The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices
We perform a theoretical study of light propagation properties in two-dimensional square photonic crystals following Bravais-Moiré patterns, paying particular attention to the influence of the transversal shape and the orientation of the dielectric scatters onto the width and position of photonic ba...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6032
- Acceso en línea:
- http://hdl.handle.net/11407/6032
- Palabra clave:
- 2D photonic crystals
Bravais-Moiré lattices
Dielectric core shape and orientation
Photonic band gap
Cells
Crystal atomic structure
Crystal orientation
Cytology
Photonic band gap
Rotation
Dielectric core
Higher frequencies
Photonic band structures
Photonic dispersion
Photonic structure
Propagation properties
Simple Cubic cell
Theoretical study
Energy gap
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_4c8849f9450e64b7fd15542cf944c3cc |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6032 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices |
title |
The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices |
spellingShingle |
The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices 2D photonic crystals Bravais-Moiré lattices Dielectric core shape and orientation Photonic band gap Cells Crystal atomic structure Crystal orientation Cytology Photonic band gap Rotation Dielectric core Higher frequencies Photonic band structures Photonic dispersion Photonic structure Propagation properties Simple Cubic cell Theoretical study Energy gap |
title_short |
The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices |
title_full |
The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices |
title_fullStr |
The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices |
title_full_unstemmed |
The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices |
title_sort |
The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices |
dc.subject.spa.fl_str_mv |
2D photonic crystals Bravais-Moiré lattices Dielectric core shape and orientation Photonic band gap |
topic |
2D photonic crystals Bravais-Moiré lattices Dielectric core shape and orientation Photonic band gap Cells Crystal atomic structure Crystal orientation Cytology Photonic band gap Rotation Dielectric core Higher frequencies Photonic band structures Photonic dispersion Photonic structure Propagation properties Simple Cubic cell Theoretical study Energy gap |
dc.subject.keyword.eng.fl_str_mv |
Cells Crystal atomic structure Crystal orientation Cytology Photonic band gap Rotation Dielectric core Higher frequencies Photonic band structures Photonic dispersion Photonic structure Propagation properties Simple Cubic cell Theoretical study Energy gap |
description |
We perform a theoretical study of light propagation properties in two-dimensional square photonic crystals following Bravais-Moiré patterns, paying particular attention to the influence of the transversal shape and the orientation of the dielectric scatters onto the width and position of photonic band gaps. In this sense, we have considered both square and triangular transversal geometries for the dielectric scatters, together with the possible rotation of either all the elements or of one half of them, within the unit cell. Results for the photonic dispersion relations and band gaps are compared with those arising from the analysis of structures with simple bi-atomic Bravais unit cells. It comes out that wider photonic gaps appear when using square-shaped scatters. The use of Bravais-Moiré cells with the same kind of cores enhance the width of these gaps but shift them towards higher frequencies. Rotation of all elements within the cell in angles of 0.23 rad and 0.46 rad causes very small, if not null, changes in the photonic gap widths. However, the rotation of one half of the scatters in the cell, leaving the other half unrotated does produce noticeable modifications in the photonic band structure: For crystals made of square-shaped dielectric cores and simple cubic cells, this rotation strongly modifies the photonic structure, whilst for Bravais-Moiré crystals the same kind of change takes place for cells made of triangular-shaped cores. © 2020 Elsevier B.V. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:54Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:54Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
