Burning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments

The aim of our work was to study turbulent premixed flames in subatmospheric conditions. For this purpose, turbulent premixed flames of lean methane/air mixtures were stabilized in a nozzle-type Bunsen burner and analyzed using Schlieren visualization and image processing to calculate turbulent burn...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5925
Acceso en línea:
http://hdl.handle.net/11407/5925
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_4bbb46e06b15b4083dc565726f605fbb
oai_identifier_str oai:repository.udem.edu.co:11407/5925
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Burning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments
title Burning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments
spellingShingle Burning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments
title_short Burning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments
title_full Burning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments
title_fullStr Burning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments
title_full_unstemmed Burning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments
title_sort Burning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments
description The aim of our work was to study turbulent premixed flames in subatmospheric conditions. For this purpose, turbulent premixed flames of lean methane/air mixtures were stabilized in a nozzle-type Bunsen burner and analyzed using Schlieren visualization and image processing to calculate turbulent burning velocities by the mean-angle method. Moreover, hot-wire anemometer measurements were performed to characterize the turbulent aspects of the flow. The environmental conditions were 0.85 atm, 0.98 atm, and 295 ± 2 K. The turbulence-flame interaction was analyzed based on the geometric parameters combined with laminar flame properties (which were experimentally and numerically determined), integral length scale, and Kolmogorov length scale. Our results show that the effects of subatmospheric pressure on turbulent burning velocity are significant. The ratio between turbulent and laminar burning velocities increases with turbulence intensity, but this effect tends to decrease as the atmospheric pressure is reduced. We propose a general empirical correlation as a function between ST/SL and u′/SL based on the experimental results obtained in this study and the equivalence ratio and pressure we established. Copyright © 2020 American Chemical Society.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:57Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:57Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 24701343
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5925
dc.identifier.doi.none.fl_str_mv 10.1021/acsomega.0c02670
identifier_str_mv 24701343
10.1021/acsomega.0c02670
url http://hdl.handle.net/11407/5925
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092336675&doi=10.1021%2facsomega.0c02670&partnerID=40&md5=f23024f2866ac6a881883c9c35852b09
dc.relation.references.none.fl_str_mv Kobayashi, H., Kawazoe, H., Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames (2000) Proc. Combust. Inst., 28, pp. 375-382
Kobayashi, H., Kawabata, Y., Maruta, K., Experimental study on general correlation of turbulent burning velocity at high pressure (1998) Symp. Combust., 27, pp. 941-948
Kobayashi, H., Kawahata, T., Seyama, K., Fujimari, T., Kim, J.-S., Relationship between the smallest scale of flame wrinkles and turbulence characteristics of high-pressure, high-temperature turbulent premixed flames (2002) Proc. Combust. Inst., 29, pp. 1793-1800
Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T., Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa (1997) Combust. Flame, 108, pp. 104-117
Kobayashi, H., Experimental study of high-pressure turbulent premixed flames (2002) Exp. Therm. Fluid Sci., 26, pp. 375-387
Kobayashi, H., Seyama, K., Hagiwara, H., Ogami, Y., Aldredge, R., Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature (2005) Proc. Combust. Inst., 30, pp. 827-834
Kobayashi, H., Tamura, T., Maruta, K., Niioka, T., Williams, F.A., Burning velocity of turbulent premixed flames in a high-pressure environment (1996) Symp. Combust., 26, pp. 389-396
Shy, S.S., Lin, W., Wei, J., An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion (2000) Proc. R. Soc. London, Ser. A, 456, pp. 1997-2019
Smallwood, G., Characterization of flame front surfaces in turbulent premixed methane/Air combustion (1995) Combust. Flame, 101, pp. 461-470
Jiang, Y.-h., Li, G.-x., Li, H.-m., Zhang, G.-p., Lv, J.-c., Experimental Study on the Self-Similar Propagation of H2/CO/Air Turbulent Premixed Flame (2019) Energy Fuels, 33, pp. 12736-12741
Jiang, Y.-h., Li, G.-x., Li, H.-m., Li, L., Zhang, G.-p., Experimental study on the turbulent premixed combustion characteristics of 70%H2/30%CO/air mixtures (2019) Int. J. Hydrogen Energy, 44, pp. 14012-14022
Li, H.-M., Li, G.-X., Jiang, Y.-H., Li, L., Li, F.-S., Flame stability and propagation characteristics for combustion in air for an equimolar mixture of hydrogen and carbon monoxide in turbulent conditions (2018) Energy, 157, pp. 76-86
Goldenberg, S.A., Pelevin, V.S., Influence of pressure on rate of flame propagation in turbulent flow (1958) Symp. Combust., 7, pp. 590-594
Khramtsov, V.A., Investigation of pressure effect on the parameters of turbulence and on turbulent burning (1958) Symp. Combust., 7, pp. 609-614
Schorn, N., Bonebrake, J.M., Pendergrass, B., Fillo, A.J., Blunck, D.L., Turbulent consumption speed of large hydrocarbon fuels at sub-atmospheric conditions (2019) AIAA Scitech 2019 Forum, pp. 1-8
Cardona, A., Garciá, A., Cano, F., Arrieta, C.E., Yepes, H.A., Amell, A., Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition (2019) J. Phys.: Conf. Ser., 1409, p. 012012
Yu, G., Law, C.K., Wu, C.K., Laminar flame speeds of hydrocarbon+ air mixtures with hydrogen addition (1986) Combust. Flame, 63, pp. 339-347
Egolfopoulos, F.N., Law, C.K., Chain mechanims in the overall reaction orders in laminar flame propagation (1990) Combust. Flame, 80, pp. 7-16
Egolfopoulos, F.N., Law, C.K., An experimental and computational study of the burning rates of ultra-lean to moderately-rich H2/O2/N2 laminar flames with pressure variations (1991) Symp. Combust., 23, pp. 333-340
Konnov, A.A., Riemeijer, R., de Goey, L.P.H., Adiabatic laminar burning velocities of CH4+H2+air flames at low pressures (2010) Fuel, 89, pp. 1392-1396
Kuznetsov, M., Kobelt, S., Grune, J., Jordan, T., Flammability limits and laminar flame speed of hydrogen-air mixtures at sub-atmospheric pressures (2012) Int. J. Hydrogen Energy, 37, pp. 17580-17588
Burbano, H.J., Pareja, J., Amell, A.A., Laminar burning velocities and flame stability analysis of syngas mixtures at sub-atmospheric pressures (2011) Int. J. Hydrogen Energy, 36, pp. 3243-3252
Turns, S.R., (2000) An Introduction to Combustion Concepts and Applications, , Mc graw Hill Higher Education: Singapore
Andrews, G.E., Bradley, D., The burning velocity of methane-air mixtures (1972) Combust. Flame, 19, pp. 275-288
Mauss, F., Peters, N., Peters, N., Rogg, B., (1993) Reduced Kinetic Mechanisms for Applications in Combustion Systems, p. 72. , Eds. Springer-Verlag: New York, n.d
Rockwell, S.R., Rangwala, A.S., Influence of coal dust on premixed turbulent methane-air flames (2013) Combust. Flame, 160, pp. 635-640
Ranganathan, S., Petrow, D., Rockwell, S.R., Rangwala, A.S., Turbulent burning velocity of methane-air-dust premixed flames (2018) Combust. Flame, 188, pp. 367-375
Wang, J., Zhang, M., Xie, Y., Huang, Z., Kudo, T., Kobayashi, H., Correlation of turbulent burning velocity for syngas / air mixtures at high pressure up to 1. 0 MPa (2013) Exp. Therm. Fluid Sci., 50, pp. 90-96
Wang, J., Yu, S., Zhang, M., Jin, W., Huang, Z., Chen, S., Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa (2015) Exp. Therm. Fluid Sci., 68, pp. 196-204
