Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles

In this study, the power of first-principles methods along with molecular dynamics and atomistic Monte Carlo simulations is employed to elucidate the effects of the structural relaxation on the exchange bias (EB) behavior of FeF2/Fe core/shell nanoparticles. The effects of the crystalline phase are...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6022
Acceso en línea:
http://hdl.handle.net/11407/6022
Palabra clave:
charge optimized many-body potential
exchange bias
FeF2/Fe core/shell nanoparticles
interface and surface structural relaxation
Monte Carlo
multiscaling methodology
Cooling systems
Molecular dynamics
Monte Carlo methods
Structural relaxation
Body-centered cubic
Core/shell nanoparticles
Crystalline phase
Experimental system
Face-centered cubic
First principles method
Hysteresis behavior
Nanoparticle systems
Nanoparticles
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_436aed105c4850af3c8bfffe441b3738
oai_identifier_str oai:repository.udem.edu.co:11407/6022
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles
title Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles
spellingShingle Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles
charge optimized many-body potential
exchange bias
FeF2/Fe core/shell nanoparticles
interface and surface structural relaxation
Monte Carlo
multiscaling methodology
Cooling systems
Molecular dynamics
Monte Carlo methods
Structural relaxation
Body-centered cubic
Core/shell nanoparticles
Crystalline phase
Experimental system
Face-centered cubic
First principles method
Hysteresis behavior
Nanoparticle systems
Nanoparticles
title_short Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles
title_full Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles
title_fullStr Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles
title_full_unstemmed Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles
title_sort Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles
dc.subject.spa.fl_str_mv charge optimized many-body potential
exchange bias
FeF2/Fe core/shell nanoparticles
interface and surface structural relaxation
Monte Carlo
multiscaling methodology
topic charge optimized many-body potential
exchange bias
FeF2/Fe core/shell nanoparticles
interface and surface structural relaxation
Monte Carlo
multiscaling methodology
Cooling systems
Molecular dynamics
Monte Carlo methods
Structural relaxation
Body-centered cubic
Core/shell nanoparticles
Crystalline phase
Experimental system
Face-centered cubic
First principles method
Hysteresis behavior
Nanoparticle systems
Nanoparticles
dc.subject.keyword.eng.fl_str_mv Cooling systems
Molecular dynamics
Monte Carlo methods
Structural relaxation
Body-centered cubic
Core/shell nanoparticles
Crystalline phase
Experimental system
Face-centered cubic
First principles method
Hysteresis behavior
Nanoparticle systems
Nanoparticles
