Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles
In this study, the power of first-principles methods along with molecular dynamics and atomistic Monte Carlo simulations is employed to elucidate the effects of the structural relaxation on the exchange bias (EB) behavior of FeF2/Fe core/shell nanoparticles. The effects of the crystalline phase are...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6022
- Acceso en línea:
- http://hdl.handle.net/11407/6022
- Palabra clave:
- charge optimized many-body potential
exchange bias
FeF2/Fe core/shell nanoparticles
interface and surface structural relaxation
Monte Carlo
multiscaling methodology
Cooling systems
Molecular dynamics
Monte Carlo methods
Structural relaxation
Body-centered cubic
Core/shell nanoparticles
Crystalline phase
Experimental system
Face-centered cubic
First principles method
Hysteresis behavior
Nanoparticle systems
Nanoparticles
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_436aed105c4850af3c8bfffe441b3738 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6022 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles |
title |
Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles |
spellingShingle |
Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles charge optimized many-body potential exchange bias FeF2/Fe core/shell nanoparticles interface and surface structural relaxation Monte Carlo multiscaling methodology Cooling systems Molecular dynamics Monte Carlo methods Structural relaxation Body-centered cubic Core/shell nanoparticles Crystalline phase Experimental system Face-centered cubic First principles method Hysteresis behavior Nanoparticle systems Nanoparticles |
title_short |
Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles |
title_full |
Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles |
title_fullStr |
Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles |
title_full_unstemmed |
Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles |
title_sort |
Structural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell Nanoparticles |
dc.subject.spa.fl_str_mv |
charge optimized many-body potential exchange bias FeF2/Fe core/shell nanoparticles interface and surface structural relaxation Monte Carlo multiscaling methodology |
topic |
charge optimized many-body potential exchange bias FeF2/Fe core/shell nanoparticles interface and surface structural relaxation Monte Carlo multiscaling methodology Cooling systems Molecular dynamics Monte Carlo methods Structural relaxation Body-centered cubic Core/shell nanoparticles Crystalline phase Experimental system Face-centered cubic First principles method Hysteresis behavior Nanoparticle systems Nanoparticles |
dc.subject.keyword.eng.fl_str_mv |
Cooling systems Molecular dynamics Monte Carlo methods Structural relaxation Body-centered cubic Core/shell nanoparticles Crystalline phase Experimental system Face-centered cubic First principles method Hysteresis behavior Nanoparticle systems Nanoparticles |
description |
