Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study

In the current work, a deep study to understand the adsorption phenomena occurring in single and multicomponent systems was conducted by using spectroscopic characterization, and computational tools. The experimental results showed that the adsorption capacity of chili seed is higher for Pb2+ (48 mg...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5901
Acceso en línea:
http://hdl.handle.net/11407/5901
Palabra clave:
Adsorption
Copper
Lead
Mechanism
Multicomponent
Single
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_44a4f8b1f0003ae3c4545e57be6fc156
oai_identifier_str oai:repository.udem.edu.co:11407/5901
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study
title Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study
spellingShingle Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study
Adsorption
Copper
Lead
Mechanism
Multicomponent
Single
title_short Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study
title_full Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study
title_fullStr Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study
title_full_unstemmed Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study
title_sort Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational study
dc.subject.spa.fl_str_mv Adsorption
Copper
Lead
Mechanism
Multicomponent
Single
topic Adsorption
Copper
Lead
Mechanism
Multicomponent
Single
description In the current work, a deep study to understand the adsorption phenomena occurring in single and multicomponent systems was conducted by using spectroscopic characterization, and computational tools. The experimental results showed that the adsorption capacity of chili seed is higher for Pb2+ (48 mg/g) than Cu2+ (4.1 mg/g) ions in single systems. However, the adsorption study in multicomponent systems provides important conclusions of the concentration effect of the metal ions, showing a significant antagonistic and competitive effect of both ions under equivalent concentrations of them (qPb2+ is 56% reduced) or high concentration of Pb2+ (qCu2+ is 50% reduced). Computational results correlated well with the experimental ones and evidenced all interactions proposed from spectroscopy results, accounting for the occurrence of complexation and electrostatic mechanisms between metal ions and the surface oxygenated functional groups (hydroxyl, carboxyl, and carboxylate) onto chili seed. Chemistry quantum descriptors supported the reactivity behavior of the chemical species implicated. All results evidenced that Pb2+ and Cu2+ adsorption on chili seed surface is governed by the occurrence of combined ionic exchange, π-interaction, complexation, and electrostatic attraction. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:40Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:40Z
dc.date.none.fl_str_mv 2021
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 9441344
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5901
dc.identifier.doi.none.fl_str_mv 10.1007/s11356-020-11721-z
identifier_str_mv 9441344
10.1007/s11356-020-11721-z
url http://hdl.handle.net/11407/5901
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099459696&doi=10.1007%2fs11356-020-11721-z&partnerID=40&md5=9140850629dba41dd6ec7896a3db59b2
dc.relation.references.none.fl_str_mv Ali, I., Gupta, V.K., Advances in water treatment by adsorption technology (2007) Nat Protoc, 1, pp. 2661-2667
Bardestani, R., Roy, C., Kaliaguine, S., The effect of biochar mild air oxidation on the optimization of lead (II) adsorption from wastewater (2019) J Environ Manag, 240, pp. 404-420. , COI: 1:CAS:528:DC%2BC1MXntVCrs7c%3D
Bayo, J., Kinetic studies for Cd(II) biosorption from treated urban effluents by native grapefruit biomass (Citrus paradisi L.): The competitive effect of Pb(II), Cu(II) (2012) Chem Eng J, 191, pp. 278-287
Beni, A.A., Esmaeili, A., Biosorption, an efficient method for removing heavy metals from industrial effluents: a review (2020) Environ Technol Innov, 17, p. 100503
Bhatnagar, A., Sillanpää, M., Witek-krowiak, A., Agricultural waste peels as versatile biomass for water purification: a review (2015) Chem Eng J, 270, pp. 244-271
Bohli, T., Ouederni, A., Villaescusa, I., Simultaneous adsorption behavior of heavy metals onto microporous olive stones activated carbon: analysis of metal interactions (2017) Euro-Mediterranean J Environ Integr, 2, pp. 1-15
Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran-Valle, C.J., (2019) Adsorption in water treatment, , Elsevier Inc., Amsterdam
Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review (2018) Ecotoxicol Environ Saf, 148, pp. 702-712
Calero, M., Pérez, A., Blázquez, G., Ronda, A., Martín-Lara, M.A., Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead (2013) Ecol Eng, 58, pp. 344-354
Chen, Q., Zheng, J., Wen, L., Yang, C., Zhang, L., A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: performance and quantum chemical mechanism (2019) Chemosphere, 224, pp. 509-518
Chen, C., Chen, Q., Kang, J., Shen, J., Wang, B., Guo, F., Chen, Z., Hydrophilic triazine-based dendron for copper and lead adsorption in aqueous systems: performance and mechanism (2020) J Mol Liq, 298, p. 112031. , COI: 1:CAS:528:DC%2BC1MXit1artrrJ
Cruz-Olivares, J., Pérez-Alonso, C., Barrera-Díaz, C., López, G., Balderas-Hernández, P., Inside the removal of lead(II) from aqueous solutions by De-Oiled Allspice Husk in batch and continuous processes (2010) J Hazard Mater, 181, pp. 1095-1101
Dimpe, K.M., Nomngongo, P.N., A review on the efficacy of the application of myriad carbonaceous materials for the removal of toxic trace elements in the environment (2017) Trends Environ Anal Chem, 16, pp. 24-31
Ding, Y., Jing, D., Gong, H., Zhou, L., Yang, X., Biosorption of aquatic cadmium(II) by unmodified rice straw (2012) Bioresour Technol, 114, pp. 20-25
Fernández-López, J.A., Angosto, J.M., Roca, M.J., Doval Miñarro, M., Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke (2019) Sci Total Environ, 653, pp. 55-63
Forgionny, A., Acelas, N.Y., Jimenez-orozco, C., Flórez, E., Toward the design of efficient adsorbents for Hg2+ removal: molecular and thermodynamic insights (2020) Int J Quantum Chem, 120, pp. 1-11
Freundlich, H.M.F., über die adsorption in losungen (adsorption in solution) (1907) Z Phys Chem, 57, pp. 385-490. , COI: 1:CAS:528:DyaD2sXksFCk
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Cioslowskifox, D.J., (2009), Gaussian 09, Revision A.01, Gaussian, Inc, Wallingford
Girish, C.R., Multicomponent adsorption and the interaction between the adsorbent and the adsorbate: a review (2018) Int J Mech Eng Technol, 9, pp. 177-188
Gonzalez, J.D., Florez, E., Romero, J., Reyes, A., Restrepo, A., Microsolvation of Mg2+, Ca2+: strong influence of formal charges in hydrogen bond networks (2013) J Mol Model, 19, pp. 1763-1777
Guediri, A., Bouguettoucha, A., Chebli, D., Chafai, N., Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modi fi ed phosphoric acid (2020) J Mol Struct, 1202, p. 127290. , COI: 1:CAS:528:DC%2BC1MXitV2gs7%2FK
Hegazi, H.A., Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents (2013) Hous Build Natl Res Cent HBRC J, 9, pp. 276-282
Ho, Y.S., Chiu, W.T., Sen, H.C., Huang, C.T., Sorption of lead ions from aqueous solution using tree fern as a sorbent (2004) Hydrometallurgy, 73, pp. 55-61
Hossain, M.A., Ngo, H.H., Guo, W.S., Setiadi, T., Adsorption and desorption of copper (II) ions onto garden grass (2012) Bioresour Technol, 121, pp. 386-395. , COI: 1:CAS:528:DC%2BC38XhtlShtLbJ
Hotová, G., Slovák, V., Zelenka, T., Maršálek, R., The role of the oxygen functional groups in adsorption of copper (II) on carbon surface (2020) Sci Total Environ, 711, p. 135436
Igwe, J.C., Abia, A.A., Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob (2007) Eclética Química, 32, pp. 33-42. , COI: 1:CAS:528:DC%2BD2sXotVWku78%3D
Ivanets, A., Kitikova, N., Shashkova, I., Matrunchik, Y., Kul’bitskaya, L., Sillanpää, M., Non-acidic synthesis of phosphatized dolomite and its sorption behaviour towards Pb 2+, Zn2+, Cu2+, Cd2+, Ni2+, Sr2+ and Co2+ ions in multicomponent aqueous solution (2016) Environ Technol Innov, 6, pp. 152-164
Ivanets, A.I., Kitikova, N.V., Shashkova, I.L., Roshchina, M.Y., Srivastava, V., Sillanpää, M., Adsorption performance of hydroxyapatite with different crystalline and porous structure towards metal ions in multicomponent solution (2019) J Water Process Eng, 32, p. 100963
Jones, D., Freeman, C., Sánchez-Rodrıíguez, A., Waste water treatment (2017) Encycl Appl Plant Sci, 3, pp. 352-362
Joseph, L., Jun, B., Flora, J.R.V., Removal of heavy metals from water sources in the developing world using low-cost materials: a review (2019) Chemosphere, 229, pp. 142-159. , COI: 1:CAS:528:DC%2BC1MXptlOrt74%3D
