A new sustainable geotechnical reinforcement system from old tires: Experimental evaluation by pullout tests

The tires used constitute an environmental problem that remains unsolved. It is observed that the automotive fleet and therefore the generation of tires increases year after year, so the recovery and reuse processes are insufficient. For several years, the reuse of tires as materials in the construc...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5909
Acceso en línea:
http://hdl.handle.net/11407/5909
Palabra clave:
Experimental
Pullout resistance
Soil reinforcement
Used tires
compaction
environmental issue
experimental study
granular medium
model validation
recycling
reinforcement
retaining wall
road
stiffness
sustainability
tire
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_4906758e67e5bedf95bb94e36381a780
oai_identifier_str oai:repository.udem.edu.co:11407/5909
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv A new sustainable geotechnical reinforcement system from old tires: Experimental evaluation by pullout tests
title A new sustainable geotechnical reinforcement system from old tires: Experimental evaluation by pullout tests
spellingShingle A new sustainable geotechnical reinforcement system from old tires: Experimental evaluation by pullout tests
Experimental
Pullout resistance
Soil reinforcement
Used tires
compaction
environmental issue
experimental study
granular medium
model validation
recycling
reinforcement
retaining wall
road
stiffness
sustainability
tire
title_short A new sustainable geotechnical reinforcement system from old tires: Experimental evaluation by pullout tests
title_full A new sustainable geotechnical reinforcement system from old tires: Experimental evaluation by pullout tests
title_fullStr A new sustainable geotechnical reinforcement system from old tires: Experimental evaluation by pullout tests
title_full_unstemmed A new sustainable geotechnical reinforcement system from old tires: Experimental evaluation by pullout tests
title_sort A new sustainable geotechnical reinforcement system from old tires: Experimental evaluation by pullout tests
dc.subject.spa.fl_str_mv Experimental
Pullout resistance
Soil reinforcement
Used tires
topic Experimental
Pullout resistance
Soil reinforcement
Used tires
compaction
environmental issue
experimental study
granular medium
model validation
recycling
reinforcement
retaining wall
road
stiffness
sustainability
tire
dc.subject.keyword.eng.fl_str_mv compaction
environmental issue
experimental study
granular medium
model validation
recycling
reinforcement
retaining wall
road
stiffness
sustainability
tire
description The tires used constitute an environmental problem that remains unsolved. It is observed that the automotive fleet and therefore the generation of tires increases year after year, so the recovery and reuse processes are insufficient. For several years, the reuse of tires as materials in the construction has been considered, and several techniques have been developed for the construction of retaining walls and road reinforcement. However, to date, their use remains sporadic. This article presents the theoretical and experimental evaluation of a new geotechnical reinforcement system from used tires. This system, suitable for the construction of containment structures and the reinforcement of roads, is characterized by the conformation of cells that do not require other elements apart from the tires and the filling material. A mathematical model was developed to describe the behavior of the system and pullout tests were carried out for validation. The tests were performed with different tire and compacted granular material with different energies. The results allow validating the theoretical model by showing an increase in pullout resistance with the density and number of tires in the arrangement. It is observed that the coincidence between the model and the tests improves as the stiffness of the soil increases, being the degree of compaction fundamental for the operation. © 2020 by the authors.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:46Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:46Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 20711050
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5909
dc.identifier.doi.none.fl_str_mv 10.3390/su12114582