In this study, the power of first-principles methods along with molecular dynamics and atomistic Monte Carlo simulations is employed to elucidate the effects of the structural relaxation on the exchange bias (EB) behavior of FeF2/Fe core/shell nanoparticles. The effects of the crystalline phase are also explored by studying the EB features on the related nanoparticles modeled through simple cubic, body centered cubic, and face centered cubic systems. The results indicate that effects of both structural relaxation and crystalline phase on the EB phenomenon are crucial. Noticeable differences are found in the quantitative and qualitative results, as well as in conclusions from studies which, for the sake of simplicity, have used simple cubic crystalline structures for modeling the sample of study instead of its own crystalline model. To compare these results with experimental systems, hysteresis behaviors under field cooling procedures and for a sample made up by a particle diameter distribution D = 4.3 ± 0.7 nm, which is easily affordable at present, are presented. In that sense, this study raises a warning about the conclusions derived from previous works, and offers a suggestion to pay close attention to both the crystalline model and the structural relaxation of the nanoparticle systems exhibiting EB effects. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:48Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:48Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
21967350 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6022 |
dc.identifier.doi.none.fl_str_mv |
10.1002/admi.202000862 |
identifier_str_mv |
21967350 10.1002/admi.202000862 |
url |
http://hdl.handle.net/11407/6022 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087915466&doi=10.1002%2fadmi.202000862&partnerID=40&md5=9430f18b65e6dd4d7e1036e1185cc836 |
dc.relation.references.none.fl_str_mv |
Meiklejohn, W.H., Bean, C.P., (1956) Phys. Rev., 102, p. 1413 Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., Mauri, D., (1991) Phys. Rev. B, 43, p. 1297 Sort, J., Nogués, J., Amils, X., Suriñach, S., Muñoz, J.S., Baró, M.D., (1999) Appl. Phys. Lett., 75, p. 3177 Nogués, J., Schuller, I.K., (1999) J. Magn. Magn. Mater., 192, p. 203 Berkowitz, A.E., Takano, K., (1999) J. Magn. Magn. Mater., 200, p. 552 Stamps, R.L., (2000) J. Phys. D: Appl. Phys., 33, p. R247 Kiwi, M., (2001) J. Magn. Magn. Mater., 234, p. 584 Sort, J., Nogués, J., Suriñach, S., Muñoz, J.S., Baró, M.D., Chappel, E., Dupont, F., Chouteau, G., (2001) Appl. Phys. Lett., 79, p. 1142 Sort, J., Suriñach, S., Muñoz, J.S., Baró, M.D., Nogués, J., Chouteau, G., Skumryev, V., Hadjipanayis, G., (2002) Phys. Rev. B, 65 Stoyanov, S., Skumryev, V., Zhang, Y., Huang, Y., Hadjipanayis, G.C., Nogués, J., (2003) J. Appl. Phys., 93, p. 7592 Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., Nogués, J., (2003) Nature, 423, p. 850 Sort, J., Langlais, V., Doppiu, S., Dieny, B., Suriñach, S., Muñoz, J.S., Baró, M.D., Nogués, J., (2004) Nanotechnology, 15, p. S211 