15694410 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6032 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.photonics.2020.100845 |
identifier_str_mv |
15694410 10.1016/j.photonics.2020.100845 |
url |
http://hdl.handle.net/11407/6032 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094159051&doi=10.1016%2fj.photonics.2020.100845&partnerID=40&md5=05171dd6527d569687aada7d92dac325 |
dc.relation.citationvolume.none.fl_str_mv |
42 |
dc.relation.references.none.fl_str_mv |
Joannopoulos, J.D., Photonic Crystals, Molding the Flow of Light (2007), Princeton University Press Qiu, M., He, S., Large complete band gap in two-dimensional photonic crystals with elliptic air holes (1999) Phys. Rev. B, 60, pp. 10610-10612 Wang, R., Wang, X.H., Gu, B.Y., Yang, G.Z., Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals (2001) J. Appl. Phys., 90, pp. 4307-4313 Plihal, M., Maradudin, A., Photonic band structure of two-dimensional systems: the triangular lattice (1991) Phys. Rev. B, 44, p. 8565 Villeneuve, P., Piche, M., Photonic band gaps in two-dimensional square and hexagonal lattices (1992) Phys. Rev. B, 46, p. 4969 Cassagne, D., Jouanin, C., Bertho, D., Hexagonal photonic-band-gap structures (1996) Phys. Rev. B, 53, p. 7134 Fu, H.K., Chen, Y.F., Chern, R.L., Chang, C.C., Connected hexagonal photonic crystals with largest full band gap (2005) Opt. Express, 13, p. 7854 Ogawa, Y., Omura, Y., Iida, Y., Study on self-collimated light-focusing device using the 2-D photonic crystal with a parallelogram lattice (2005) J. Light. Technol., 23, pp. 4374-4381 Gao, D., Zhou, Z., Citrin, D.S., Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice (2008) J. Opt. Soc. Am. A, 25, pp. 791-795 Rezaei, B., Fathollahi Khalkhali, T., Soltani Vala, A., Kalafi, M., Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background (2009) Opt. Commun., 282, pp. 2861-2869 Chuang, Y.C., Suleski, T.J., Complex rhombus lattice photonic crystals for broadband all-angle self-collimation (2010) J. Opt. A-Pure Appl. Opt., 12, p. 035102 Chau, Y.F., Wu, F.L., Jiang, Z.-H., Li, H.-Y., Evolution of the complete photonic bandgap of two-dimensional photonic crystal (2011) Optics Express, 19 (6), p. 4862 Xu, Q., Xie, K., Yang, H., Self collimation in square lattice two dimensional photonic crystals with ring-shaped holes (2012) Appl. Mech. Mater., 110-116, pp. 1024-1029 Chu, K., Xu, Q., Xie, K., Peng, C., Photonic band gaps of two-dimensional square-lattice photonic crystals based on 8-shaped scatters (2015) Optik, 126, pp. 2287-2290 Yu, Z., Wang, Z., Fan, S., One-way total reflection with one-dimensional magneto-optical photonic crystals (2007) Appl. Phys. Lett., 90, p. 121133 El-Naggar, S., Elsayed, H., Aly, A., Maximization of photonic bandgaps in two-dimensional superconductor photonic crystals (2014) J. Supercond. Novel Mag., 27, pp. 1615-1621 Chan, Y.S., Chan, C.T., Liu, Z.Y., Photonic band gaps in two dimensional photonic quasicrystals (1998) Phys. Rev. Lett., 80, pp. 956-959 Caro-Lopera, F.J., Bravais-Moiré Theory. Technical Report (2017), University of Medellin Ueda, K., Dotera, T., Gemma, T., Photonic band structure calculations of two-dimensional Archimedean tiling patterns (2007) Phys. Rev. B, 75, p. 195122 David, S., Chelnokov, A., Lourtioz, J.-M., Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings (2000) Opt. Lett., 25, pp. 1001-1003 Jovanović, Đ., Gajić, R., Hingerl, K., Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices (2008) Opt. Express, 16, pp. 4048-4058 David, S., Chelnokov, A., Lourtioz, J.