identifier_str_mv 20711050
10.3390/su12114582
url http://hdl.handle.net/11407/5909
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086358981&doi=10.3390%2fsu12114582&partnerID=40&md5=61feea06349b1a3590a737f564fbe5e5
dc.relation.citationvolume.none.fl_str_mv 12
dc.relation.citationissue.none.fl_str_mv 11
dc.relation.references.none.fl_str_mv Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., Balas, A., Progress in used tyres management in the European Union: A review (2012) Waste Manag, 32, pp. 1742-1751
Derakhshan, Z., Ghaneian, M.T., Mahvi, A.H., Conti, G.O., Faramarzian, M., Dehghani, M., Ferrante, M., A new recycling technique for the waste tires reuse (2017) Environ. Res, 158, pp. 462-469
Machin, E.B., Pedroso, D.T., de Carvalho, J.A., Energetic valorization of waste tires (2017) Renew. Sustain. Energy Rev, 68, pp. 306-315
Cheng, X., Song, P., Zhao, X., Peng, Z., Wang, S., Liquefaction of ground tire rubber at low temperature (2018) Waste Manag, 71, pp. 301-310
Ranieri, L., Digiesi, S., Silvestri, B., Roccotelli, M., A Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision (2018) Sustainability, 10, p. 782
Burkhanbekov, K., Aubakirov, Y., Tashmukhambetova, Z., Abildin, T., Thermal processing of waste tires with heavy oil residue in the presence of Tayzhuzgen zeolite (2019) J. Mater. Cycles Waste Manag, 21, pp. 633-641
Luo, S., Feng, Y., The production of fuel oil and combustible gas by catalytic pyrolysis of waste tire using waste heat of blast-furnace slag (2017) Energy Convers. Manag, 136, pp. 27-35
Czajczynska, D., Krzyzynska, R., Jouhara, H., Spencer, N., Use of pyrolytic gas from waste tire as a fuel: A review (2017) Energy, 134, pp. 1121-1131
Torretta, V., Rada, E.C., Ragazzi, M., Trulli, E., Istrate, I.A., Cioca, L.I., Treatment and disposal of tyres: Two EU approaches. A review (2015) Waste Manag, 45, pp. 152-160
Shu, X., Huang, B., Recycling of waste tire rubber in asphalt and portland cement concrete: An overview (2014) Constr. Build. Mater, 67, pp. 217-224
Sayào, A., Gerscovich, D., Medeiros, L., Sieira, A., Scrap Tire-An Attractive Material for Gravity Retaining Walls and Soil Reinforcement (2009) J. Solid Waste Technol. Manag, 35, pp. 135-155
(2019) Ministerio de Ambiente y Desarrollo Sostenible, Ministerio de Ambiente y Desarrollo Sostenible 2017, , http://www.minambiente.gov.co, (accessed on 24 October)
Park, J., Díaz-Posada, N., Mejía-Dugand, S., Challenges in implementing the extended producer responsibility in an emerging economy: The end-of-life tire management in Colombia (2018) Clean. Prod, 189, pp. 754-762
Uriarte-Miranda, M.-L., Caballero-Morales, S.-O., Martinez-Flores, J.-L., Cano-Olivos, P., Akulova, A.-A., Reverse Logistic Strategy for the Management of Tire Waste in Mexico and Russia: Review and Conceptual Model (2018) Sustainability, 10, p. 3398
Ortíz-Rodríguez, O.O., Ocampo-Duque, W., Duque-Salazar, L.I., Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle Del Cauca, Colombia (2017) Energies, 10, p. 2117
Giraldo, J.C., Suárez, A.F., Hidalgo, C., (2004) Valoración de Residuos de Neumáticos Como Sustituto o Complemento de Agregado Grueso en Materiales Para Base Granular o Relleno;, , University of Medelllín: Antioquia, Colombia
Yoon, S., Prezzi, M., Zia Siddiki, N., Kim, B., Construction of a test embankment using a sand-tire shred mixture as fill material (2005) Waste Manag, 26, pp. 1033-1044
Shalaby, A., Khan, R.A., Design of unsurfaced roads constructed with large-size shredded rubber tires: A case study (2005) Resour. Conserv. Recycl, 44, pp. 318-332
Ghazavi, M., Sakhi, M., Influence of optimized tire shreds on shear strength parameters of sand (2005) Int. J. Geotech, 5, pp. 58-65
Humphrey, D., Sandford, T., Cribbs, M., Manison, W., Shear strength and compressibility of tire chips for use as retaining wall backfill (1993) Transp. Res. Rec, 1422, pp. 29-35
Foose, G., Benson, C., Bosscher, P., Sand reinforced with shredded waste (1996) J. Geotech. Eng, 122, pp. 760-767
Wu, W., Benda, C., Cauley, R., Triaxial determination of shear strength of tire chips (1997) J. Geotech. Geoenviron. Eng, 123, pp. 479-482
Tatlisoz, N., Edil, T., Benson, C., Interaction between reinforcing geosynthetics and soil-tire chip mixtures (1998) J. Geotech. Geoenviron. Eng, 124, pp. 1109-1119
Edinçliler, A., Using waste tire-soil mixtures for embankment construction. international workshop on scrap tire derived geomaterials "opportunities and challenges" (2007) Kanto Branch Jpn. Geotech. Soc, pp. 319-328
Yoon, Y.W., Cheon, S.H., Kang, D.S., Bearing capacity and settlement of tyre-reinforced sands (2004) Geotext. Geomembr, 22, pp. 439-453
Yoon, Y.W., Heo, S.B., Kim, K.S., Geotechnical performance of waste tires for soil reinforcement from chamber tests (2008) Geotext. Geomembr, 26, pp. 100-107
Huat, B.B., Aziz, A.A., Chuan, L.W., Application of scrap tires as earth reinforcement for repair of tropical residual soil slope (2008) Electron. J. Geotech. Eng, 13, pp. 1-9
Edinçliler, A., Baykal, G., Saygili, A., Influence of different processing techniques on the mechanical properties of used tires in embankment construction (2010) Waste Manag, 30, pp. 1073-1080
Kim, K.S., Yoon, Y.W., Yoon, G.L., Pullout behavior of cell-type tyres in reinforced soil structures (2011) KSCE J. Civ. Eng, 15, pp. 1209-1217
Li, L., Xiao, H., Ferreira, P., Cui, X., Study of a small scale tyre-reinforced embankment (2016) Geotext. Geomembr, 44, pp. 201-208
Li, L.H., Chen, Y.J., Ferreira, P.M., Liu, Y., Xiao, H.L., Experimental investigations on the pull-out behavior of tire strips reinforced sands (2017) Materials, 10, p. 707
Bustamante, J., (2016) Evaluación de un Sistema de Refuerzo de Suelo Utilizando Llantas en Desuso Para Carreteras Terciarias;, , University of Medellín: Medellín, Colombia
Loaiza, T., (2017) Evaluación del Proceso Constructivo de un Muro de Contención Mediante un Sistema de Refuerzo de Suelo Utilizando Llantas en Desuso;, , University of Medellín: Medellín, Colombia
Jimenez, M., (2018) Evaluación Tècnica, Ambiental y Econòmica en la Construction de Muros de Contention, Innovando el Uso de Reciclaje de Neumáticos;, , University of Medellín: Medellín, Colombia
Marín, F., (2018) Evaluación experimental de la resistencia al arrancamiento de un sistema de refuerzo de suelo Utilizando Llantas en Desuso;, , University of Medellín: Medellín, Colombia
Tajabadipour, M., Dehghani, M., Kalantari, B., Lajevardi, S.H., Laboratory pullout investigation for evaluate feasibility use of scrap tire as reinforcement element in mechanically stabilized earth walls (2019) J. Clean. Prod, 237, p. 117726
Edil, T.B., A review of environmental impacts and environmental applications of shredded scrap tires (2008) Proceedings of the International Workshop on Scrap Tire derived Geomaterials, pp. 3-18. , Yokosuka, Japan, 23-24 March Hazarika, H., Yasuhara, K., Eds.
Taylor and Francis: London, UK
Hennebert, P., Lambert, S., Fouillen, F., Charrasse, B., Assessing the Environmental Impact of Shredded Tires as Embankment Fill Material (2014) Can. Geotech. J, 51, pp. 469-478
Tatlisoz, N., Edil, T.B., Benson, C.H., Park, J.K., Kim, J.Y., Review of environmental suitability of scrap tires (1996) Environmental Geotechnics Report No: 96-97;, , Department of Civil and Environmental Engineering, University of Wisconsin: Madison, WI, USA
O'Shaughnessy, V., Garga, K.V., Tire-reinforced earthfill. Part 2: Pull-out behaviour and reinforced slope design (2000) Can. Geotech. J, 37, pp. 97-116
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv MDPI AG
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv Sustainability (Switzerland)
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159100871704576
spelling 20202021-02-05T14:57:46Z2021-02-05T14:57:46Z20711050http://hdl.handle.net/11407/590910.3390/su12114582The tires used constitute an environmental problem that remains unsolved. It is observed that the automotive fleet and therefore the generation of tires increases year after year, so the recovery and reuse processes are insufficient. For several years, the reuse of tires as materials in the construction has been considered, and several techniques have been developed for the construction of retaining walls and road reinforcement. However, to date, their use remains sporadic. This article presents the theoretical and experimental evaluation of a new geotechnical reinforcement system from used tires. This system, suitable for the construction of containment structures and the reinforcement of roads, is characterized by the conformation of cells that do not require other elements apart from the tires and the filling material. A mathematical model was developed to describe the behavior of the system and pullout tests were carried out for validation. The tests were performed with different tire and compacted granular material with different energies. The results allow validating the theoretical model by showing an increase in pullout resistance with the density and number of tires in the arrangement. It is observed that the coincidence between the model and the tests improves as the stiffness of the soil increases, being the degree of compaction fundamental for the operation. © 2020 by the authors.engMDPI AGIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85086358981&doi=10.3390%2fsu12114582&partnerID=40&md5=61feea06349b1a3590a737f564fbe5e51211Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., Balas, A., Progress in used tyres management in the European Union: A review (2012) Waste Manag, 32, pp. 1742-1751Derakhshan, Z., Ghaneian, M.T., Mahvi, A.H., Conti, G.O., Faramarzian, M., Dehghani, M., Ferrante, M., A new recycling technique for the waste tires reuse (2017) Environ. Res, 158, pp. 462-469Machin, E.B., Pedroso, D.T., de Carvalho, J.A., Energetic valorization of waste tires (2017) Renew. Sustain. Energy Rev, 68, pp. 306-315Cheng, X., Song, P., Zhao, X., Peng, Z., Wang, S., Liquefaction of ground tire rubber at low temperature (2018) Waste Manag, 71, pp. 301-310Ranieri, L., Digiesi, S., Silvestri, B., Roccotelli, M., A Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision (2018) Sustainability, 10, p. 782Burkhanbekov, K., Aubakirov, Y., Tashmukhambetova, Z., Abildin, T., Thermal processing of waste tires with heavy oil residue in the presence of Tayzhuzgen zeolite (2019) J. Mater. Cycles Waste Manag, 21, pp. 633-641Luo, S., Feng, Y., The production of fuel oil and combustible gas by catalytic pyrolysis of waste tire using waste heat of blast-furnace slag (2017) Energy Convers. Manag, 136, pp. 27-35Czajczynska, D., Krzyzynska, R., Jouhara, H., Spencer, N., Use of pyrolytic gas from waste tire as a fuel: A review (2017) Energy, 134, pp. 1121-1131Torretta, V., Rada, E.C., Ragazzi, M., Trulli, E., Istrate, I.A., Cioca, L.I., Treatment and disposal of tyres: Two EU approaches. A review (2015) Waste Manag, 45, pp. 152-160Shu, X., Huang, B., Recycling of waste tire rubber in asphalt and portland cement concrete: An overview (2014) Constr. Build. Mater, 67, pp. 217-224Sayào, A., Gerscovich, D., Medeiros, L., Sieira, A., Scrap Tire-An Attractive Material for Gravity Retaining Walls and Soil Reinforcement (2009) J. Solid Waste Technol. Manag, 35, pp. 135-155(2019) Ministerio de Ambiente y Desarrollo Sostenible, Ministerio de Ambiente y Desarrollo Sostenible 2017, , http://www.minambiente.gov.co, (accessed on 24 October)Park, J., Díaz-Posada, N., Mejía-Dugand, S., Challenges in implementing the extended producer responsibility in an emerging economy: The end-of-life tire management in Colombia (2018) Clean. Prod, 189, pp. 754-762Uriarte-Miranda, M.-L., Caballero-Morales, S.-O., Martinez-Flores, J.-L., Cano-Olivos, P., Akulova, A.-A., Reverse Logistic Strategy for the Management of Tire Waste in Mexico and Russia: Review and Conceptual Model (2018) Sustainability, 10, p. 3398Ortíz-Rodríguez, O.O., Ocampo-Duque, W., Duque-Salazar, L.I., Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle Del Cauca, Colombia (2017) Energies, 10, p. 2117Giraldo, J.C., Suárez, A.F., Hidalgo, C., (2004) Valoración de Residuos de Neumáticos Como Sustituto o Complemento de Agregado Grueso en Materiales Para Base Granular o Relleno;, , University of Medelllín: Antioquia, ColombiaYoon, S., Prezzi, M., Zia Siddiki, N., Kim, B., Construction of a test embankment using a sand-tire shred mixture as fill material (2005) Waste Manag, 26, pp. 1033-1044Shalaby, A., Khan, R.A., Design of unsurfaced roads constructed with large-size shredded rubber tires: A case study (2005) Resour. Conserv. Recycl, 44, pp. 318-332Ghazavi, M., Sakhi, M., Influence of optimized tire shreds on shear strength parameters of sand (2005) Int. J. Geotech, 5, pp. 58-65Humphrey, D., Sandford, T., Cribbs, M., Manison, W., Shear strength and compressibility of tire chips for use as retaining wall backfill (1993) Transp. Res. Rec, 1422, pp. 29-35Foose, G., Benson, C., Bosscher, P., Sand reinforced with shredded waste (1996) J. Geotech. Eng, 122, pp. 760-767Wu, W., Benda, C., Cauley, R., Triaxial determination of shear strength of tire chips (1997) J. Geotech. Geoenviron. Eng, 123, pp. 479-482Tatlisoz, N., Edil, T., Benson, C., Interaction between reinforcing geosynthetics and soil-tire chip mixtures (1998) J. Geotech. Geoenviron. Eng, 124, pp. 1109-1119Edinçliler, A., Using waste tire-soil mixtures for embankment construction. international workshop on scrap tire derived geomaterials "opportunities and challenges" (2007) Kanto Branch Jpn. Geotech. Soc, pp. 319-328Yoon, Y.W., Cheon, S.H., Kang, D.S., Bearing capacity and settlement of tyre-reinforced sands (2004) Geotext. Geomembr, 22, pp. 439-453Yoon, Y.W., Heo, S.B., Kim, K.S., Geotechnical performance of waste tires for soil reinforcement from chamber tests (2008) Geotext. Geomembr, 26, pp. 100-107Huat, B.B., Aziz, A.A., Chuan, L.W., Application of scrap tires as earth reinforcement for repair of tropical residual soil slope (2008) Electron. J. Geotech. Eng, 13, pp. 1-9Edinçliler, A., Baykal, G., Saygili, A., Influence of different processing techniques on the mechanical properties of used tires in embankment construction (2010) Waste Manag, 30, pp. 1073-1080Kim, K.S., Yoon, Y.W., Yoon, G.L., Pullout behavior of cell-type tyres in reinforced soil structures (2011) KSCE J. Civ. Eng, 15, pp. 1209-1217Li, L., Xiao, H., Ferreira, P., Cui, X., Study of a small scale tyre-reinforced embankment (2016) Geotext. Geomembr, 44, pp. 201-208Li, L.H., Chen, Y.J., Ferreira, P.M., Liu, Y., Xiao, H.L., Experimental investigations on the pull-out behavior of tire strips reinforced sands (2017) Materials, 10, p. 707Bustamante, J., (2016) Evaluación de un Sistema de Refuerzo de Suelo Utilizando Llantas en Desuso Para Carreteras Terciarias;, , University of Medellín: Medellín, ColombiaLoaiza, T., (2017) Evaluación del Proceso Constructivo de un Muro de Contención Mediante un Sistema de Refuerzo de Suelo Utilizando Llantas en Desuso;, , University of Medellín: Medellín, ColombiaJimenez, M., (2018) Evaluación Tècnica, Ambiental y Econòmica en la Construction de Muros de Contention, Innovando el Uso de Reciclaje de Neumáticos;, , University of Medellín: Medellín, ColombiaMarín, F., (2018) Evaluación experimental de la resistencia al arrancamiento de un sistema de refuerzo de suelo Utilizando Llantas en Desuso;, , University of Medellín: Medellín, ColombiaTajabadipour, M., Dehghani, M., Kalantari, B., Lajevardi, S.H., Laboratory pullout investigation for evaluate feasibility use of scrap tire as reinforcement element in mechanically stabilized earth walls (2019) J. Clean. Prod, 237, p. 117726Edil, T.B., A review of environmental impacts and environmental applications of shredded scrap tires (2008) Proceedings of the International Workshop on Scrap Tire derived Geomaterials, pp. 3-18. , Yokosuka, Japan, 23-24 March Hazarika, H., Yasuhara, K., Eds.Taylor and Francis: London, UKHennebert, P., Lambert, S., Fouillen, F., Charrasse, B., Assessing the Environmental Impact of Shredded Tires as Embankment Fill Material (2014) Can. Geotech. J, 51, pp. 469-478Tatlisoz, N., Edil, T.B., Benson, C.H., Park, J.K., Kim, J.Y., Review of environmental suitability of scrap tires (1996) Environmental Geotechnics Report No: 96-97;, , Department of Civil and Environmental Engineering, University of Wisconsin: Madison, WI, USAO'Shaughnessy, V., Garga, K.V., Tire-reinforced earthfill. Part 2: Pull-out behaviour and reinforced slope design (2000) Can. Geotech. J, 37, pp. 97-116Sustainability (Switzerland)ExperimentalPullout resistanceSoil reinforcementUsed tirescompactionenvironmental issueexperimental studygranular mediummodel validationrecyclingreinforcementretaining wallroadstiffnesssustainabilitytireA new sustainable geotechnical reinforcement system from old tires: Experimental evaluation by pullout testsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Hidalgo, C.A., School of Engineering, Civil Engineering Program at Universidad de Medellin, Medellin, 050030, ColombiaBustamante-Hernández, J.J., School of Engineering, Civil Engineering Program at Universidad de Medellin, Medellin, 050030, Colombiahttp://purl.org/coar/access_right/c_16ecHidalgo C.A.Bustamante-Hernández J.J.11407/5909oai:repository.udem.edu.co:11407/59092021-02-05 09:57:46.844Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co