López-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A.G., Nogués, J., (2015) Phys. Rep., 553, p. 1 Nogués, J., Sort, J., Langlais, V., Skumryev, V., Suriñach, S., Muñoz, J.S., Baró, M.D., (2005) Phys. Rep., 422, p. 65 Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Baumgart, P., Wilhoit, D.R., (1991) J. Appl. Phys., 69, p. 4774 Liu, X.S., Gu, B.X., Zhong, W., Jiang, H.Y., Du, Y.W., (2003) Appl. Phys. A, 77, p. 673 Groza, I., Morel, R., Brenac, A., Beigne, C., Notin, L., (2011) IEEE Trans. Magn., 47, p. 3355 Barbic, M., Scherer, A., (2005) Sol. State Nucl. Magn. Res., 28, p. 91 Jeon, S.L., Chae, M.K., Jang, E.J., Lee, C., (2013) Chem. Eur. J., 19, p. 4217 Schneider, V., Reinholdt, A., Kreibig, U., Weirich, T., Güntherodt, G., Beschoten, B., Tillmanns, A., Granitzer, P., (2006) Z. Phys. Chem., 220, p. 173 Vasilakaki, M., Trohidou, K.N., Nogués, J., (2015) Sci. Rep., 5, p. 9609 Nogués, J., Skumryev, V., Sort, J., Givord, D., (2006) Phys. Rev. Lett., 97 Margaris, G., Trohidou, K.N., Nogués, J., (2012) Adv. Mater., 24, p. 4331 Salazar-Alvarez, G., Sort, J., Suriñach, S., Baró, M.D., Nogués, J., (2007) J. Am. Chem. Soc., 129, p. 9102 Golosovsky, I.V., Salazar-Alvarez, G., López-Ortega, A., González, M.A., Sort, J., Estrader, M., Suriñach, S., Nogués, J., (2009) Phys. Rev. Lett., 102 López-Ortega, A., Tobia, D., Winkler, E., Golosovsky, I.V., Salazar-Alvarez, G., Estradé, S., Estrader, M., Nogués, J., (2010) J. Am. Chem. Soc., 132, p. 9398 Khurshid, H., Li, W., Chandra, S., Phan, M.-H., Hadjipanayis, G.C., Mukherjee, P., Srikanth, H., (2013) Nanoscale, 5, p. 7942 Lak, A., Kraken, M., Ludwig, F., Kornowski, A., Eberbeck, D., Sievers, S., Litterst, F.J., Schilling, M., (2013) Nanoscale, 5 Bodnarchuk, M.I., Kovalenko, M.V., Groiss, H., Resel, R., Reissner, M., Hesser, G., Lechner, R.T., Heiss, W., (2009) Small, 5, p. 2247 Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K., Hyeon, T., Agarwal, N., Smith, D.J., Fullerton, E.E., (2008) Phys. Rev. B, 77 Kavich, D.W., Dickerson, J.H., Mahajan, S.V., Hasan, S.A., Park, J.H., (2008) Phys. Rev. B, 78 Troitinño, N.F., Rivas-Murias, B., Rodríguez-González, B., Salgueiriño, V., (2014) Chem. Mater., 26, p. 5566 Liu, C., Cui, J., He, X., Shi, H., (2014) J. Nanopart. Res., 16, p. 2320 Wu, R., Ding, S., Lai, Y., Tian, G., Yang, J., (2018) Phys. Rev. B, 97 Hu, Y., Du, A., (2011) J. Appl. Phys., 110 de Julián Fernández, C., (2005) Phys. Rev. B, 72 Hellman, F., Hoffmann, A., Tserkovnyak, Y., Beach, G.S.D., Fullerton, E.E., Leighton, C., MacDonald, A.H., Zink, B.L., (2017) Rev. Mod. Phys., 89 Mejía-López, J., Soto, P., Altbir, D., (2005) Phys. Rev. B, 71 Wu, M.H., Li, Q.C., Liu, J.