atrial Electrogram, 17.Tobón, C., Palacio, L. C., Duque, J. E., Cardona, E. A., Ugarte, J. P., Orozco-Duque, A., . . . Bustamante, J. (2014). Simple ablation guided by ApEn mapping in a 2D model during permanent atrial fibrillation. Paper presented at the Computing in Cardiology, , 41(January) 1029-1032.Ugarte, J. P., Tobón, C., Orozco-Duque, A., Becerra, M. A., & Bustamante, J. (2015). Effect of the electrograms density in detecting and ablating the tip of the rotor during chronic atrial fibrillation: An in silico study. Europace, 17, ii97-ii104. doi:10.1093/europace/euv244ScopusComparison between unipolar and bipolar electrograms for detecting rotor tip from 2D fibrillation model using image fusion. A simulation studyConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fDuarte-Salazar, C.A., GEA Research Group, Institución Universitaria Salazar y Herrera, Medellín, ColombiaOrozco-Duque, A., GI2B Research Group, Instituto Tecnológico Metropolitano, Medellín, ColombiaTobón, C., Nanostructured Materials Research Group, Universidad de Medellín, Medellín, ColombiaPeluffo-Ordóñez, D.H., Facultad de Ingeniería en Ciencias Aplicadas-FICA, Universidad Técnica Del Norte, Ecuador, Department of Electronics from Universidad de Nariño, ColombiaLuna, J.A.G., SINTELWEB Research Group, Universidad Nacional de Colombia, Medellín, ColombiaBecerra, M.A., GEA Research Group, Institución Universitaria Salazar y Herrera, Medellín, ColombiaDuarte-Salazar C.A.Orozco-Duque A.Tobón C.Peluffo-Ordóñez D.H.Luna J.A.G.Becerra M.A.GEA Research Group, Institución Universitaria Salazar y Herrera, Medellín, ColombiaGI2B Research Group, Instituto Tecnológico Metropolitano, Medellín, ColombiaNanostructured Materials Research Group, Universidad de Medellín, Medellín, ColombiaFacultad de Ingeniería en Ciencias Aplicadas-FICA, Universidad Técnica Del Norte, EcuadorDepartment of Electronics from Universidad de Nariño, ColombiaSINTELWEB Research Group, Universidad Nacional de Colombia, Medellín, ColombiaAtrial FibrillationElectrogramsImage FusionRotor TipArtificial intelligenceComputation theoryCostsDiseasesApproximate entropyAtrial fibrillationBipolar electrogramsComparative analysisComputational costsElectrogramsRotor tipSimulation studiesImage fusionThe atrial fibrillation (AF) is the most common arrhythmia, which generates the highest costs on clinical systems. Theory of the rotor is one of the most recent approaches to explain the mechanisms that maintain AF. The most promising treatment is the ablation, whose success depends on rotor tip location. In a previous research, the approximate entropy (ApEn) calculated on simulated electrograms from atrial models has shown high capability for detecting the rotor tip, however it needed a human final adjustment. In addition, this technique involves a high computational cost, which is a problem for its effective application. In this study, multiple features maps were generated and different combinations of them were conducted using wavelet image fusion. The rotor tip location when using image fusion, was similar to the results achieved with the methodology based on ApEn, however, our methodology did not require any manual adjustment, and the computational cost was reduced to 85%. This study includes a comparative analysis between unipolar and bipolar electrograms obtained from a simulated 2D model of a human atrial tissue under chronic AF. © 2016 IEEE.http://purl.org/coar/access_right/c_16ec11407/4278oai:repository.udem.edu.co:11407/42782020-05-27 15:54:26.352Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co