Kamsonlian, S., Balomajumder, C., Chand, S., Suresh, S., Biosorption of Cd (II) and As (III) ions from aqueous solution by tea waste biomass (2011) Afr J Environ Sci Technol, 5, pp. 1-7. , COI: 1:CAS:528:DC%2BC3MXisFCqsrs%3D
Kariuki, Z., Kiptoo, J., Onyancha, D., Biosorption studies of lead and copper using rogers mushroom biomass ‘Lepiota hystrix’ (2017) S Afr J Chem Eng, 23, pp. 62-70
Langmuir, I., The constitution and fundamental properties of solids and liquids (1916) Part I Solids J Am Chem Soc, 38, pp. 2221-2295
Lee, M.E., Park, J.H., Chung, J.W., Comparison of the lead and copper adsorption capacities of plant source materials and their biochars (2019) J Environ Manag, 236, pp. 118-124
Li, C., Ma, H., Venkateswaran, S., Hsiao, B.S., Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes / heavy metals ions (2020) Chem Eng J, 389, p. 123458
Liu, X., Chen, Z.Q., Han, B., Su, C.L., Han, Q., Chen, W.Z., Biosorption of copper ions from aqueous solution using rape straw powders: optimization, equilibrium and kinetic studies (2018) Ecotoxicol Environ Saf, 150, pp. 251-259
Liu, Y., Gao, Q., Pu, S., Wang, H., Xia, K., Han, B., Zhou, C., Carboxyl-functionalized lotus seedpod: a highly efficient and reusable agricultural waste-based adsorbent for removal of toxic Pb 2+ ions from aqueous solution (2019) Colloids Surfaces A Physicochem Eng Asp, 568, pp. 391-401
Liu, Y., Peng, Y., An, B., Li, L., Liu, Y., Effect of molecular structure on the adsorption affinity of sulfonamides onto CNTs: batch experiments and DFT calculations (2020) Chemosphere, 246, p. 125778
Ma, J., Li, T., Liu, Y., Cai, T., Wei, Y., Dong, W., Chen, H., Rice husk derived double network hydrogel as efficient adsorbent for Pb(II), Cu(II) and Cd(II) removal in individual and multicomponent systems (2019) Bioresour Technol, 290, p. 121793
Martín-Lara, M.A., Blázquez, G., Calero, M., Almendros, A.I., Ronda, A., Binary biosorption of copper and lead onto pine cone shell in batch reactors and in fixed bed columns (2016) Int J Miner Process, 148, pp. 72-82
Medellin-Castillo, N.A., Padilla-Ortega, E., Regules-Martínez, M.C., Leyva-Ramos, R., Ocampo-Pérez, R., Carranza-Alvarez, C., Single and competitive adsorption of Cd(II) and Pb(II) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste (2017) Sustain Environ Res, 27, pp. 61-69
Mendoza-Castillo, D.I., Elizabeth-Ávila, H.E., (2017) Adsorption processes for water treatment and purication, , (eds), Springer, Amsterdam
Morosanu, I., Teodosiu, C., Paduraru, C., Biosorption of lead ions from aqueous effluents by rapeseed biomass (2017) N Biotechnol A, 39, pp. 110-124. , COI: 1:CAS:528:DC%2BC28XhsVeltrrL
Moyo, M., Guyo, U., Mawenyiyo, G., Zinyama, N.P., Nyamunda, B.C., Marula seed husk (Sclerocarya birrea) biomass as a low cost biosorbent for removal of Pb(II) and Cu(II) from aqueous solution (2015) J Ind Eng Chem, 27, pp. 126-132
Nayara, T., De Souza, V., Maria, S., Adsorption of basic dyes onto activated carbon: experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors (2018) Appl Surf Sci, 448, pp. 662-670
Ocampo-Perez, R., Padilla-Ortega, E., Medellin-Castillo, N.A., Coronado-Oyarvide, P., Aguilar-Madera, C.G., Segovia-Sandoval, S.J., Flores-Ramírez, R., Parra-Marfil, A., Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling (2019) Sci Total Environ, 655, pp. 1397-1408
Özcan, A., Özcan, A.S., Tunali, S., Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum (2005) J Hazard Mater, 124, pp. 200-208
Özcan, A.S., Özcan, A., Tunali, S., Akar, T., Kiran, I., Gedikbey, T., Adsorption potential of lead(II) ions from aqueous solutions onto Capsicum annuum seeds (2007) Sep Sci Technol, 42, pp. 137-151
Padilla-Ortega, E., Leyva-Ramos, R., Flores-Cano, J.V., Binary adsorption of heavy metals from aqueous solution onto natural clays (2013) Chem Eng J, 225, pp. 535-546
Pagnanelli, F., Esposito, A., Toro, L., Vegliò, F., Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model (2003) Water Res, 37, pp. 627-633
Park, J., Sik, Y., Kim, S., Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions (2016) Chemosphere, 142, pp. 77-83. , COI: 1:CAS:528:DC%2BC2MXhtVejtr3F
Pehlivan, E., Altun, T., Parlayıcı, S., Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions (2009) J Hazard Mater J, 164, pp. 982-986
Ramirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: kinetics, equilibrium, and density functional theory calculations (2020) J Environ Chem Eng, 8, p. 103702