Grover, J.I., Fales, E.N., Scurlock, A.C., Turbulent flame studies in two-dimensional open Burners (1963) Symp. Combust., 9, p. 15
Zhang, M., Wang, J., Xie, Y., Jin, W., Wei, Z., Huang, Z., Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames (2013) Int. J. Hydrogen Energy, 38, pp. 11421-11428
Obando, J., Lezcano, C., Amell, A., Experimental analysis of the addition and substitution of sub-bituminous pulverized coal in a natural gas premixed flame (2017) Appl. Therm. Eng., 125, pp. 232-239
Rockwell, S., (2012) Influence of Coal Dust on Premixed Turbulent Methane-Air Flames, , Worcester Polytechnic Institute
Cardona Vargas, A., Amell Arrieta, A., Arrieta, C.E., Combustion characteristics of several typical shale gas mixtures (2016) J. Nat. Gas Sci. Eng., 33, pp. 296-304
Tyagi, H., Liu, R., Ting, D.S.-K., Johnston, C.R., Measurement of wake properties of a sphere in freestream turbulence (2006) Exp. Therm. Fluid Sci., 30, pp. 587-604
Gülder, Ö.L., Turbulent premixed flame propagation models for different combustion regimes (1991) Symp. Combust., 23, pp. 743-750
Cardona, C.A., Amell, A.A., Laminar burning velocity and interchangeability analysis of biogas/C3H8/H2 with normal and oxygen-enriched air (2013) Int. J. Hydrogen Energy, 38, pp. 7994-8001
Kee, R.J., Rupley, F.M., Miller, J.A., Coltrin, M.E., Grcar, J.F., Meeks, E., (2000) CHEMKIN Collection, , et al. Release 3.6
Kee, R., Grcar, J., Smooke, M., Miller, J., Meeks, E., (1985) PREMIX: A FORTRAN Program for Modeling Steady Laminar One-Dimensional, pp. 1-87. , SANDIA Natl Lab
Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., (2000) GRI-Mech 3.0, , et al
Vagelopoulos, C.M., Egolfopoulos, F.N., Direct experimental determination of laminar flame speeds (1998) Symp. Combust., 27, pp. 513-519
Peters, N., Laminar flamelet concepts in turbulent combustion (1988) Symp. Combust., 21, pp. 1231-1250
Lasdon, L.S., Waren, A.D., Jain, A., Ratner, M., Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming (1978) ACM Trans. Math Software, 4, pp. 34-50
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv American Chemical Society
dc.publisher.program.spa.fl_str_mv Ingeniería en Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv ACS Omega
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159219491864576
spelling 20202021-02-05T14:57:57Z2021-02-05T14:57:57Z24701343http://hdl.handle.net/11407/592510.1021/acsomega.0c02670The aim of our work was to study turbulent premixed flames in subatmospheric conditions. For this purpose, turbulent premixed flames of lean methane/air mixtures were stabilized in a nozzle-type Bunsen burner and analyzed using Schlieren visualization and image processing to calculate turbulent burning velocities by the mean-angle method. Moreover, hot-wire anemometer measurements were performed to characterize the turbulent aspects of the flow. The environmental conditions were 0.85 atm, 0.98 atm, and 295 ± 2 K. The turbulence-flame interaction was analyzed based on the geometric parameters combined with laminar flame properties (which were experimentally and numerically determined), integral length scale, and Kolmogorov length scale. Our results show that the effects of subatmospheric pressure on turbulent burning velocity are significant. The ratio between turbulent and laminar burning velocities increases with turbulence intensity, but this effect tends to decrease as the atmospheric pressure is reduced. We propose a general empirical correlation as a function between ST/SL and u′/SL based on the experimental results obtained in this study and the equivalence ratio and pressure we established. Copyright © 2020 American Chemical Society.engAmerican Chemical SocietyIngeniería en EnergíaFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85092336675&doi=10.1021%2facsomega.0c02670&partnerID=40&md5=f23024f2866ac6a881883c9c35852b09Kobayashi, H., Kawazoe, H., Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames (2000) Proc. Combust. Inst., 28, pp. 375-382Kobayashi, H., Kawabata, Y., Maruta, K., Experimental study on general correlation of turbulent burning velocity at high pressure (1998) Symp. Combust., 27, pp. 941-948Kobayashi, H., Kawahata, T., Seyama, K., Fujimari, T., Kim, J.-S., Relationship between the smallest scale of flame wrinkles and turbulence characteristics of high-pressure, high-temperature turbulent premixed flames (2002) Proc. Combust. Inst., 29, pp. 1793-1800Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T., Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa (1997) Combust. Flame, 108, pp. 104-117Kobayashi, H., Experimental study of high-pressure turbulent premixed flames (2002) Exp. Therm. Fluid Sci., 26, pp. 375-387Kobayashi, H., Seyama, K., Hagiwara, H., Ogami, Y., Aldredge, R., Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature (2005) Proc. Combust. Inst., 30, pp. 827-834Kobayashi, H., Tamura, T., Maruta, K., Niioka, T., Williams, F.A., Burning velocity of turbulent premixed flames in a high-pressure environment (1996) Symp. Combust., 26, pp. 389-396Shy, S.S., Lin, W., Wei, J., An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion (2000) Proc. R. Soc. London, Ser. A, 456, pp. 1997-2019Smallwood, G., Characterization of flame front surfaces in turbulent premixed methane/Air combustion (1995) Combust. Flame, 101, pp. 461-470Jiang, Y.-h., Li, G.-x., Li, H.-m., Zhang, G.-p., Lv, J.-c., Experimental Study on the Self-Similar Propagation of H2/CO/Air Turbulent Premixed Flame (2019) Energy Fuels, 33, pp. 12736-12741Jiang, Y.-h., Li, G.-x., Li, H.-m., Li, L., Zhang, G.-p., Experimental study on the turbulent premixed combustion characteristics of 70%H2/30%CO/air mixtures (2019) Int. J. Hydrogen Energy, 44, pp. 14012-14022Li, H.-M., Li, G.-X., Jiang, Y.-H., Li, L., Li, F.-S., Flame stability and propagation characteristics for combustion in air for an equimolar mixture of hydrogen and carbon monoxide in turbulent conditions (2018) Energy, 157, pp. 76-86Goldenberg, S.A., Pelevin, V.S., Influence of pressure on rate of flame propagation in turbulent flow (1958) Symp. Combust., 7, pp. 590-594Khramtsov, V.A., Investigation of pressure effect on the parameters of turbulence and on turbulent burning (1958) Symp. Combust., 7, pp. 609-614Schorn, N., Bonebrake, J.M., Pendergrass, B., Fillo, A.J., Blunck, D.L., Turbulent consumption speed of large hydrocarbon fuels at sub-atmospheric conditions (2019) AIAA Scitech 2019 Forum, pp. 1-8Cardona, A., Garciá, A., Cano, F., Arrieta, C.E., Yepes, H.A., Amell, A., Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition (2019) J. Phys.: Conf. Ser., 1409, p. 012012Yu, G., Law, C.K., Wu, C.K., Laminar flame speeds of hydrocarbon+ air mixtures with hydrogen addition (1986) Combust. Flame, 63, pp. 339-347Egolfopoulos, F.N., Law, C.K., Chain mechanims in the overall reaction orders in laminar flame propagation (1990) Combust. Flame, 80, pp. 7-16Egolfopoulos, F.N., Law, C.K., An experimental and computational study of the burning rates of ultra-lean to moderately-rich H2/O2/N2 laminar flames with pressure variations (1991) Symp. Combust., 23, pp. 333-340Konnov, A.A., Riemeijer, R., de Goey, L.P.H., Adiabatic laminar burning velocities of CH4+H2+air flames at low pressures (2010) Fuel, 89, pp. 1392-1396Kuznetsov, M., Kobelt, S., Grune, J., Jordan, T., Flammability limits and laminar flame speed of hydrogen-air mixtures at sub-atmospheric pressures (2012) Int. J. Hydrogen Energy, 37, pp. 17580-17588Burbano, H.J., Pareja, J., Amell, A.A., Laminar burning velocities and flame stability analysis of syngas mixtures at sub-atmospheric pressures (2011) Int. J. Hydrogen Energy, 36, pp. 3243-3252Turns, S.R., (2000) An Introduction to Combustion Concepts and Applications, , Mc graw Hill Higher Education: SingaporeAndrews, G.E., Bradley, D., The burning velocity of methane-air mixtures (1972) Combust. Flame, 19, pp. 275-288Mauss, F., Peters, N., Peters, N., Rogg, B., (1993) Reduced Kinetic Mechanisms for Applications in Combustion Systems, p. 72. , Eds. Springer-Verlag: New York, n.dRockwell, S.R., Rangwala, A.S., Influence of coal dust on premixed turbulent methane-air flames (2013) Combust. Flame, 160, pp. 635-640Ranganathan, S., Petrow, D., Rockwell, S.R., Rangwala, A.S., Turbulent burning velocity of methane-air-dust premixed flames (2018) Combust. Flame, 188, pp. 367-375Wang, J., Zhang, M., Xie, Y., Huang, Z., Kudo, T., Kobayashi, H., Correlation of turbulent burning velocity for syngas / air mixtures at high pressure up to 1. 0 MPa (2013) Exp. Therm. Fluid Sci., 50, pp. 90-96Wang, J., Yu, S., Zhang, M., Jin, W., Huang, Z., Chen, S., Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa (2015) Exp. Therm. Fluid Sci., 68, pp. 196-204Grover, J.I., Fales, E.N., Scurlock, A.C., Turbulent flame studies in two-dimensional open Burners (1963) Symp. Combust., 9, p. 15Zhang, M., Wang, J., Xie, Y., Jin, W., Wei, Z., Huang, Z., Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames (2013) Int. J. Hydrogen Energy, 38, pp. 11421-11428Obando, J., Lezcano, C., Amell, A., Experimental analysis of the addition and substitution of sub-bituminous pulverized coal in a natural gas premixed flame (2017) Appl. Therm. Eng., 125, pp. 232-239Rockwell, S., (2012) Influence of Coal Dust on Premixed Turbulent Methane-Air Flames, , Worcester Polytechnic InstituteCardona Vargas, A., Amell Arrieta, A., Arrieta, C.E., Combustion characteristics of several typical shale gas mixtures (2016) J. Nat. Gas Sci. Eng., 33, pp. 296-304Tyagi, H., Liu, R., Ting, D.S.-K., Johnston, C.R., Measurement of wake properties of a sphere in freestream turbulence (2006) Exp. Therm. Fluid Sci., 30, pp. 587-604Gülder, Ö.L., Turbulent premixed flame propagation models for different combustion regimes (1991) Symp. Combust., 23, pp. 743-750Cardona, C.A., Amell, A.A., Laminar burning velocity and interchangeability analysis of biogas/C3H8/H2 with normal and oxygen-enriched air (2013) Int. J. Hydrogen Energy, 38, pp. 7994-8001Kee, R.J., Rupley, F.M., Miller, J.A., Coltrin, M.E., Grcar, J.F., Meeks, E., (2000) CHEMKIN Collection, , et al. Release 3.6Kee, R., Grcar, J., Smooke, M., Miller, J., Meeks, E., (1985) PREMIX: A FORTRAN Program for Modeling Steady Laminar One-Dimensional, pp. 1-87. , SANDIA Natl LabSmith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., (2000) GRI-Mech 3.0, , et alVagelopoulos, C.M., Egolfopoulos, F.N., Direct experimental determination of laminar flame speeds (1998) Symp. Combust., 27, pp. 513-519Peters, N., Laminar flamelet concepts in turbulent combustion (1988) Symp. Combust., 21, pp. 1231-1250Lasdon, L.S., Waren, A.D., Jain, A., Ratner, M., Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming (1978) ACM Trans. Math Software, 4, pp. 34-50ACS OmegaBurning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric EnvironmentsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Vargas, A.C., Grupo de Investigación de Materiales Avanzados y Energlá, Instituto Tecnológico Metropolitano, Medellín, 050034, ColombiaGarciá, A.M., Grupo de Ciencia y Tecnologlá del Gas y Uso Racional de la Energlá, Facultad de Ingenierlá, Universidad de Antioquia, Medellín, 050010, ColombiaArrieta, C.E., Grupo de Ingenierlá en Energlá, Facultad de Ingenierlá, Universidad de Medellĺn, Medellín, 050026, ColombiaSierra Del Rio, J., Grupo de Investigación de Materiales Avanzados y Energlá, Instituto Tecnológico Metropolitano, Medellín, 050034, ColombiaAmell, A., Grupo de Ciencia y Tecnologlá del Gas y Uso Racional de la Energlá, Facultad de Ingenierlá, Universidad de Antioquia, Medellín, 050010, Colombiahttp://purl.org/coar/access_right/c_16ecVargas A.C.Garciá A.M.Arrieta C.E.Sierra Del Rio J.Amell A.11407/5925oai:repository.udem.edu.co:11407/59252021-02-05 09:57:57.36Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co