-M., (2007) J. Phys.: Condens. Matter, 19 Luo, A., Ma, F., Hu, Y., (2016) J. Magn. Mag. Mat., 413, p. 108 Eftaxias, E., Trohidou, K.N., (2005) Phys. Rev. B, 71 Iglesias, Ó., Batlle, X., Labarta, A., (2005) Phys. Rev. B, 72 Vasilakaki, M., Trohidou, K.N., (2009) Phys. Rev. B, 79 Dimitriadis, V., Kechrakos, D., Chubykalo-Fesenko, O., Tsiantos, V., (2015) Phys. Rev. B, 92 Sabogal-Suárez, D., Alzate-Cardona, J.D., Restrepo-Parra, E., (2019) J. Magn. Mag. Mat., 482, p. 120 Iglesias, O., Batlle, X., Labarta, A., (2007) J. Phys.: Condens. Matter, 19 Zaim, A., Kerouad, M., (2010) Phys. A Stat. Mech. Appl., 389, p. 3435 Nehme, Z., Labaye, Y., Yaacoub, N., Greneche, J.M., (2019) J. Nanopart. Res., 21, p. 209 Momma, K., Izumi, F., (2011) J. Appl. Cryst., 44, p. 1272 Yosida, K., (1996) Theory of Magnetism, Springer Series in Solid-State Sciences, 122. , . Springer, Berlin Tranchida, J., Plimpton, S.J., Thibaudeau, P., Thompson, A.P., (2018) J. Comp. Phys., 372, p. 406 Hohenberg, P., Kohn, W., (1964) Phys. Rev., 136, p. B864 Kohn, W., Sham, L.J., (1965) Phys. Rev., 140 Kresse, G., Hafner, J., (1993) Phys. Rev. B, 47, p. 558R Kresse, G., Hafner, J., (1993) Phys. Rev. B, 48 Kresse, G., Hafner, J., (1994) Phys. Rev. B, 49 Kresse, G., Furthmüller, J., (1996) Comput. Mat. Sci., 6, p. 15 Kresse, G., Furthmüller, J., (1996) Phys. Rev. B, 54 López-Moreno, S., Romero, A.H., Mejía-López, J., Muñoz, A., Roshchin, I.V., (2012) Phys. Rev. B, 85 Ebert, H., Ködderitzsch, D., (2011) J. Minár. Rep. Prog. Phys., 74 Krycka, K.L., Borchers, J.A., Laver, M., Salazar-Alvarez, G., López-Ortega, A., Estrader, M., Suriãch, S., Nogués, J., (2013) J. Appl. Phys., 113 Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K., Hyeon, T., Agarwal, N., Smith, D.J., Fullerton, E.E., (2008) J. Phys. D: Appl. Phys., 41 Wetterskog, E., Tai, C.W., Grins, J., Bergström, L., Salazar-Alvarez, G., (2013) ACS Nano, 7, p. 7132 Khurshid, H., Chandra, S., Li, W., Phan, M.H., Hadjipanayis, G.C., Mukherjee, P., Srikanth, H., (2013) J. Appl. Phys., 113 Winkler, E.L., Lima, E., Tobia, J.D., Saleta, M.E., Troiani, H.E., Agostinelli, E., Fiorani, D., Zysler, R.D., (2012) Appl. Phys. Lett., 101 Lavorato, G.C., Lima, E., Tobia, J.D., Fiorani, D., Troiani, H.E., Zysler, R.D., Winkler, E.L., (2014) Nanotechnol., 25 Liu, C., Cui, J., He, X., Shi, H., (2014) J. Nanopart. Res., 16, p. 2320 Si, P.Z., Wang, H.X., Jiang, W., Lee, J.G., Choi, C.J., Liu, J.J., (2011) Thin Solid Films, 519, p. 8423 Jin, C.H., Si, P.Z., Xiao, X.F., Feng, H., Wu, Q., Ge, H.L., Zhong, M., (2013) Mater. Lett., 92, p. 213 Nogués, J., Leighton, C., Schuller, I.K., (2000) Phys. Rev. B, 61, p. 1315 Kiwi, M., Mejia-Lopez, J., Portugal, R.D., Ramirez, R., (2000) Solid State Commun., 116, p. 315 Arenholz, E., Liu, K., Li, Z., Schuller, I.K., (2006) Appl. Phys. Lett., 88 Fitzsimmons, M.R., Roy, S., Kirby, B.J., Park, S., Roshchin, I.V., Li, Z.-P., Kortright, J.B., Schuller, I.K., (2007) Superlatt. Microstruct., 41, p. 109 Kiwi, M., Mejía-López, J., Portugal, R.D., Ramírez, R., (1999) EPL, 48, p. 573 Panda, N.R., Pati, S.P., Das, D., (2019) Appl. Surf. Sci., 491, p. 313 García-Fernández, P., Wojdel, J.C., Íñiguez, J., Junquera, J., (2016) Phys. Rev. B, 93 Escorihuela-Sayalero, C., Wojdel, J.C., Íñiguez, J., (2017) Phys. Rev. B, 95 Lederman, D., Ramírez, R., Kiwi, M., (2004) Phys. Rev. B, 70 Koon, N.C., (1997) Phys. Rev. Lett., 78, p. 4865 Ohldag, H., Shi, H., Arenholz, E., Stöhr, J., Lederman, D., (2006) Phys. Rev. Lett., 96 Nogués, J., Lederman, D., Moran, T.J., Schuller, I.K., (1996) Phys. Rev. Lett., 76, p. 4624 Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865 Blöchl, P.E., (1994) Phys. Rev. B, 50 Kresse, G., Joubert, D., (1999) Phys. Rev. B, 59, p. 1758 Plimpton, S., (1995) J. Comput. Phys., 117, p. 1 Liang, T., Devine, B., Phillpot, S.R., Sinnott, S.B., (2012) J. Phys. Chem. A, 116, p. 7976 Liang, T., Shan, T.-R., Cheng, Y.-T., Devine, B.D., Noordhoek, M., Li, Y., Lu, Z., Sinnott, S.B., (2013) Mater. Sci. Eng. R-Rep., 74, p. 255 Tersoff, J., (1988) Phys. Rev. B., 37, p. 6991 Yasukawa, A., (1996) JSME Int. J. Ser. A, Mech. Mater. Eng., 39, p. 313 Tangarife, E., Romero, A.H., Mejía-López, J., (2019) Phys. Chem. Chem. Phys., 21 Streitz, F.H., Mintmire, J.W., (1994) Phys. Rev. B., 50 Hoover, W.G., (1985) Phys. Rev. A, 31, p. 1695 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Wiley-VCH Verlag |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Wiley-VCH Verlag |
dc.source.none.fl_str_mv |
Advanced Materials Interfaces |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159124137508864 |
spelling |
20202021-02-05T14:58:48Z2021-02-05T14:58:48Z21967350http://hdl.handle.net/11407/602210.1002/admi.202000862In this study, the power of first-principles methods along with molecular dynamics and atomistic Monte Carlo simulations is employed to elucidate the effects of the structural relaxation on the exchange bias (EB) behavior of FeF2/Fe core/shell nanoparticles. The effects of the crystalline phase are also explored by studying the EB features on the related nanoparticles modeled through simple cubic, body centered cubic, and face centered cubic systems. The results indicate that effects of both structural relaxation and crystalline phase on the EB phenomenon are crucial. Noticeable differences are found in the quantitative and qualitative results, as well as in conclusions from studies which, for the sake of simplicity, have used simple cubic crystalline structures for modeling the sample of study instead of its own crystalline model. To compare these results with experimental systems, hysteresis behaviors under field cooling procedures and for a sample made up by a particle diameter distribution D = 4.3 ± 0.7 nm, which is easily affordable at present, are presented. In that sense, this study raises a warning about the conclusions derived from previous works, and offers a suggestion to pay close attention to both the crystalline model and the structural relaxation of the nanoparticle systems exhibiting EB effects. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimengWiley-VCH VerlagFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087915466&doi=10.1002%2fadmi.202000862&partnerID=40&md5=9430f18b65e6dd4d7e1036e1185cc836Meiklejohn, W.H., Bean, C.P., (1956) Phys. Rev., 102, p. 1413Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., Mauri, D., (1991) Phys. Rev. B, 43, p. 1297Sort, J., Nogués, J., Amils, X., Suriñach, S., Muñoz, J.S., Baró, M.D., (1999) Appl. Phys. Lett., 