Riaz, M., Nadeem, R., Hanif, M.A., Ansari, T.M., Rehman, K.U., Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (Cotton) waste biomass (2009) J Hazard Mater, 161, pp. 88-94
Ronda, A., Bl, G., Bachs, N.M., Copper biosorption in the presence of lead onto olive stone and pine bark in batch and continuous systems Alicia (2013) Environ Prog Sustain Energy, 33, pp. 192-204
Ronda, A., Martín-Lara, M.A., Dionisio, E., Blázquez, G., Calero, M., Effect of lead in biosorption of copper by almond shell (2013) J Taiwan Inst Chem Eng, 44, pp. 466-473
(2017) Planeación agrícola Nacional 2017-2030: Chiles Y Pimientos Mexicanos
Senthilkumar, G., Murugappan, A., Multicomponent adsorption isotherm studies on removal of multi heavy metal ions in MSW leachate using fly ash (2015) Int J Eng Res Technol, 8, pp. 58-66
Shan, R., Shi, Y., Gu, J., Wang, Y., Yuan, H., Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems (2020) Chin J Chem Eng, 28, pp. 1375-1383
Sheng, P.X., Ting, Y.P., Chen, J.P., Hong, L., Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms (2004) J Colloid Interface Sci, 275, pp. 131-141
Taşar, Ş., Kaya, F., Özer, A., Biosorption of lead(II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies (2014) J Environ Chem Eng, 2, pp. 1018-1026
(2020) Thermo Scientific XPS Simplied, , https://xpssimplified.com/periodictable.php, Thermo Scientific (n.d.), . Accessed Feb-March
Tunali Akar, S., Gorgulu, A., Akar, T., Celik, S., Decolorization of Reactive Blue 49 contaminated solutions by Capsicum annuum seeds: batch and continuous mode biosorption applications (2011) Chem Eng J, 168, pp. 125-133
Uslu, G., Tanyol, M., Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature (2006) J Hazard Mater, 135, pp. 87-93
Vázquez, G., Calvo, M., Sonia Freire, M., González-Alvarez, J., Antorrena, G., Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal (2009) J Hazard Mater, 172, pp. 1402-1414
Verma, C., Olasunkanmi, L.O., Bahadur, I., Lgaz, H., Quraishi, M.A., Haque, J., Sherif, E.S.M., Ebenso, E.E., Experimental, density functional theory and molecular dynamics supported adsorption behavior of environmental benign imidazolium based ionic liquids on mild steel surface in acidic medium (2019) J Mol Liq, 273, pp. 1-15. , COI: 1:CAS:528:DC%2BC1cXhvVOhsbfJ
Vieira, R.S., Lisa, M., Oliveira, M., Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism (2011) Colloids Surfaces A Physicochem Eng Asp, 374, pp. 108-114
Wang, S., Vincent, T., Faur, C., Guibal, E., Modeling competitive sorption of lead and copper ions onto alginate and greenly prepared algal-based beads (2017) Bioresour Technol, 231, pp. 26-35
Wang, F., Yu, J., Zhang, Z., Xu, Y., Chi, R.A., An amino-functionalized ramie stalk-based adsorbent for highly effective Cu2+ removal from water: adsorption performance and mechanism (2018) Process Saf Environ Prot, 117, pp. 511-522
Wang, F., Li, J., Su, Y., Li, Q., Gao, B., Yue, Q., Zhou, W., Adsorption and recycling of Cd (II) from wastewater using straw cellulose hydrogel beads (2019) J Ind Eng Chem, 80, pp. 361-369. , COI: 1:CAS:528:DC%2BC1MXhsF2rurfF
Wu, S., Wang, F., Yuan, H., Fabrication of xanthate-modified chitosan/poly(N-isopropylacrylamide) composite hydrogel for the selective adsorption of Cu(II), Pb(II) and Ni(II) metal ions (2018) Chem Eng Res Des, 9, pp. 197-210
Yuan, L., Yan, M., Huang, Z., He, K., Zeng, G., Chen, A., Hu, L., Chen, G., Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution (2019) J Colloid Interface Sci, 541, pp. 01-113
Yuvaraja, G., Krishnaiah, N., Venkata, M., Biosorption of Pb (II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste (2014) Colloids Surf B: Biointerfaces, 114, pp. 75-81. , COI: 1:CAS:528:DC%2BC3sXitVWmsr%2FO
Zendelska, A., Golomeova, M., Golomeov, B., Krstev, B., Effect of competing cations (Cu, Zn, Mn, Pb) adsorbed by zeolite bearing tuff from Macedonia (2018) Nat Environ Pollut Technol, 17, pp. 21-24. , COI: 1:CAS:528:DC%2BC1cXisVOqs7vL
Zhan, X., Wang, L., Xu, T., The regionally dominant biomass (leaves of F. virens) selectively adsorb lead from municipal solid waste incineration fl y ash pickling wastewater (2019) Colloids Surfaces A, 577, pp. 523-531. , COI: 1:CAS:528:DC%2BC1MXhtFOhsbvO
Zhang, C., Wang, W., Duan, A., Zeng, G., Huang, D., Lai, C., Tan, X., Yang, Y., Adsorption behavior of engineered carbons and carbon nanomaterials for metal endocrine disruptors: experiments and theoretical calculation (2019) Chemosphere, 222, pp. 184-194
