Advances in optimal control of differential systems with the state suprema

This paper deals with a further development of analytic techniques for Optimal Control Problems (OCPs) involving differential systems with the state suprema. Differential equations evolving with state suprema (maxima) provide a useful modelling framework for various real-world applications, namely,...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4886
Acceso en línea:
http://hdl.handle.net/11407/4886
Palabra clave:
Differential equations
Optimal control systems
Analytic technique
Differential systems
Functional differential equations
Modelling framework
Optimal control problem
Optimal controls
Optimal solutions
State dependent delay
Equations of state
Rights
License
http://purl.org/coar/access_right/c_16ec
Description
Summary:This paper deals with a further development of analytic techniques for Optimal Control Problems (OCPs) involving differential systems with the state suprema. Differential equations evolving with state suprema (maxima) provide a useful modelling framework for various real-world applications, namely, in electrical engineering and in biology. The corresponding dynamic models lead to Functional Differential Equations (FDEs) in the presence of state-dependent delays. We study some particular (but important) cases of optimal control processes governed by systems with sup-operator in the right hand sides of the differential equations and obtain constructive characterizations of optimal solutions. The constrained OCPs we examine are formulated assuming the (linear) feedback-type control law. The case study presented in this article constitutes a formal extension of the concept of positive dynamic systems to differential systems with the state suprema. © 2017 IEEE.