Theoretical design of stable small aluminium–magnesium binary clusters
We explore in detail the potential energy surfaces of the AlxMgy (x, y = 1–4) systems as case studies to test the utility and limitations of simple rules based on electron counts and the phenomenological shell model (PSM) for bimetallic clusters. We find that it is feasible to design stable structur...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/1357
- Acceso en línea:
- http://hdl.handle.net/11407/1357
- Palabra clave:
- Rights
- restrictedAccess
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_4c8380c9988cc520a07f1735291693b1 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/1357 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
spelling |
2015-10-09T13:17:51Z2015-10-09T13:17:51Z201314639076http://hdl.handle.net/11407/135710.1039/c2cp42015eWe explore in detail the potential energy surfaces of the AlxMgy (x, y = 1–4) systems as case studies to test the utility and limitations of simple rules based on electron counts and the phenomenological shell model (PSM) for bimetallic clusters. We find that it is feasible to design stable structures that are members of this set of small Al–Mg binary clusters, using simple electron count rules, including the classical 4n + 2 Hückel model, and the most recently proposed PSM. The thermodynamic stability of the title compounds has been evaluated using several different descriptors, including the fragmentation energies and the electronic structure of the systems. Three stable systems emerge from the analysis: the Al4Mg, Al2Mg2 and Al4Mg4 clusters. The relative stability of Al4Mg is explained by the stability of the Al42− subunit to which the Mg atom donates its electrons. Here the Mg2+ sits above the aromatic 10 π-electron Al42− planar ring. The Al2Mg2 and Al4Mg4 clusters present more complicated 3D structures, and their stabilities are rationalized as a consequence of their closed shell nature in the PSM, with 10 and 20 itinerant electrons, respectively.enghttp://pubs.rsc.org/en/content/articlelanding/2013/cp/c2cp42015e#!divAbstractPhysical Chemistry Chemical Physics, 2013, volume 15, issue 6, pp 2222-2229ScopusTheoretical design of stable small aluminium–magnesium binary clustersTheoretical design of stable small aluminium-magnesium binary clustersArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecUniversidad Andres Bello, Facultad Ciencias Exactas, Departamento de Ciencias Químicas, Av. República, 275 Santiago, ChileCentro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685 Casilla, 721 Talca, ChileDepartment of Basic Sciences, University of Medellin, A.A 1226 Medellín, ColombiaInstitute of Chemistry, University of Antioquia, A.A. 1226 Medellín, ColombiaDepartment of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, United StatesOsorio E.Vasquez A.Florez E.Mondragon F.Donald K.J.Tiznado W.11407/1357oai:repository.udem.edu.co:11407/13572020-05-27 19:16:15.02Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |
dc.title.spa.fl_str_mv |
Theoretical design of stable small aluminium–magnesium binary clusters |
dc.title.english.eng.fl_str_mv |
Theoretical design of stable small aluminium-magnesium binary clusters |
title |
Theoretical design of stable small aluminium–magnesium binary clusters |
spellingShingle |
Theoretical design of stable small aluminium–magnesium binary clusters |
title_short |
Theoretical design of stable small aluminium–magnesium binary clusters |
title_full |
Theoretical design of stable small aluminium–magnesium binary clusters |
title_fullStr |
Theoretical design of stable small aluminium–magnesium binary clusters |
title_full_unstemmed |
Theoretical design of stable small aluminium–magnesium binary clusters |
title_sort |
Theoretical design of stable small aluminium–magnesium binary clusters |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad Andres Bello, Facultad Ciencias Exactas, Departamento de Ciencias Químicas, Av. República, 275 Santiago, Chile Centro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685 Casilla, 721 Talca, Chile Department of Basic Sciences, University of Medellin, A.A 1226 Medellín, Colombia Institute of Chemistry, University of Antioquia, A.A. 1226 Medellín, Colombia Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, United States |
description |
We explore in detail the potential energy surfaces of the AlxMgy (x, y = 1–4) systems as case studies to test the utility and limitations of simple rules based on electron counts and the phenomenological shell model (PSM) for bimetallic clusters. We find that it is feasible to design stable structures that are members of this set of small Al–Mg binary clusters, using simple electron count rules, including the classical 4n + 2 Hückel model, and the most recently proposed PSM. The thermodynamic stability of the title compounds has been evaluated using several different descriptors, including the fragmentation energies and the electronic structure of the systems. Three stable systems emerge from the analysis: the Al4Mg, Al2Mg2 and Al4Mg4 clusters. The relative stability of Al4Mg is explained by the stability of the Al42− subunit to which the Mg atom donates its electrons. Here the Mg2+ sits above the aromatic 10 π-electron Al42− planar ring. The Al2Mg2 and Al4Mg4 clusters present more complicated 3D structures, and their stabilities are rationalized as a consequence of their closed shell nature in the PSM, with 10 and 20 itinerant electrons, respectively. |
publishDate |
2013 |
dc.date.created.none.fl_str_mv |
2013 |
dc.date.accessioned.none.fl_str_mv |
2015-10-09T13:17:51Z |
dc.date.available.none.fl_str_mv |
2015-10-09T13:17:51Z |
dc.type.eng.fl_str_mv |
Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
14639076 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/1357 |
dc.identifier.doi.none.fl_str_mv |
10.1039/c2cp42015e |
identifier_str_mv |
14639076 10.1039/c2cp42015e |
url |
http://hdl.handle.net/11407/1357 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
http://pubs.rsc.org/en/content/articlelanding/2013/cp/c2cp42015e#!divAbstract |
dc.relation.ispartofen.eng.fl_str_mv |
Physical Chemistry Chemical Physics, 2013, volume 15, issue 6, pp 2222-2229 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159267034300416 |