Zhu, Y., Hu, J., Wang, J., Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan (2012) J Hazard Mater, 221-222, pp. 155-161
Zulfiqar Ali, S., Athar, M., Salman, M., Imran Din, M., Simultaneous removal of Pb(II), Cd(II) and Cu(II) from aqueous solutions by adsorption on Triticum aestivum - a green approach (2017) Hydrol Curr Res, 2, pp. 4-11
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv Environmental Science and Pollution Research
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159139662725120
spelling 20212021-02-05T14:57:40Z2021-02-05T14:57:40Z9441344http://hdl.handle.net/11407/590110.1007/s11356-020-11721-zIn the current work, a deep study to understand the adsorption phenomena occurring in single and multicomponent systems was conducted by using spectroscopic characterization, and computational tools. The experimental results showed that the adsorption capacity of chili seed is higher for Pb2+ (48 mg/g) than Cu2+ (4.1 mg/g) ions in single systems. However, the adsorption study in multicomponent systems provides important conclusions of the concentration effect of the metal ions, showing a significant antagonistic and competitive effect of both ions under equivalent concentrations of them (qPb2+ is 56% reduced) or high concentration of Pb2+ (qCu2+ is 50% reduced). Computational results correlated well with the experimental ones and evidenced all interactions proposed from spectroscopy results, accounting for the occurrence of complexation and electrostatic mechanisms between metal ions and the surface oxygenated functional groups (hydroxyl, carboxyl, and carboxylate) onto chili seed. Chemistry quantum descriptors supported the reactivity behavior of the chemical species implicated. All results evidenced that Pb2+ and Cu2+ adsorption on chili seed surface is governed by the occurrence of combined ionic exchange, π-interaction, complexation, and electrostatic attraction. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature.engSpringer Science and Business Media Deutschland GmbHFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85099459696&doi=10.1007%2fs11356-020-11721-z&partnerID=40&md5=9140850629dba41dd6ec7896a3db59b2Ali, I., Gupta, V.K., Advances in water treatment by adsorption technology (2007) Nat Protoc, 1, pp. 2661-2667Bardestani, R., Roy, C., Kaliaguine, S., The effect of biochar mild air oxidation on the optimization of lead (II) adsorption from wastewater (2019) J Environ Manag, 240, pp. 404-420. , COI: 1:CAS:528:DC%2BC1MXntVCrs7c%3DBayo, J., Kinetic studies for Cd(II) biosorption from treated urban effluents by native grapefruit biomass (Citrus paradisi L.): The competitive effect of Pb(II), Cu(II) (2012) Chem Eng J, 191, pp. 278-287Beni, A.A., Esmaeili, A., Biosorption, an efficient method for removing heavy metals from industrial effluents: a review (2020) Environ Technol Innov, 17, p. 100503Bhatnagar, A., Sillanpää, M., Witek-krowiak, A., Agricultural waste peels as versatile biomass for water purification: a review (2015) Chem Eng J, 270, pp. 244-271Bohli, T., Ouederni, A., Villaescusa, I., Simultaneous adsorption behavior of heavy metals onto microporous olive stones activated carbon: analysis of metal interactions (2017) Euro-Mediterranean J Environ Integr, 2, pp. 1-15Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran-Valle, C.J., (2019) Adsorption in water treatment, , Elsevier Inc., AmsterdamBurakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review (2018) Ecotoxicol Environ Saf, 148, pp. 702-712Calero, M., Pérez, A., Blázquez, G., Ronda, A., Martín-Lara, M.A., Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead (2013) Ecol Eng, 58, pp. 344-354Chen, Q., Zheng, J., Wen, L., Yang, C., Zhang, L., A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: performance and quantum chemical mechanism (2019) Chemosphere, 224, pp. 509-518Chen, C., Chen, Q., Kang, J., Shen, J., Wang, B., Guo, F., Chen, Z., Hydrophilic triazine-based dendron for copper and lead adsorption in aqueous systems: performance and mechanism (2020) J Mol Liq, 298, p. 112031. , COI: 1:CAS:528:DC%2BC1MXit1artrrJCruz-Olivares, J., Pérez-Alonso, C., Barrera-Díaz, C., López, G., Balderas-Hernández, P., Inside the removal of lead(II) from aqueous solutions by De-Oiled Allspice Husk in batch and continuous processes (2010) J Hazard Mater, 181, pp. 1095-1101Dimpe, K.M., Nomngongo, P.N., A review on the efficacy of the application of myriad carbonaceous materials for the removal of toxic trace elements in the environment (2017) Trends Environ Anal Chem, 16, pp. 24-31Ding, Y., Jing, D., Gong, H., Zhou, L., Yang, X., Biosorption of aquatic cadmium(II) by unmodified rice straw (2012) Bioresour Technol, 114, pp. 20-25Fernández-López, J.A., Angosto, J.M., Roca, M.J., Doval Miñarro, M., Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke (2019) Sci Total Environ, 653, pp. 55-63Forgionny, A., Acelas, N.Y., Jimenez-orozco, C., Flórez, E., Toward the design of efficient adsorbents for Hg2+ removal: molecular and thermodynamic insights (2020) Int J Quantum Chem, 120, pp. 1-11Freundlich, H.M.F., über die adsorption in losungen (adsorption in solution) (1907) Z Phys Chem, 57, pp. 385-490. , COI: 1:CAS:528:DyaD2sXksFCkFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Cioslowskifox, D.J., (2009), Gaussian 09, Revision A.01, Gaussian, Inc, WallingfordGirish, C.R., Multicomponent adsorption and the interaction between the adsorbent and the adsorbate: a review (2018) Int J Mech Eng Technol, 9, pp. 177-188Gonzalez, J.D., Florez, E., Romero, J., Reyes, A., Restrepo, A., Microsolvation of Mg2+, Ca2+: strong influence of formal charges in hydrogen bond networks (2013) J Mol Model, 19, pp. 1763-1777Guediri, A., Bouguettoucha, A., Chebli, D., Chafai, N., Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modi fi ed phosphoric acid (2020) J Mol Struct, 1202, p. 127290. , COI: 1:CAS:528:DC%2BC1MXitV2gs7%2FKHegazi, H.A., Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents (2013) Hous Build Natl Res Cent HBRC J, 9, pp. 276-282Ho, Y.S., Chiu, W.T., Sen, H.C., Huang, C.T., Sorption of lead ions from aqueous solution using tree fern as a sorbent (2004) Hydrometallurgy, 73, pp. 55-61Hossain, M.A., Ngo, H.H., Guo, W.S., Setiadi, T., Adsorption and desorption of copper (II) ions onto garden grass (2012) Bioresour Technol, 121, pp. 386-395. , COI: 1:CAS:528:DC%2BC38XhtlShtLbJHotová, G., Slovák, V., Zelenka, T., Maršálek, R., The role of the oxygen functional groups in adsorption of copper (II) on carbon surface (2020) Sci Total Environ, 711, p. 135436Igwe, J.C., Abia, A.A., Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob (2007) Eclética Química, 32, pp. 33-42. , COI: 1:CAS:528:DC%2BD2sXotVWku78%3DIvanets, A., Kitikova, N., Shashkova, I., Matrunchik, Y., Kul’bitskaya, L., Sillanpää, M., Non-acidic synthesis of phosphatized dolomite and its sorption behaviour towards Pb 2+, Zn2+, Cu2+, Cd2+, Ni2+, Sr2+ and Co2+ ions in multicomponent aqueous solution (2016) Environ Technol Innov, 6, pp. 152-164Ivanets, A.I., Kitikova, N.V., Shashkova, I.L., Roshchina, M.Y., Srivastava, V., Sillanpää, M., Adsorption performance of hydroxyapatite with different crystalline and porous structure towards metal ions in multicomponent solution (2019) J Water Process Eng, 32, p. 100963Jones, D., Freeman, C., Sánchez-Rodrıíguez, A., Waste water treatment (2017) Encycl Appl Plant Sci, 3, pp. 352-362Joseph, L., Jun, B., Flora, J.R.V., Removal of heavy metals from water sources in the developing world using low-cost materials: a review (2019) Chemosphere, 229, pp. 142-159. , COI: 1:CAS:528:DC%2BC1MXptlOrt74%3DKamsonlian, S., Balomajumder, C., Chand, S., Suresh, S., Biosorption of Cd (II) and As (III) ions from aqueous solution by tea waste biomass (2011) Afr J Environ Sci Technol, 5, pp. 1-7. , COI: 1:CAS:528:DC%2BC3MXisFCqsrs%3DKariuki, Z., Kiptoo, J., Onyancha, D., Biosorption studies of lead and copper using rogers mushroom biomass ‘Lepiota hystrix’ (2017) S Afr J Chem Eng, 23, pp. 62-70Langmuir, I., The constitution and fundamental properties of solids and liquids (1916) Part I Solids J Am Chem Soc, 38, pp. 2221-2295Lee, M.E., Park, J.H., Chung, J.W., Comparison of the lead and copper adsorption capacities of plant source materials and their biochars (2019) J Environ Manag, 236, pp. 118-124Li, C., Ma, H., Venkateswaran, S., Hsiao, B.S., Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes / heavy metals ions (2020) Chem Eng J, 389, p. 123458Liu, X., Chen, Z.Q., Han, B., Su, C.L., Han, Q., Chen, W.Z., Biosorption of copper ions from aqueous solution using rape straw powders: optimization, equilibrium and kinetic studies (2018) Ecotoxicol Environ Saf, 150, pp. 251-259Liu, Y., Gao, Q., Pu, S., Wang, H., Xia, K., Han, B., Zhou, C., Carboxyl-functionalized lotus seedpod: a highly efficient and reusable agricultural waste-based adsorbent for removal of toxic Pb 2+ ions from aqueous solution (2019) Colloids Surfaces A Physicochem Eng Asp, 568, pp. 391-401Liu, Y., Peng, Y., An, B., Li, L., Liu, Y., Effect of molecular structure on the adsorption affinity of sulfonamides onto CNTs: batch experiments and DFT calculations (2020) Chemosphere, 246, p. 125778Ma, J., Li, T., Liu, Y., Cai, T., Wei, Y., Dong, W., Chen, H., Rice husk derived double network hydrogel as efficient adsorbent for Pb(II), Cu(II) and Cd(II) removal in individual and multicomponent systems (2019) Bioresour Technol, 290, p. 121793Martín-Lara, M.A., Blázquez, G., Calero, M., Almendros, A.I., Ronda, A., Binary biosorption of copper and lead onto pine cone shell in batch reactors and in fixed bed columns (2016) Int J Miner Process, 148, pp. 72-82Medellin-Castillo, N.A., Padilla-Ortega, E., Regules-Martínez, M.C., Leyva-Ramos, R., Ocampo-Pérez, R., Carranza-Alvarez, C., Single and competitive adsorption of Cd(II) and Pb(II) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste (2017) Sustain Environ Res, 27, pp. 61-69Mendoza-Castillo, D.I., Elizabeth-Ávila, H.E., (2017) Adsorption processes for water treatment and purication, , (eds), Springer, AmsterdamMorosanu, I., Teodosiu, C., Paduraru, C., Biosorption of lead ions from aqueous effluents by rapeseed biomass (2017) N Biotechnol A, 39, pp. 110-124. , COI: 1:CAS:528:DC%2BC28XhsVeltrrLMoyo, M., Guyo, U., Mawenyiyo, G., Zinyama, N.P., Nyamunda, B.C., Marula seed husk (Sclerocarya birrea) biomass as a low cost biosorbent for removal of Pb(II) and Cu(II) from aqueous solution (2015) J Ind Eng Chem, 27, pp. 126-132Nayara, T., De Souza, V., Maria, S., Adsorption of basic dyes onto activated carbon: experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors (2018) Appl Surf Sci, 448, pp. 662-670Ocampo-Perez, R., Padilla-Ortega, E., Medellin-Castillo, N.A., Coronado-Oyarvide, P., Aguilar-Madera, C.G., Segovia-Sandoval, S.J., Flores-Ramírez, R., Parra-Marfil, A., Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling (2019) Sci Total Environ, 655, pp. 1397-1408Özcan, A., Özcan, A.S., Tunali, S., Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum (2005) J Hazard Mater, 124, pp. 200-208Özcan, A.S., Özcan, A., Tunali, S., Akar, T., Kiran, I., Gedikbey, T., Adsorption potential of lead(II) ions from aqueous solutions onto Capsicum annuum seeds (2007) Sep Sci Technol, 42, pp. 137-151Padilla-Ortega, E., Leyva-Ramos, R., Flores-Cano, J.V., Binary adsorption of heavy metals from aqueous solution onto natural clays (2013) Chem Eng J, 225, pp. 535-546Pagnanelli, F., Esposito, A., Toro, L., Vegliò, F., Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model (2003) Water Res, 37, pp. 627-633Park, J., Sik, Y., Kim, S., Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions (2016) Chemosphere, 142, pp. 77-83. , COI: 1:CAS:528:DC%2BC2MXhtVejtr3FPehlivan, E., Altun, T., Parlayıcı, S., Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions (2009) J Hazard Mater J, 164, pp. 982-986Ramirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: kinetics, equilibrium, and density functional theory calculations (2020) J Environ Chem Eng, 8, p. 103702Riaz, M., Nadeem, R., Hanif, M.A., Ansari, T.M., Rehman, K.U., Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (Cotton) waste biomass (2009) J Hazard Mater, 161, pp. 88-94Ronda, A., Bl, G., Bachs, N.M., Copper biosorption in the presence of lead onto olive stone and pine bark in batch and continuous systems Alicia (2013) Environ Prog Sustain Energy, 33, pp. 192-204Ronda, A., Martín-Lara, M.A., Dionisio, E., Blázquez, G., Calero, M., Effect of lead in biosorption of copper by almond shell (2013) J Taiwan Inst Chem Eng, 44, pp. 466-473(2017) Planeación agrícola Nacional 2017-2030: Chiles Y Pimientos MexicanosSenthilkumar, G., Murugappan, A., Multicomponent adsorption isotherm studies on removal of multi heavy metal ions in MSW leachate using fly ash (2015) Int J Eng Res Technol, 8, pp. 58-66Shan, R., Shi, Y., Gu, J., Wang, Y., Yuan, H., Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems (2020) Chin J Chem Eng, 28, pp. 1375-1383Sheng, P.X., Ting, Y.P., Chen, J.P., Hong, L., Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms (2004) J Colloid Interface Sci, 275, pp. 131-141Taşar, Ş., Kaya, F., Özer, A., Biosorption of lead(II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies (2014) J Environ Chem Eng, 2, pp. 1018-1026(2020) Thermo Scientific XPS Simplied, , https://xpssimplified.com/periodictable.php, Thermo