description In this study, the power of first-principles methods along with molecular dynamics and atomistic Monte Carlo simulations is employed to elucidate the effects of the structural relaxation on the exchange bias (EB) behavior of FeF2/Fe core/shell nanoparticles. The effects of the crystalline phase are also explored by studying the EB features on the related nanoparticles modeled through simple cubic, body centered cubic, and face centered cubic systems. The results indicate that effects of both structural relaxation and crystalline phase on the EB phenomenon are crucial. Noticeable differences are found in the quantitative and qualitative results, as well as in conclusions from studies which, for the sake of simplicity, have used simple cubic crystalline structures for modeling the sample of study instead of its own crystalline model. To compare these results with experimental systems, hysteresis behaviors under field cooling procedures and for a sample made up by a particle diameter distribution D = 4.3 ± 0.7 nm, which is easily affordable at present, are presented. In that sense, this study raises a warning about the conclusions derived from previous works, and offers a suggestion to pay close attention to both the crystalline model and the structural relaxation of the nanoparticle systems exhibiting EB effects. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:48Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:48Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 21967350
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6022
dc.identifier.doi.none.fl_str_mv 10.1002/admi.202000862
identifier_str_mv 21967350
10.1002/admi.202000862
url http://hdl.handle.net/11407/6022
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087915466&doi=10.1002%2fadmi.202000862&partnerID=40&md5=9430f18b65e6dd4d7e1036e1185cc836
dc.relation.references.none.fl_str_mv Meiklejohn, W.H., Bean, C.P., (1956) Phys. Rev., 102, p. 1413
Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., Mauri, D., (1991) Phys. Rev. B, 43, p. 1297
Sort, J., Nogués, J., Amils, X., Suriñach, S., Muñoz, J.S., Baró, M.D., (1999) Appl. Phys. Lett., 75, p. 3177
Nogués, J., Schuller, I.K., (1999) J. Magn. Magn. Mater., 192, p. 203
Berkowitz, A.E., Takano, K., (1999) J. Magn. Magn. Mater., 200, p. 552
Stamps, R.L., (2000) J. Phys. D: Appl. Phys., 33, p. R247
Kiwi, M., (2001) J. Magn. Magn. Mater., 234, p. 584
Sort, J., Nogués, J., Suriñach, S., Muñoz, J.S., Baró, M.D., Chappel, E., Dupont, F., Chouteau, G., (2001) Appl. Phys. Lett., 79, p. 1142
Sort, J., Suriñach, S., Muñoz, J.S., Baró, M.D., Nogués, J., Chouteau, G., Skumryev, V., Hadjipanayis, G., (2002) Phys. Rev. B, 65
Stoyanov, S., Skumryev, V., Zhang, Y., Huang, Y., Hadjipanayis, G.C., Nogués, J., (2003) J. Appl. Phys., 93, p. 7592
Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., Nogués, J., (2003) Nature, 423, p. 850
Sort, J., Langlais, V., Doppiu, S., Dieny, B., Suriñach, S., Muñoz, J.S., Baró, M.D., Nogués, J., (2004) Nanotechnology, 15, p. S211
López-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A.G., Nogués, J., (2015) Phys. Rep., 553, p. 1