-M., Isotropic photonic structures: Archimedean-like tilings and quasi-crystals (2001) IEEE J. Quantum Electron., 37, pp. 1427-1434 Balci, S., Karabiyik, M., Kosabas, A., Kosabas, C., Aydinli, A., Coupled plasmonic cavities on Moiré surfaces (2010) Plasmonics, 5, pp. 429-436 Balci, S., Kocabas, A., Kocabas, C., Aydinli, A., Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities (2011) Appl. Phys. Lett., 98, p. 031101 Lubin, S.M., Hryn, A.J., Huntington, M.D., Engel, C.J., Odom, T.W., Quasiperiodic Moiré plasmonic crystals (2011) ACS Nano, 98, p. 031101 Gómez-Urrea, H.A., Ospina-Medina, M.C., Correa-Abad, J.D., Mora-Ramos, M.E., Caro-Lopera, F.J., Tunable band structure in 2D Bravais-Moiré photonic crystal lattices (2020) Opt. Commun., 459, p. 125081 Taflove, A., Hagness, S.G., Computational Electrodynamics: The Finite-Difference Time Domain Method (2005), 3rd ed. Artech House Boston Sukhoivanov, I.A., Guryev, I.V., Photonic Crystals, Physics and Practical Modeling (2009), 1st ed. Springer-Verlag Berlin Heidelberg https://refractiveindex.info |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Photonics and Nanostructures - Fundamentals and Applications |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159191948918784 |
spelling |
20202021-02-05T14:58:54Z2021-02-05T14:58:54Z15694410http://hdl.handle.net/11407/603210.1016/j.photonics.2020.100845We perform a theoretical study of light propagation properties in two-dimensional square photonic crystals following Bravais-Moiré patterns, paying particular attention to the influence of the transversal shape and the orientation of the dielectric scatters onto the width and position of photonic band gaps. In this sense, we have considered both square and triangular transversal geometries for the dielectric scatters, together with the possible rotation of either all the elements or of one half of them, within the unit cell. Results for the photonic dispersion relations and band gaps are compared with those arising from the analysis of structures with simple bi-atomic Bravais unit cells. It comes out that wider photonic gaps appear when using square-shaped scatters. The use of Bravais-Moiré cells with the same kind of cores enhance the width of these gaps but shift them towards higher frequencies. Rotation of all elements within the cell in angles of 0.23 rad and 0.46 rad causes very small, if not null, changes in the photonic gap widths. However, the rotation of one half of the scatters in the cell, leaving the other half unrotated does produce noticeable modifications in the photonic band structure: For crystals made of square-shaped dielectric cores and simple cubic cells, this rotation strongly modifies the photonic structure, whilst for Bravais-Moiré crystals the same kind of change takes place for cells made of triangular-shaped cores. © 2020 Elsevier B.V.engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85094159051&doi=10.1016%2fj.photonics.2020.100845&partnerID=40&md5=05171dd6527d569687aada7d92dac32542Joannopoulos, J.D., Photonic Crystals, Molding the Flow of Light (2007), Princeton University PressQiu, M., He, S., Large complete band gap in two-dimensional photonic crystals with elliptic air holes (1999) Phys. Rev. B, 60, pp. 10610-10612Wang, R., Wang, X.H., Gu, B.Y., Yang, G.Z., Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals (2001) J. Appl. Phys., 90, pp. 4307-4313Plihal, M., Maradudin, A., Photonic band structure of two-dimensional systems: the triangular lattice (1991) Phys. Rev. B, 44, p. 8565Villeneuve, P., Piche, M., Photonic band gaps in two-dimensional square and hexagonal lattices (1992) Phys. Rev. B, 46, p. 4969Cassagne, D., Jouanin, C., Bertho, D., Hexagonal photonic-band-gap structures (1996) Phys. Rev. B, 53, p. 7134Fu, H.K., Chen, Y.F., Chern, R.L., Chang, C.C., Connected hexagonal photonic crystals with largest full band gap (2005) Opt. Express, 13, p. 7854Ogawa, Y., Omura, Y., Iida, Y., Study on self-collimated light-focusing device using the 2-D photonic crystal with a parallelogram lattice (2005) J. Light. Technol., 23, pp. 4374-4381Gao, D., Zhou, Z., Citrin, D.S., Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice (2008) J. Opt. Soc. Am. A, 25, pp. 791-795Rezaei, B., Fathollahi Khalkhali, T., Soltani Vala, A., Kalafi, M., Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background (2009) Opt. Commun., 282, pp. 2861-2869Chuang, Y.C., Suleski, T.J., Complex rhombus lattice photonic crystals for broadband all-angle self-collimation (2010) J. Opt. A-Pure Appl. Opt., 12, p. 035102Chau, Y.F., Wu, F.L., Jiang, Z.-H., Li, H.-Y., Evolution of the complete photonic bandgap of two-dimensional photonic crystal (2011) Optics Express, 19 (6), p. 4862Xu, Q., Xie, K., Yang, H., Self collimation in square lattice two dimensional photonic crystals with ring-shaped holes (2012) Appl. Mech. Mater., 110-116, pp. 1024-1029Chu, K., Xu, Q., Xie, K., Peng, C., Photonic band gaps of two-dimensional square-lattice photonic crystals based on 8-shaped scatters (2015) Optik, 126, pp. 2287-2290Yu, Z., Wang, Z., Fan, S., One-way total reflection with one-dimensional magneto-optical photonic crystals (2007) Appl. Phys. Lett., 90, p. 121133El-Naggar, S., Elsayed, H., Aly, A., Maximization of photonic bandgaps in two-dimensional superconductor photonic crystals (2014) J. Supercond. Novel Mag., 27, pp. 1615-1621Chan, Y.S., Chan, C.T., Liu, Z.Y., Photonic band gaps in two dimensional photonic quasicrystals (1998) Phys. Rev. Lett., 80, pp. 956-959Caro-Lopera, F.J., Bravais-Moiré Theory. Technical Report (2017), University of MedellinUeda, K., Dotera, T., Gemma, T., Photonic band structure calculations of two-dimensional Archimedean tiling patterns (2007) Phys. Rev. B, 75, p. 195122David, S., Chelnokov, A., Lourtioz, J.-M., Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings (2000) Opt. Lett., 25, pp. 1001-1003Jovanović, Đ., Gajić, R., Hingerl, K., Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices (2008) Opt. Express, 16, pp. 4048-4058David, S., Chelnokov, A., Lourtioz, J.-M., Isotropic photonic structures: Archimedean-like tilings and quasi-crystals (2001) IEEE J. Quantum Electron., 37, pp. 1427-1434Balci, S., Karabiyik, M., Kosabas, A., Kosabas, C., Aydinli, A., Coupled plasmonic cavities on Moiré surfaces (2010) Plasmonics, 5, pp. 429-436Balci, S., Kocabas, A., Kocabas, C., Aydinli, A., Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities (2011) Appl. Phys. Lett., 98, p. 031101Lubin, S.M., Hryn, A.J., Huntington, M.D., Engel, C.J., Odom, T.W., Quasiperiodic Moiré plasmonic crystals (2011) ACS Nano, 98, p. 031101Gómez-Urrea, H.A., Ospina-Medina, M.C., Correa-Abad, J.D., Mora-Ramos, M.E., Caro-Lopera, F.J., Tunable band structure in 2D Bravais-Moiré photonic crystal lattices (2020) Opt. Commun., 459, p. 125081Taflove, A., Hagness, S.G., Computational Electrodynamics: The Finite-Difference Time Domain Method (2005), 3rd ed. Artech House BostonSukhoivanov, I.A., Guryev, I.V., Photonic Crystals, Physics and Practical Modeling (2009), 1st ed. Springer-Verlag Berlin Heidelberghttps://refractiveindex.infoPhotonics and Nanostructures - Fundamentals and Applications2D photonic crystalsBravais-Moiré latticesDielectric core shape and orientationPhotonic band gapCellsCrystal atomic structureCrystal orientationCytologyPhotonic band gapRotationDielectric coreHigher frequenciesPhotonic band structuresPhotonic dispersionPhotonic structurePropagation propertiesSimple Cubic cellTheoretical studyEnergy gapThe influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré latticesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Gómez-Urrea, H.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaBareño-Silva, J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Grupo de Investigaci'øn en Epidemiología y Bioestadística, Universidad CES, Medellín, ColombiaCaro-Lopera, F.J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaMora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexicohttp://purl.org/coar/access_right/c_16ecGómez-Urrea H.A.Bareño-Silva J.Caro-Lopera F.J.Mora-Ramos M.E.11407/6032oai:repository.udem.edu.co:11407/60322021-02-05 09:58:54.474Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |