Theoretical design of stable small aluminium–magnesium binary clusters

We explore in detail the potential energy surfaces of the AlxMgy (x, y = 1–4) systems as case studies to test the utility and limitations of simple rules based on electron counts and the phenomenological shell model (PSM) for bimetallic clusters. We find that it is feasible to design stable structur...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/1357
Acceso en línea:
http://hdl.handle.net/11407/1357
Palabra clave:
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_4c8380c9988cc520a07f1735291693b1
oai_identifier_str oai:repository.udem.edu.co:11407/1357
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
spelling 2015-10-09T13:17:51Z2015-10-09T13:17:51Z201314639076http://hdl.handle.net/11407/135710.1039/c2cp42015eWe explore in detail the potential energy surfaces of the AlxMgy (x, y = 1–4) systems as case studies to test the utility and limitations of simple rules based on electron counts and the phenomenological shell model (PSM) for bimetallic clusters. We find that it is feasible to design stable structures that are members of this set of small Al–Mg binary clusters, using simple electron count rules, including the classical 4n + 2 Hückel model, and the most recently proposed PSM. The thermodynamic stability of the title compounds has been evaluated using several different descriptors, including the fragmentation energies and the electronic structure of the systems. Three stable systems emerge from the analysis: the Al4Mg, Al2Mg2 and Al4Mg4 clusters. The relative stability of Al4Mg is explained by the stability of the Al42− subunit to which the Mg atom donates its electrons. Here the Mg2+ sits above the aromatic 10 π-electron Al42− planar ring. The Al2Mg2 and Al4Mg4 clusters present more complicated 3D structures, and their stabilities are rationalized as a consequence of their closed shell nature in the PSM, with 10 and 20 itinerant electrons, respectively.enghttp://pubs.rsc.org/en/content/articlelanding/2013/cp/c2cp42015e#!divAbstractPhysical Chemistry Chemical Physics, 2013, volume 15, issue 6, pp 2222-2229ScopusTheoretical design of stable small aluminium–magnesium binary clustersTheoretical design of stable small aluminium-magnesium binary clustersArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecUniversidad Andres Bello, Facultad Ciencias Exactas, Departamento de Ciencias Químicas, Av. República, 275 Santiago, ChileCentro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685 Casilla, 721 Talca, ChileDepartment of Basic Sciences, University of Medellin, A.A 1226 Medellín, ColombiaInstitute of Chemistry, University of Antioquia, A.A. 1226 Medellín, ColombiaDepartment of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, United StatesOsorio E.Vasquez A.Florez E.Mondragon F.Donald K.J.Tiznado W.11407/1357oai:repository.udem.edu.co:11407/13572020-05-27 19:16:15.02Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co
dc.title.spa.fl_str_mv Theoretical design of stable small aluminium–magnesium binary clusters
dc.title.english.eng.fl_str_mv Theoretical design of stable small aluminium-magnesium binary clusters
title Theoretical design of stable small aluminium–magnesium binary clusters
spellingShingle Theoretical design of stable small aluminium–magnesium binary clusters
title_short Theoretical design of stable small aluminium–magnesium binary clusters
title_full Theoretical design of stable small aluminium–magnesium binary clusters
title_fullStr Theoretical design of stable small aluminium–magnesium binary clusters
title_full_unstemmed Theoretical design of stable small aluminium–magnesium binary clusters
title_sort Theoretical design of stable small aluminium–magnesium binary clusters
dc.contributor.affiliation.spa.fl_str_mv Universidad Andres Bello, Facultad Ciencias Exactas, Departamento de Ciencias Químicas, Av. República, 275 Santiago, Chile
Centro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685 Casilla, 721 Talca, Chile
Department of Basic Sciences, University of Medellin, A.A 1226 Medellín, Colombia
Institute of Chemistry, University of Antioquia, A.A. 1226 Medellín, Colombia
Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, United States
description We explore in detail the potential energy surfaces of the AlxMgy (x, y = 1–4) systems as case studies to test the utility and limitations of simple rules based on electron counts and the phenomenological shell model (PSM) for bimetallic clusters. We find that it is feasible to design stable structures that are members of this set of small Al–Mg binary clusters, using simple electron count rules, including the classical 4n + 2 Hückel model, and the most recently proposed PSM. The thermodynamic stability of the title compounds has been evaluated using several different descriptors, including the fragmentation energies and the electronic structure of the systems. Three stable systems emerge from the analysis: the Al4Mg, Al2Mg2 and Al4Mg4 clusters. The relative stability of Al4Mg is explained by the stability of the Al42− subunit to which the Mg atom donates its electrons. Here the Mg2+ sits above the aromatic 10 π-electron Al42− planar ring. The Al2Mg2 and Al4Mg4 clusters present more complicated 3D structures, and their stabilities are rationalized as a consequence of their closed shell nature in the PSM, with 10 and 20 itinerant electrons, respectively.
publishDate 2013
dc.date.created.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2015-10-09T13:17:51Z
dc.date.available.none.fl_str_mv 2015-10-09T13:17:51Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 14639076
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/1357
dc.identifier.doi.none.fl_str_mv 10.1039/c2cp42015e
identifier_str_mv 14639076
10.1039/c2cp42015e
url http://hdl.handle.net/11407/1357
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv http://pubs.rsc.org/en/content/articlelanding/2013/cp/c2cp42015e#!divAbstract
dc.relation.ispartofen.eng.fl_str_mv Physical Chemistry Chemical Physics, 2013, volume 15, issue 6, pp 2222-2229
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159267034300416