75, p. 3177Nogués, J., Schuller, I.K., (1999) J. Magn. Magn. Mater., 192, p. 203Berkowitz, A.E., Takano, K., (1999) J. Magn. Magn. Mater., 200, p. 552Stamps, R.L., (2000) J. Phys. D: Appl. Phys., 33, p. R247Kiwi, M., (2001) J. Magn. Magn. Mater., 234, p. 584Sort, J., Nogués, J., Suriñach, S., Muñoz, J.S., Baró, M.D., Chappel, E., Dupont, F., Chouteau, G., (2001) Appl. Phys. Lett., 79, p. 1142Sort, J., Suriñach, S., Muñoz, J.S., Baró, M.D., Nogués, J., Chouteau, G., Skumryev, V., Hadjipanayis, G., (2002) Phys. Rev. B, 65Stoyanov, S., Skumryev, V., Zhang, Y., Huang, Y., Hadjipanayis, G.C., Nogués, J., (2003) J. Appl. Phys., 93, p. 7592Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., Nogués, J., (2003) Nature, 423, p. 850Sort, J., Langlais, V., Doppiu, S., Dieny, B., Suriñach, S., Muñoz, J.S., Baró, M.D., Nogués, J., (2004) Nanotechnology, 15, p. S211López-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A.G., Nogués, J., (2015) Phys. Rep., 553, p. 1Nogués, J., Sort, J., Langlais, V., Skumryev, V., Suriñach, S., Muñoz, J.S., Baró, M.D., (2005) Phys. Rep., 422, p. 65Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Baumgart, P., Wilhoit, D.R., (1991) J. Appl. Phys., 69, p. 4774Liu, X.S., Gu, B.X., Zhong, W., Jiang, H.Y., Du, Y.W., (2003) Appl. Phys. A, 77, p. 673Groza, I., Morel, R., Brenac, A., Beigne, C., Notin, L., (2011) IEEE Trans. Magn., 47, p. 3355Barbic, M., Scherer, A., (2005) Sol. State Nucl. Magn. Res., 28, p. 91Jeon, S.L., Chae, M.K., Jang, E.J., Lee, C., (2013) Chem. Eur. J., 19, p. 4217Schneider, V., Reinholdt, A., Kreibig, U., Weirich, T., Güntherodt, G., Beschoten, B., Tillmanns, A., Granitzer, P., (2006) Z. Phys. Chem., 220, p. 173Vasilakaki, M., Trohidou, K.N., Nogués, J., (2015) Sci. Rep., 5, p. 9609Nogués, J., Skumryev, V., Sort, J., Givord, D., (2006) Phys. Rev. Lett., 97Margaris, G., Trohidou, K.N., Nogués, J., (2012) Adv. Mater., 24, p. 4331Salazar-Alvarez, G., Sort, J., Suriñach, S., Baró, M.D., Nogués, J., (2007) J. Am. Chem. Soc., 129, p. 9102Golosovsky, I.V., Salazar-Alvarez, G., López-Ortega, A., González, M.A., Sort, J., Estrader, M., Suriñach, S., Nogués, J., (2009) Phys. Rev. Lett., 102López-Ortega, A., Tobia, D., Winkler, E., Golosovsky, I.V., Salazar-Alvarez, G., Estradé, S., Estrader, M., Nogués, J., (2010) J. Am. Chem. Soc., 132, p. 9398Khurshid, H., Li, W., Chandra, S., Phan, M.-H., Hadjipanayis, G.C., Mukherjee, P., Srikanth, H., (2013) Nanoscale, 5, p. 7942Lak, A., Kraken, M., Ludwig, F., Kornowski, A., Eberbeck, D., Sievers, S., Litterst, F.J., Schilling, M., (2013) Nanoscale, 5Bodnarchuk, M.I., Kovalenko, M.V., Groiss, H., Resel, R., Reissner, M., Hesser, G., Lechner, R.T., Heiss, W., (2009) Small, 5, p. 2247Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K., Hyeon, T., Agarwal, N., Smith, D.J., Fullerton, E.E., (2008) Phys. Rev. B, 77Kavich, D.W., Dickerson, J.H., Mahajan, S.V., Hasan, S.A., Park, J.H., (2008) Phys. Rev. B, 78Troitinño, N.F., Rivas-Murias, B., Rodríguez-González, B., Salgueiriño, V., (2014) Chem. Mater., 