Nogués, J., Sort, J., Langlais, V., Skumryev, V., Suriñach, S., Muñoz, J.S., Baró, M.D., (2005) Phys. Rep., 422, p. 65
Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Baumgart, P., Wilhoit, D.R., (1991) J. Appl. Phys., 69, p. 4774
Liu, X.S., Gu, B.X., Zhong, W., Jiang, H.Y., Du, Y.W., (2003) Appl. Phys. A, 77, p. 673
Groza, I., Morel, R., Brenac, A., Beigne, C., Notin, L., (2011) IEEE Trans. Magn., 47, p. 3355
Barbic, M., Scherer, A., (2005) Sol. State Nucl. Magn. Res., 28, p. 91
Jeon, S.L., Chae, M.K., Jang, E.J., Lee, C., (2013) Chem. Eur. J., 19, p. 4217
Schneider, V., Reinholdt, A., Kreibig, U., Weirich, T., Güntherodt, G., Beschoten, B., Tillmanns, A., Granitzer, P., (2006) Z. Phys. Chem., 220, p. 173
Vasilakaki, M., Trohidou, K.N., Nogués, J., (2015) Sci. Rep., 5, p. 9609
Nogués, J., Skumryev, V., Sort, J., Givord, D., (2006) Phys. Rev. Lett., 97
Margaris, G., Trohidou, K.N., Nogués, J., (2012) Adv. Mater., 24, p. 4331
Salazar-Alvarez, G., Sort, J., Suriñach, S., Baró, M.D., Nogués, J., (2007) J. Am. Chem. Soc., 129, p. 9102
Golosovsky, I.V., Salazar-Alvarez, G., López-Ortega, A., González, M.A., Sort, J., Estrader, M., Suriñach, S., Nogués, J., (2009) Phys. Rev. Lett., 102
López-Ortega, A., Tobia, D., Winkler, E., Golosovsky, I.V., Salazar-Alvarez, G., Estradé, S., Estrader, M., Nogués, J., (2010) J. Am. Chem. Soc., 132, p. 9398
Khurshid, H., Li, W., Chandra, S., Phan, M.-H., Hadjipanayis, G.C., Mukherjee, P., Srikanth, H., (2013) Nanoscale, 5, p. 7942
Lak, A., Kraken, M., Ludwig, F., Kornowski, A., Eberbeck, D., Sievers, S., Litterst, F.J., Schilling, M., (2013) Nanoscale, 5
Bodnarchuk, M.I., Kovalenko, M.V., Groiss, H., Resel, R., Reissner, M., Hesser, G., Lechner, R.T., Heiss, W., (2009) Small, 5, p. 2247
Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K., Hyeon, T., Agarwal, N., Smith, D.J., Fullerton, E.E., (2008) Phys. Rev. B, 77
Kavich, D.W., Dickerson, J.H., Mahajan, S.V., Hasan, S.A., Park, J.H., (2008) Phys. Rev. B, 78
Troitinño, N.F., Rivas-Murias, B., Rodríguez-González, B., Salgueiriño, V., (2014) Chem. Mater., 26, p. 5566
Liu, C., Cui, J., He, X., Shi, H., (2014) J. Nanopart. Res., 16, p. 2320
Wu, R., Ding, S., Lai, Y., Tian, G., Yang, J., (2018) Phys. Rev. B, 97
Hu, Y., Du, A., (2011) J. Appl. Phys., 110
de Julián Fernández, C., (2005) Phys. Rev. B, 72
Hellman, F., Hoffmann, A., Tserkovnyak, Y., Beach, G.S.D., Fullerton, E.E., Leighton, C., MacDonald, A.H., Zink, B.L., (2017) Rev. Mod. Phys., 89
Mejía-López, J., Soto, P., Altbir, D., (2005) Phys. Rev. B, 71
Wu, M.H., Li, Q.C., Liu, J.-M., (2007) J. Phys.: Condens. Matter, 19
Luo, A., Ma, F., Hu, Y., (2016) J. Magn. Mag. Mat., 413, p. 108
Eftaxias, E., Trohidou, K.N., (2005) Phys. Rev. B, 71
Iglesias, Ó., Batlle, X., Labarta, A., (2005) Phys. Rev. B, 72
Vasilakaki, M., Trohidou, K.N., (2009) Phys. Rev. B, 79
Dimitriadis, V., Kechrakos, D., Chubykalo-Fesenko, O., Tsiantos, V., (2015) Phys. Rev. B, 92
Sabogal-Suárez, D., Alzate-Cardona, J.D., Restrepo-Parra, E., (2019) J. Magn. Mag. Mat., 482, p. 120
Iglesias, O., Batlle, X., Labarta, A., (2007) J. Phys.: Condens. Matter, 19
Zaim, A., Kerouad, M., (2010) Phys. A Stat. Mech. Appl., 389, p. 3435
Nehme, Z., Labaye, Y., Yaacoub, N., Greneche, J.M., (2019) J. Nanopart. Res., 21, p. 209
Momma, K., Izumi, F., (2011) J. Appl. Cryst., 44, p. 1272
Yosida, K., (1996) Theory of Magnetism, Springer Series in Solid-State Sciences, 122. , . Springer, Berlin
Tranchida, J., Plimpton, S.J., Thibaudeau, P., Thompson, A.P., (2018) J. Comp. Phys., 372, p. 406
Hohenberg, P., Kohn, W., (1964) Phys. Rev., 136, p. B864
Kohn, W., Sham, L.J., (1965) Phys. Rev., 140
Kresse, G., Hafner, J., (1993) Phys. Rev. B, 47, p. 558R
Kresse, G., Hafner, J., (1993) Phys. Rev. B, 48
Kresse, G., Hafner, J., (1994) Phys. Rev. B, 49
Kresse, G., Furthmüller, J., (1996) Comput. Mat. Sci., 6, p. 15
Kresse, G., Furthmüller, J., (1996) Phys. Rev. B, 54
López-Moreno, S., Romero, A.H., Mejía-López, J., Muñoz, A., Roshchin, I.V., (2012) Phys. Rev. B, 85
Ebert, H., Ködderitzsch, D., (2011) J. Minár. Rep. Prog. Phys., 74
Krycka, K.L., Borchers, J.A., Laver, M., Salazar-Alvarez, G., López-Ortega, A., Estrader, M., Suriãch, S., Nogués, J., (2013) J. Appl. Phys., 113
Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K., Hyeon, T., Agarwal, N., Smith, D.J., Fullerton, E.E., (2008) J. Phys. D: Appl. Phys., 41
Wetterskog, E., Tai, C.W., Grins, J., Bergström, L., Salazar-Alvarez, G., (2013) ACS Nano, 7, p. 7132
Khurshid, H., Chandra, S., Li, W., Phan, M.H., Hadjipanayis, G.C., Mukherjee, P., Srikanth, H., (2013) J. Appl. Phys., 113
Winkler, E.L., Lima, E., Tobia, J.D., Saleta, M.E., Troiani, H.E., Agostinelli, E., Fiorani, D., Zysler, R.D., (2012) Appl. Phys. Lett., 101
Lavorato, G.C., Lima, E., Tobia, J.D., Fiorani, D., Troiani, H.E., Zysler, R.D., Winkler, E.L., (2014) Nanotechnol., 25
Liu, C., Cui, J., He, X., Shi, H., (2014) J. Nanopart. Res., 16, p. 2320
Si, P.Z., Wang, H.X., Jiang, W., Lee, J.G., Choi, C.J., Liu, J.J., (2011) Thin Solid Films, 519, p. 8423
Jin, C.H., Si, P.Z., Xiao, X.F., Feng, H., Wu, Q., Ge, H.L., Zhong, M., (2013) Mater. Lett., 92, p. 213
Nogués, J., Leighton, C., Schuller, I.K., (2000) Phys. Rev. B, 61, p. 1315
Kiwi, M., Mejia-Lopez, J., Portugal, R.D., Ramirez, R., (2000) Solid State Commun., 116, p. 315
Arenholz, E., Liu, K., Li, Z., Schuller, I.K., (2006) Appl. Phys. Lett., 88
Fitzsimmons, M.R., Roy, S., Kirby, B.J., Park, S., Roshchin, I.V., Li, Z.-P., Kortright, J.B., Schuller, I.K., (2007) Superlatt. Microstruct., 41, p. 109
Kiwi, M., Mejía-López, J., Portugal, R.D., Ramírez, R., (1999) EPL, 48, p. 573
Panda, N.R., Pati, S.P., Das, D., (2019) Appl. Surf. Sci., 491, p. 313
García-Fernández, P., Wojdel, J.C., Íñiguez, J., Junquera, J., (2016) Phys. Rev. B, 93
Escorihuela-Sayalero, C., Wojdel, J.C., Íñiguez, J., (2017) Phys. Rev. B, 95
Lederman, D., Ramírez, R., Kiwi, M., (2004) Phys. Rev. B, 70
Koon, N.C., (1997) Phys. Rev. Lett., 78, p. 4865
Ohldag, H., Shi, H., Arenholz, E., Stöhr, J., Lederman, D., (2006) Phys. Rev. Lett., 96
Nogués, J., Lederman, D., Moran, T.J., Schuller, I.K., (1996) Phys. Rev. Lett., 76, p. 4624
Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865
Blöchl, P.E., (1994) Phys. Rev. B, 50
Kresse, G., Joubert, D., (1999) Phys. Rev. B, 59, p. 1758
Plimpton, S., (1995) J. Comput. Phys., 117, p. 1
Liang, T., Devine, B., Phillpot, S.R., Sinnott, S.B., (2012) J. Phys. Chem. A, 116, p. 7976
Liang, T., Shan, T.-R., Cheng, Y.-T., Devine, B.D., Noordhoek, M., Li, Y., Lu, Z., Sinnott, S.B., (2013) Mater. Sci. Eng. R-Rep., 74, p. 255
Tersoff, J., (1988) Phys. Rev. B., 37, p. 6991
Yasukawa, A., (1996) JSME Int. J. Ser. A, Mech. Mater. Eng., 39, p. 313
Tangarife, E., Romero, A.H., Mejía-López, J., (2019) Phys. Chem. Chem. Phys., 21
Streitz, F.H., Mintmire, J.W., (1994) Phys. Rev. B., 50
Hoover, W.G., (1985) Phys. Rev. A, 31, p. 1695
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Wiley-VCH Verlag
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Wiley-VCH Verlag
dc.source.none.fl_str_mv Advanced Materials Interfaces
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159124137508864
spelling 20202021-02-05T14:58:48Z2021-02-05T14:58:48Z21967350http://hdl.handle.net/11407/602210.1002/admi.202000862In this study, the power of first-principles methods along with molecular dynamics and atomistic Monte Carlo simulations is employed to elucidate the effects of the structural relaxation on the exchange bias (EB) behavior of FeF2/Fe core/shell nanoparticles. The effects of the crystalline phase are also explored by studying the EB features on the related nanoparticles modeled through simple cubic, body centered cubic, and face centered cubic systems. The results indicate that effects of both structural relaxation and crystalline phase on the EB phenomenon are crucial. Noticeable differences are found in the quantitative and qualitative results, as well as in conclusions from studies which, for the sake of simplicity, have used simple cubic crystalline structures for modeling the sample of study instead of its own crystalline model. To compare these results with experimental systems, hysteresis behaviors under field cooling procedures and for a sample made up by a particle diameter distribution D = 4.3 ± 0.7 nm, which is easily affordable at present, are presented. In that sense, this study raises a warning about the conclusions derived from previous works, and offers a suggestion to pay close attention to both the crystalline model and the structural relaxation of the nanoparticle systems exhibiting EB effects. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimengWiley-VCH VerlagFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087915466&doi=10.1002%2fadmi.202000862&partnerID=40&md5=9430f18b65e6dd4d7e1036e1185cc836Meiklejohn, W.H., Bean, C.P., (1956) Phys. Rev., 102, p. 1413Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., Mauri, D., (1991) Phys. Rev. B, 43, p. 1297Sort, J., Nogués, J., Amils, X., Suriñach, S., Muñoz, J.S., Baró, M.D., (1999) Appl. Phys. Lett., 75, p. 3177Nogués, J., Schuller, I.K., (1999) J. Magn. Magn. Mater., 192, p. 203Berkowitz, A.E., Takano, K., (1999) J. Magn. Magn. Mater., 200, p. 552Stamps, R.L., (2000) J. Phys. D: Appl. Phys., 33, p. R247Kiwi, M., (2001) J. Magn. Magn. Mater., 234, p. 584Sort, J., Nogués, J., Suriñach, S., Muñoz, J.S., Baró, M.D., Chappel, E., Dupont, F., Chouteau, G., (2001) Appl. Phys. Lett., 79, p. 1142Sort, J., Suriñach, S., Muñoz, J.S., Baró, M.D., Nogués, J., Chouteau, G., Skumryev, V., Hadjipanayis, G., (2002) Phys. Rev. B, 65Stoyanov, S., Skumryev, V., Zhang, Y., Huang, Y., Hadjipanayis, G.C., Nogués, J., (2003) J. Appl. Phys., 93, p. 7592Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., Nogués, J., (2003) Nature, 423, p. 850Sort, J., Langlais, V., Doppiu, S., Dieny, B., Suriñach, S., Muñoz, J.S., Baró, M.D., Nogués, J., (2004) Nanotechnology, 15, p. S211López-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A.G., Nogués, J., (2015) Phys. Rep., 553, p. 1Nogués, J., Sort, J., Langlais, V., Skumryev, V., Suriñach, S., Muñoz, J.S., Baró, M.D., (2005) Phys. Rep., 422, p. 65Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Baumgart, P., Wilhoit, D.R., (1991) J. Appl. Phys., 69, p. 4774Liu, X.S., Gu, B.X., Zhong, W., Jiang, H.Y., Du, Y.W., (2003) Appl. Phys. A, 77, p. 673Groza, I., Morel, R., Brenac, A., Beigne, C., Notin, L., (2011) IEEE Trans. Magn., 47, p. 3355Barbic, M., Scherer, A., (2005) Sol. State Nucl. Magn. Res., 28, p. 91Jeon, S.L., Chae, M.K., Jang, E.J., Lee, C., (2013) Chem. Eur. J., 19, p. 4217Schneider, V., Reinholdt, A., Kreibig, U., Weirich, T., Güntherodt, G., Beschoten, B., Tillmanns, A., Granitzer, P., (2006) Z. Phys. Chem., 220, p. 173Vasilakaki, M., Trohidou, K.N., Nogués, J., (2015) Sci. Rep., 5, p. 9609Nogués, J., Skumryev, V., Sort, J., Givord, D., (2006) Phys. Rev. Lett., 97Margaris, G., Trohidou, K.N., Nogués, J., (2012) Adv. Mater., 24, p. 4331Salazar-Alvarez, G., Sort, J., Suriñach, S., Baró, M.D., Nogués, J., (2007) J. Am. Chem. Soc., 129, p. 9102Golosovsky, I.V., Salazar-Alvarez, G., López-Ortega, A., González, M.A., Sort, J., Estrader, M., Suriñach, S., Nogués, J., (2009) Phys. Rev. Lett., 102López-Ortega, A., Tobia, D., Winkler, E., Golosovsky, I.V., Salazar-Alvarez, G., Estradé, S., Estrader, M., Nogués, J., (2010) J. Am. Chem. Soc., 132, p. 9398Khurshid, H., Li, W., Chandra, S., Phan, M.-H., Hadjipanayis, G.C., Mukherjee, P., Srikanth, H., (2013) Nanoscale, 5, p. 7942Lak, A., Kraken, M., Ludwig, F., Kornowski, A., Eberbeck, D., Sievers, S., Litterst, F.J., Schilling, M., (2013) Nanoscale, 5Bodnarchuk, M.I., Kovalenko, M.V., Groiss, H., Resel, R., Reissner, M., Hesser, G., Lechner, R.T., Heiss, W., (2009) Small, 5, p. 2247Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K., Hyeon, T., Agarwal, N., Smith, D.J., Fullerton, E.E., (2008) Phys. Rev. B, 77Kavich, D.W., Dickerson, J.H., Mahajan, S.V., Hasan, S.A., Park, J.H., (2008) Phys. Rev. B, 78Troitinño, N.F., Rivas-Murias, B., Rodríguez-González, B., Salgueiriño, V., (2014) Chem. Mater., 26, p. 5566Liu, C., Cui, J., He, X., Shi, H., (2014) J. Nanopart. Res., 16, p. 2320Wu, R., Ding, S., Lai, Y., Tian, G., Yang, J., (2018) Phys. Rev. B, 97Hu, Y., Du, A., (2011) J. Appl. Phys., 110de Julián Fernández, C., (2005) Phys. Rev. B, 72Hellman, F., Hoffmann, A., Tserkovnyak, Y., Beach, G.S.D., Fullerton, E.E., Leighton, C., MacDonald, A.H., Zink, B.L., (2017) Rev. Mod. Phys., 89Mejía-López, J., Soto, P., Altbir, D., (2005) Phys. Rev. B, 71Wu, M.H., Li, Q.C., Liu, J.-M., (2007) J. Phys.: Condens. Matter, 19Luo, A., Ma, F., Hu, Y., (2016) J. Magn. Mag. Mat., 413, p. 108Eftaxias, E., Trohidou, K.N., (2005) Phys. Rev. B, 71Iglesias, Ó., Batlle, X., Labarta, A., (2005) Phys. Rev. B, 72Vasilakaki, M., Trohidou, K.N., (2009) Phys. Rev. B, 79Dimitriadis, V., Kechrakos, D., Chubykalo-Fesenko, O., Tsiantos, V., (2015) Phys. Rev. B, 92Sabogal-Suárez, D., Alzate-Cardona, J.D., Restrepo-Parra, E., (2019) J. Magn. Mag. Mat., 482, p. 120Iglesias, O., Batlle, X., Labarta, A., (2007) J. Phys.: Condens. Matter, 19Zaim, A., Kerouad, M., (2010) Phys. A Stat. Mech. Appl., 389, p. 3435Nehme, Z., Labaye, Y., Yaacoub, N., Greneche, J.M., (2019) J. Nanopart. Res., 21, p. 209Momma, K., Izumi, F., (2011) J. Appl. Cryst., 44, p. 1272Yosida, K., (1996) Theory of Magnetism, Springer Series in Solid-State Sciences, 122. , . Springer, BerlinTranchida, J., Plimpton, S.J., Thibaudeau, P., Thompson, A.P., (2018) J. Comp. Phys., 372, p. 406Hohenberg, P., Kohn, W., (1964) Phys. Rev., 136, p. B864Kohn, W., Sham, L.J., (1965) Phys. Rev., 140Kresse, G., Hafner, J., (1993) Phys. Rev. B, 47, p. 558RKresse, G., Hafner, J., (1993) Phys. Rev. B, 48Kresse, G., Hafner, J., (1994) Phys. Rev. B, 49Kresse, G., Furthmüller, J., (1996) Comput. Mat. Sci., 6, p. 15Kresse, G., Furthmüller, J., (1996) Phys. Rev. B, 54López-Moreno, S., Romero, A.H., Mejía-López, J., Muñoz, A., Roshchin, I.V., (2012) Phys. Rev. B, 85Ebert, H., Ködderitzsch, D., (2011) J. Minár. Rep. Prog. Phys., 74Krycka, K.L., Borchers, J.A., Laver, M., Salazar-Alvarez, G., López-Ortega, A., Estrader, M., Suriãch, S., Nogués, J., (2013) J. Appl. Phys., 113Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K., Hyeon, T., Agarwal, N., Smith, D.J., Fullerton, E.E., (2008) J. Phys. D: Appl. Phys., 41Wetterskog, E., Tai, C.W., Grins, J., Bergström, L., Salazar-Alvarez, G., (2013) ACS Nano, 7, p. 7132Khurshid, H., Chandra, S., Li, W., Phan, M.H., Hadjipanayis, G.C., Mukherjee, P., Srikanth, H., (2013) J. Appl. Phys., 113Winkler, E.L., Lima, E., Tobia, J.D., Saleta, M.E., Troiani, H.E., Agostinelli, E., Fiorani, D., Zysler, R.D., (2012) Appl. Phys. Lett., 101Lavorato, G.C., Lima, E., Tobia, J.D., Fiorani, D., Troiani, H.E., Zysler, R.D., Winkler, E.L., (2014) Nanotechnol., 25Liu, C., Cui, J., He, X., Shi, H., (2014) J. Nanopart. Res., 16, p. 2320Si, P.Z., Wang, H.X., Jiang, W., Lee, J.G., Choi, C.J., Liu, J.J., (2011) Thin Solid Films, 519, p. 8423Jin, C.H., Si, P.Z., Xiao, X.F., Feng, H., Wu, Q., Ge, H.L., Zhong, M., (2013) Mater. Lett., 92, p. 213Nogués, J., Leighton, C., Schuller, I.K., (2000) Phys. Rev. B, 61, p. 1315Kiwi, M., Mejia-Lopez, J., Portugal, R.D., Ramirez, R., (2000) Solid State Commun., 116, p. 315Arenholz, E., Liu, K., Li, Z., Schuller, I.K., (2006) Appl. Phys. Lett., 88Fitzsimmons, M.R., Roy, S., Kirby, B.J., Park, S., Roshchin, I.V., Li, Z.