Scientific (n.d.), . Accessed Feb-MarchTunali Akar, S., Gorgulu, A., Akar, T., Celik, S., Decolorization of Reactive Blue 49 contaminated solutions by Capsicum annuum seeds: batch and continuous mode biosorption applications (2011) Chem Eng J, 168, pp. 125-133Uslu, G., Tanyol, M., Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature (2006) J Hazard Mater, 135, pp. 87-93Vázquez, G., Calvo, M., Sonia Freire, M., González-Alvarez, J., Antorrena, G., Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal (2009) J Hazard Mater, 172, pp. 1402-1414Verma, C., Olasunkanmi, L.O., Bahadur, I., Lgaz, H., Quraishi, M.A., Haque, J., Sherif, E.S.M., Ebenso, E.E., Experimental, density functional theory and molecular dynamics supported adsorption behavior of environmental benign imidazolium based ionic liquids on mild steel surface in acidic medium (2019) J Mol Liq, 273, pp. 1-15. , COI: 1:CAS:528:DC%2BC1cXhvVOhsbfJVieira, R.S., Lisa, M., Oliveira, M., Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism (2011) Colloids Surfaces A Physicochem Eng Asp, 374, pp. 108-114Wang, S., Vincent, T., Faur, C., Guibal, E., Modeling competitive sorption of lead and copper ions onto alginate and greenly prepared algal-based beads (2017) Bioresour Technol, 231, pp. 26-35Wang, F., Yu, J., Zhang, Z., Xu, Y., Chi, R.A., An amino-functionalized ramie stalk-based adsorbent for highly effective Cu2+ removal from water: adsorption performance and mechanism (2018) Process Saf Environ Prot, 117, pp. 511-522Wang, F., Li, J., Su, Y., Li, Q., Gao, B., Yue, Q., Zhou, W., Adsorption and recycling of Cd (II) from wastewater using straw cellulose hydrogel beads (2019) J Ind Eng Chem, 80, pp. 361-369. , COI: 1:CAS:528:DC%2BC1MXhsF2rurfFWu, S., Wang, F., Yuan, H., Fabrication of xanthate-modified chitosan/poly(N-isopropylacrylamide) composite hydrogel for the selective adsorption of Cu(II), Pb(II) and Ni(II) metal ions (2018) Chem Eng Res Des, 9, pp. 197-210Yuan, L., Yan, M., Huang, Z., He, K., Zeng, G., Chen, A., Hu, L., Chen, G., Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution (2019) J Colloid Interface Sci, 541, pp. 01-113Yuvaraja, G., Krishnaiah, N., Venkata, M., Biosorption of Pb (II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste (2014) Colloids Surf B: Biointerfaces, 114, pp. 75-81. , COI: 1:CAS:528:DC%2BC3sXitVWmsr%2FOZendelska, A., Golomeova, M., Golomeov, B., Krstev, B., Effect of competing cations (Cu, Zn, Mn, Pb) adsorbed by zeolite bearing tuff from Macedonia (2018) Nat Environ Pollut Technol, 17, pp. 21-24. , COI: 1:CAS:528:DC%2BC1cXisVOqs7vLZhan, X., Wang, L., Xu, T., The regionally dominant biomass (leaves of F. virens) selectively adsorb lead from municipal solid waste incineration fl y ash pickling wastewater (2019) Colloids Surfaces A, 577, pp. 523-531. , COI: 1:CAS:528:DC%2BC1MXhtFOhsbvOZhang, C., Wang, W., Duan, A., Zeng, G., Huang, D., Lai, C., Tan, X., Yang, Y., Adsorption behavior of engineered carbons and carbon nanomaterials for metal endocrine disruptors: experiments and theoretical calculation (2019) Chemosphere, 222, pp. 184-194Zhu, Y., Hu, J., Wang, J., Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan (2012) J Hazard Mater, 221-222, pp. 155-161Zulfiqar Ali, S., Athar, M., Salman, M., Imran Din, M., Simultaneous removal of Pb(II), Cd(II) and Cu(II) from aqueous solutions by adsorption on Triticum aestivum - a green approach (2017) Hydrol Curr Res, 2, pp. 4-11Environmental Science and Pollution ResearchAdsorptionCopperLeadMechanismMulticomponentSingleUnderstanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: a combined experimental and computational studyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Forgionny, A., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaAcelas, N.Y., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaOcampo-Pérez, R., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosi, San Luis Potosi, 78260, MexicoPadilla-Ortega, E., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosi, San Luis Potosi, 78260, MexicoLeyva-Ramos, R., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosi, San Luis Potosi, 78260, MexicoFlórez, E., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecForgionny A.Acelas N.Y.Ocampo-Pérez R.Padilla-Ortega E.Leyva-Ramos R.Flórez E.11407/5901oai:repository.udem.edu.co:11407/59012021-02-05 09:57:40.548Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co