26, p. 5566Liu, C., Cui, J., He, X., Shi, H., (2014) J. Nanopart. Res., 16, p. 2320Wu, R., Ding, S., Lai, Y., Tian, G., Yang, J., (2018) Phys. Rev. B, 97Hu, Y., Du, A., (2011) J. Appl. Phys., 110de Julián Fernández, C., (2005) Phys. Rev. B, 72Hellman, F., Hoffmann, A., Tserkovnyak, Y., Beach, G.S.D., Fullerton, E.E., Leighton, C., MacDonald, A.H., Zink, B.L., (2017) Rev. Mod. Phys., 89Mejía-López, J., Soto, P., Altbir, D., (2005) Phys. Rev. B, 71Wu, M.H., Li, Q.C., Liu, J.-M., (2007) J. Phys.: Condens. Matter, 19Luo, A., Ma, F., Hu, Y., (2016) J. Magn. Mag. Mat., 413, p. 108Eftaxias, E., Trohidou, K.N., (2005) Phys. Rev. B, 71Iglesias, Ó., Batlle, X., Labarta, A., (2005) Phys. Rev. B, 72Vasilakaki, M., Trohidou, K.N., (2009) Phys. Rev. B, 79Dimitriadis, V., Kechrakos, D., Chubykalo-Fesenko, O., Tsiantos, V., (2015) Phys. Rev. B, 92Sabogal-Suárez, D., Alzate-Cardona, J.D., Restrepo-Parra, E., (2019) J. Magn. Mag. Mat., 482, p. 120Iglesias, O., Batlle, X., Labarta, A., (2007) J. Phys.: Condens. Matter, 19Zaim, A., Kerouad, M., (2010) Phys. A Stat. Mech. Appl., 389, p. 3435Nehme, Z., Labaye, Y., Yaacoub, N., Greneche, J.M., (2019) J. Nanopart. Res., 21, p. 209Momma, K., Izumi, F., (2011) J. Appl. Cryst., 44, p. 1272Yosida, K., (1996) Theory of Magnetism, Springer Series in Solid-State Sciences, 122. , . Springer, BerlinTranchida, J., Plimpton, S.J., Thibaudeau, P., Thompson, A.P., (2018) J. Comp. Phys., 372, p. 406Hohenberg, P., Kohn, W., (1964) Phys. Rev., 136, p. B864Kohn, W., Sham, L.J., (1965) Phys. Rev., 140Kresse, G., Hafner, J., (1993) Phys. Rev. B, 47, p. 558RKresse, G., Hafner, J., (1993) Phys. Rev. B, 48Kresse, G., Hafner, J., (1994) Phys. Rev. B, 49Kresse, G., Furthmüller, J., (1996) Comput. Mat. Sci., 6, p. 15Kresse, G., Furthmüller, J., (1996) Phys. Rev. B, 54López-Moreno, S., Romero, A.H., Mejía-López, J., Muñoz, A., Roshchin, I.V., (2012) Phys. Rev. B, 85Ebert, H., Ködderitzsch, D., (2011) J. Minár. Rep. Prog. Phys., 74Krycka, K.L., Borchers, J.A., Laver, M., Salazar-Alvarez, G., López-Ortega, A., Estrader, M., Suriãch, S., Nogués, J., (2013) J. Appl. Phys., 113Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K., Hyeon, T., Agarwal, N., Smith, D.J., Fullerton, E.E., (2008) J. Phys. D: Appl. Phys., 41Wetterskog, E., Tai, C.W., Grins, J., Bergström, L., Salazar-Alvarez, G., (2013) ACS Nano, 7, p. 7132Khurshid, H., Chandra, S., Li, W., Phan, M.H., Hadjipanayis, G.C., Mukherjee, P., Srikanth, H., (2013) J. Appl. Phys., 113Winkler, E.L., Lima, E., Tobia, J.D., Saleta, M.E., Troiani, H.E., Agostinelli, E., Fiorani, D., Zysler, R.D., (2012) Appl. Phys. Lett., 101Lavorato, G.C., Lima, E., Tobia, J.D., Fiorani, D., Troiani, H.E., Zysler, R.D., Winkler, E.L., (2014) Nanotechnol., 25Liu, C., Cui, J., He, X., Shi, H., (2014) J. Nanopart. Res., 16, p. 2320Si, P.Z., Wang, H.X., Jiang, W., Lee, J.G., Choi, C.J., Liu, J.J., (2011) Thin Solid Films, 519, p. 8423Jin, C.H., Si, P.Z., Xiao, X.F., Feng, H., Wu, Q., Ge, H.L., Zhong, M., (2013) Mater. Lett., 92, p. 213Nogués, J., Leighton, C., Schuller, I.K., (2000) Phys. Rev. B, 61, p. 1315Kiwi, M., Mejia-Lopez, J., Portugal, R.D., Ramirez, R., (2000) Solid State Commun., 116, p. 315Arenholz, E., Liu, K., Li, Z., Schuller, I.K., (2006) Appl. Phys. Lett., 88Fitzsimmons, M.R., Roy, S., Kirby, B.J., Park, S., Roshchin, I.V., Li, Z.