-P., Kortright, J.B., Schuller, I.K., (2007) Superlatt. Microstruct., 41, p. 109Kiwi, M., Mejía-López, J., Portugal, R.D., Ramírez, R., (1999) EPL, 48, p. 573Panda, N.R., Pati, S.P., Das, D., (2019) Appl. Surf. Sci., 491, p. 313García-Fernández, P., Wojdel, J.C., Íñiguez, J., Junquera, J., (2016) Phys. Rev. B, 93Escorihuela-Sayalero, C., Wojdel, J.C., Íñiguez, J., (2017) Phys. Rev. B, 95Lederman, D., Ramírez, R., Kiwi, M., (2004) Phys. Rev. B, 70Koon, N.C., (1997) Phys. Rev. Lett., 78, p. 4865Ohldag, H., Shi, H., Arenholz, E., Stöhr, J., Lederman, D., (2006) Phys. Rev. Lett., 96Nogués, J., Lederman, D., Moran, T.J., Schuller, I.K., (1996) Phys. Rev. Lett., 76, p. 4624Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865Blöchl, P.E., (1994) Phys. Rev. B, 50Kresse, G., Joubert, D., (1999) Phys. Rev. B, 59, p. 1758Plimpton, S., (1995) J. Comput. Phys., 117, p. 1Liang, T., Devine, B., Phillpot, S.R., Sinnott, S.B., (2012) J. Phys. Chem. A, 116, p. 7976Liang, T., Shan, T.-R., Cheng, Y.-T., Devine, B.D., Noordhoek, M., Li, Y., Lu, Z., Sinnott, S.B., (2013) Mater. Sci. Eng. R-Rep., 74, p. 255Tersoff, J., (1988) Phys. Rev. B., 37, p. 6991Yasukawa, A., (1996) JSME Int. J. Ser. A, Mech. Mater. Eng., 39, p. 313Tangarife, E., Romero, A.H., Mejía-López, J., (2019) Phys. Chem. Chem. Phys., 21Streitz, F.H., Mintmire, J.W., (1994) Phys. Rev. B., 50Hoover, W.G., (1985) Phys. Rev. A, 31, p. 1695Advanced Materials Interfacescharge optimized many-body potentialexchange biasFeF2/Fe core/shell nanoparticlesinterface and surface structural relaxationMonte Carlomultiscaling methodologyCooling systemsMolecular dynamicsMonte Carlo methodsStructural relaxationBody-centered cubicCore/shell nanoparticlesCrystalline phaseExperimental systemFace-centered cubicFirst principles methodHysteresis behaviorNanoparticle systemsNanoparticlesStructural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell NanoparticlesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Velásquez, E.A., Grupo Matbiom, Facultad de Ciencias Básicas, Universidad de Medellín, Cra. 87 30-65, Medellín, ColombiaMazo-Zuluaga, J., Grupo de Instrumentación Científica y Microelectrónica, Grupo de Estado Sólido, IF-FCEN, Universidad de Antioquia UdeA, Cl. 70 52-21, Medellín, ColombiaTangarife, E., Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, San Pio X 2422, Santiago, ChileMejía-López, J., Facultad de Física, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, CEDENNA, Av. Vicuña Mackenna 4860, Santiago, Chilehttp://purl.org/coar/access_right/c_16ecVelásquez E.A.Mazo-Zuluaga J.Tangarife E.Mejía-López J.11407/6022oai:repository.udem.edu.co:11407/60222021-02-05 09:58:48.856Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co