-P., Kortright, J.B., Schuller, I.K., (2007) Superlatt. Microstruct., 41, p. 109Kiwi, M., Mejía-López, J., Portugal, R.D., Ramírez, R., (1999) EPL, 48, p. 573Panda, N.R., Pati, S.P., Das, D., (2019) Appl. Surf. Sci., 491, p. 313García-Fernández, P., Wojdel, J.C., Íñiguez, J., Junquera, J., (2016) Phys. Rev. B, 93Escorihuela-Sayalero, C., Wojdel, J.C., Íñiguez, J., (2017) Phys. Rev. B, 95Lederman, D., Ramírez, R., Kiwi, M., (2004) Phys. Rev. B, 70Koon, N.C., (1997) Phys. Rev. Lett., 78, p. 4865Ohldag, H., Shi, H., Arenholz, E., Stöhr, J., Lederman, D., (2006) Phys. Rev. Lett., 96Nogués, J., Lederman, D., Moran, T.J., Schuller, I.K., (1996) Phys. Rev. Lett., 76, p. 4624Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865Blöchl, P.E., (1994) Phys. Rev. B, 50Kresse, G., Joubert, D., (1999) Phys. Rev. B, 59, p. 1758Plimpton, S., (1995) J. Comput. Phys., 117, p. 1Liang, T., Devine, B., Phillpot, S.R., Sinnott, S.B., (2012) J. Phys. Chem. A, 116, p. 7976Liang, T., Shan, T.-R., Cheng, Y.-T., Devine, B.D., Noordhoek, M., Li, Y., Lu, Z., Sinnott, S.B., (2013) Mater. Sci. Eng. R-Rep., 74, p. 255Tersoff, J., (1988) Phys. Rev. B., 37, p. 6991Yasukawa, A., (1996) JSME Int. J. Ser. A, Mech. Mater. Eng., 39, p. 313Tangarife, E., Romero, A.H., Mejía-López, J., (2019) Phys. Chem. Chem. Phys., 21Streitz, F.H., Mintmire, J.W., (1994) Phys. Rev. B., 50Hoover, W.G., (1985) Phys. Rev. A, 31, p. 1695Advanced Materials Interfacescharge optimized many-body potentialexchange biasFeF2/Fe core/shell nanoparticlesinterface and surface structural relaxationMonte Carlomultiscaling methodologyCooling systemsMolecular dynamicsMonte Carlo methodsStructural relaxationBody-centered cubicCore/shell nanoparticlesCrystalline phaseExperimental systemFace-centered cubicFirst principles methodHysteresis behaviorNanoparticle systemsNanoparticlesStructural Relaxation and Crystalline Phase Effects on the Exchange Bias Phenomenon in FeF2/Fe Core/Shell NanoparticlesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Velásquez, E.A., Grupo Matbiom, Facultad de Ciencias Básicas, Universidad de Medellín, Cra. 87 30-65, Medellín, ColombiaMazo-Zuluaga, J., Grupo de Instrumentación Científica y Microelectrónica, Grupo de Estado Sólido, IF-FCEN, Universidad de Antioquia UdeA, Cl. 70 52-21, Medellín, ColombiaTangarife, E., Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, San Pio X 2422, Santiago, ChileMejía-López, J., Facultad de Física, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, CEDENNA, Av. Vicuña Mackenna 4860, Santiago, Chilehttp://purl.org/coar/access_right/c_16ecVelásquez E.A.Mazo-Zuluaga J.Tangarife E.Mejía-López J.11407/6022oai:repository.udem.edu.co:11407/60222021-02-05 09:58:48.856Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |