NiMo-sulfide supported on activated carbon to produce renewable diesel
Due to their weak polarity and large surface area, activated carbon supports have the potential to enhance the dispersion of metal-sulfides. It is expected that the absence of a strong metal-support interaction can result in the formation of a very active and stable Ni-Mo-S phase. In this study, cat...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4566
- Acceso en línea:
- http://hdl.handle.net/11407/4566
- Palabra clave:
- Activated carbon; Hydroprocessing; Jatropha oil; n-paraffin; NiMo
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_435e1b61619e7c7c7a17eaa56183aa10 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4566 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
NiMo-sulfide supported on activated carbon to produce renewable diesel |
title |
NiMo-sulfide supported on activated carbon to produce renewable diesel |
spellingShingle |
NiMo-sulfide supported on activated carbon to produce renewable diesel Activated carbon; Hydroprocessing; Jatropha oil; n-paraffin; NiMo |
title_short |
NiMo-sulfide supported on activated carbon to produce renewable diesel |
title_full |
NiMo-sulfide supported on activated carbon to produce renewable diesel |
title_fullStr |
NiMo-sulfide supported on activated carbon to produce renewable diesel |
title_full_unstemmed |
NiMo-sulfide supported on activated carbon to produce renewable diesel |
title_sort |
NiMo-sulfide supported on activated carbon to produce renewable diesel |
dc.contributor.affiliation.spa.fl_str_mv |
Química de Recursos Energéticos y Medio Ambiente, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, UdeA - Colombia, Calle 70 No. 52-21, Medellín, Colombia; Universidad de Antioquia, Energy Resources and Environmental Chemistry Group, Colombia; University of Medellin in Colombia, Colombia; Institute of Chemistry, Energy Resources and Environmental Chemistry Group, University of Antioquia, Colombia |
dc.subject.keyword.eng.fl_str_mv |
Activated carbon; Hydroprocessing; Jatropha oil; n-paraffin; NiMo |
topic |
Activated carbon; Hydroprocessing; Jatropha oil; n-paraffin; NiMo |
description |
Due to their weak polarity and large surface area, activated carbon supports have the potential to enhance the dispersion of metal-sulfides. It is expected that the absence of a strong metal-support interaction can result in the formation of a very active and stable Ni-Mo-S phase. In this study, catalysts with different amounts of nickel and molybdenum supported on a commercial activated carbon were prepared by a co-impregnation method and characterized by BET, XRF, and SEM techniques. The catalytic activity for hydroprocessing of Jatropha oil was evaluated in a batch reactor, and the composition of the liquid and gaseous products were determined. Results showed that gaseous products are mainly composed of high amounts of propane and small amounts of other light hydrocarbons (C1 to C5). Liquid hydrocarbon products consisted of a mixture containing mainly n-paraffins of C15-C18 and some oxygenated compounds. The catalysts with a mass fraction of 3 % Ni, 15 % Mo (Ni3Mo15/AC) presented the highest selectivity toward C17-C18 hydrocarbons, with a product distribution similar to a commercial alumina-supported Ni-Mo-S catalyst. |
publishDate |
2017 |
dc.date.created.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2018-04-13T16:34:37Z |
dc.date.available.none.fl_str_mv |
2018-04-13T16:34:37Z |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
1227483 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4566 |
dc.identifier.doi.none.fl_str_mv |
10.11144/Javeriana.SC22-1.nsoa |
identifier_str_mv |
1227483 10.11144/Javeriana.SC22-1.nsoa |
url |
http://hdl.handle.net/11407/4566 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019095232&doi=10.11144%2fJaveriana.SC22-1.nsoa&partnerID=40&md5=d8f26d59fb04c9d749b6d71154061dcf |
dc.relation.ispartofes.spa.fl_str_mv |
Universitas Scientiarum |
dc.relation.references.spa.fl_str_mv |
Breysse, M., Geantet, C., Afanasiev, P., Blanchard, J., Vrinat, M., Recent studies on the preparation, activation and design of active phases and supports of hydrotreating catalysts (2008) Catalysis Today, 130 (1), pp. 3-13; Chen, N., Gong, S., Qian, E.W., Single-step Hydroconversion of Jatropha Oil to High Quality Fuel Oil over Reduced Nickel-Molybdenum catalysts (2013) Journal of the Japan Petroleum Institute, 56 (1), pp. 249-252; Furimsky, E., Chemistry of Catalytic Hydrodeoxygenation, Catalysis Reviews (1983) Science and Engineering, 25, pp. 421-458; García-Dávila, J., Ocaranza-Sánchez, E., Rojas-López, M., Muñoz-Arroyo, J.A., Ramírez, J., Martínez-Ayala, A.L., Jatropha curcas L. oil hydroconversion over hydrodesulfurization catalysts for biofuel production (2014) Fuel, 135, pp. 380-386; Kouzu, M., Kuriki, Y., Hamdy, F., Sakanishi, K., Sugimoto, Y., Saito, I., Catalytic potential of carbon-supported NiMo-sulfide for ultra-deep hydrodesulfurization of diesel fuel (2004) Applied Catalysis A: General, 265 (1), pp. 61-67; Kubicka, D., Kaluza, L., Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts (2010) Applied Catalysis A: General, 372 (2), pp. 199-208; Kukushkin, R.G., Bulavchenko, O.A., Kaichev, V.V., Yakovlev, V.A., Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters, Applied Catalysis B (2015) Environmental, 163, pp. 531-538; Kumar Tiwari, A., Kumar, A., Raheman, H., Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process (2007) Biomass and Bioenergy, 31 (8), pp. 569-575; Laniecki, M., Ignacik, M., Water - gas shift reaction over sulfided molybdenum catalysts supported on TiO 2 - ZrO 2 mixed oxides Support characterization and catalytic activity (2006) Catalysis Today, 116, pp. 400-407; Liu, J., Fan, K., Tian, W., Liu, C., Rong, L., Hydroprocessing of Jatropha oil over NiMoCe/Al2O3 catalyst (2012) International Journal of Hydrogen Energy, 37 (23), pp. 17731-17737; Martinez-Herrera, J., Siddhuraju, P., Francis, G., Davila-Ortiz, G., Becker, K., Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico (2006) Food Chemistry, 96 (1), pp. 80-89; Mukherjee, P., Varshney, A., Johnson, T.S., Jha, T.B., Jatropha curcas: A review on biotechnological status and challenges (2011) Plant Biotechnology Reports, 5 (3), pp. 197-215; Nikulshin, P.A., Salnikov, V.A., Mozhaev, A.V., Minaev, P.P., Kogan, V.M., Pimerzin, A.A., Relationship between active phase morphology and catalytic properties of the carbon-alumina- supported Co(Ni)Mo catalysts in HDS and HYD reactions (2014) Journal of Catalysis, 309, pp. 386-396; Romero, M.J.A., Pizzi, A., Toscano, G., Busca, G., Bosio, B., Arato, E., Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels (2015) Waste Management, 47, pp. 62-68. , (New York, N.Y.); Sankaranarayanan, T.M., Banu, M., Pandurangan, A., Sivasanker, S., Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites (2011) Bioresource Technology, 102 (22), pp. 10717-10723; Satyarthi, J.K., Chiranjeevi, T., Gokak, D.T., Viswanathan, P.S., An overview of catalytic conversion of vegetable oils/fats into middle distillates (2013) Catalysis Science & Technology, 3 (1), pp. 70-80; Sotelo-boy, R., Liu, Y., Minowa, T., Renewable Diesel Production from the Hydrotreating of Rapeseed Oil with Pt / Zeolite and NiMo / Al2 O3 Catalysts (2011) Industrial & Engineering Chemistry Research, 50 (5), pp. 2791-2799; Srifa, A., Faungnawakij, K., Itthibenchapong, V., Viriya-empikul, N., Charinpanitkul, T., Assabumrungrat, S., Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst (2014) Bioresource Technology, 158, pp. 81-90; Verma, D., Rana, B.S., Kumar, R., Sibi, M.G., Sinha, A.K., Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11, Applied Catalysis A (2015) General, 490, pp. 108-116; Wang, H.Y., Jiao, T.T., Li, Z.X., Li, C.S., Zhang, S.J., Zhang, J.L., Study on palm oil hydrogenation for clean fuel over Ni-Mo-W/γ-Al2O3-ZSM-5 catalyst (2015) Fuel Processing Technology, 139, pp. 91-99 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Pontificia Universidad Javeriana |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159230125473792 |
spelling |
2018-04-13T16:34:37Z2018-04-13T16:34:37Z20171227483http://hdl.handle.net/11407/456610.11144/Javeriana.SC22-1.nsoaDue to their weak polarity and large surface area, activated carbon supports have the potential to enhance the dispersion of metal-sulfides. It is expected that the absence of a strong metal-support interaction can result in the formation of a very active and stable Ni-Mo-S phase. In this study, catalysts with different amounts of nickel and molybdenum supported on a commercial activated carbon were prepared by a co-impregnation method and characterized by BET, XRF, and SEM techniques. The catalytic activity for hydroprocessing of Jatropha oil was evaluated in a batch reactor, and the composition of the liquid and gaseous products were determined. Results showed that gaseous products are mainly composed of high amounts of propane and small amounts of other light hydrocarbons (C1 to C5). Liquid hydrocarbon products consisted of a mixture containing mainly n-paraffins of C15-C18 and some oxygenated compounds. The catalysts with a mass fraction of 3 % Ni, 15 % Mo (Ni3Mo15/AC) presented the highest selectivity toward C17-C18 hydrocarbons, with a product distribution similar to a commercial alumina-supported Ni-Mo-S catalyst.engPontificia Universidad JaverianaFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85019095232&doi=10.11144%2fJaveriana.SC22-1.nsoa&partnerID=40&md5=d8f26d59fb04c9d749b6d71154061dcfUniversitas ScientiarumBreysse, M., Geantet, C., Afanasiev, P., Blanchard, J., Vrinat, M., Recent studies on the preparation, activation and design of active phases and supports of hydrotreating catalysts (2008) Catalysis Today, 130 (1), pp. 3-13; Chen, N., Gong, S., Qian, E.W., Single-step Hydroconversion of Jatropha Oil to High Quality Fuel Oil over Reduced Nickel-Molybdenum catalysts (2013) Journal of the Japan Petroleum Institute, 56 (1), pp. 249-252; Furimsky, E., Chemistry of Catalytic Hydrodeoxygenation, Catalysis Reviews (1983) Science and Engineering, 25, pp. 421-458; García-Dávila, J., Ocaranza-Sánchez, E., Rojas-López, M., Muñoz-Arroyo, J.A., Ramírez, J., Martínez-Ayala, A.L., Jatropha curcas L. oil hydroconversion over hydrodesulfurization catalysts for biofuel production (2014) Fuel, 135, pp. 380-386; Kouzu, M., Kuriki, Y., Hamdy, F., Sakanishi, K., Sugimoto, Y., Saito, I., Catalytic potential of carbon-supported NiMo-sulfide for ultra-deep hydrodesulfurization of diesel fuel (2004) Applied Catalysis A: General, 265 (1), pp. 61-67; Kubicka, D., Kaluza, L., Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts (2010) Applied Catalysis A: General, 372 (2), pp. 199-208; Kukushkin, R.G., Bulavchenko, O.A., Kaichev, V.V., Yakovlev, V.A., Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters, Applied Catalysis B (2015) Environmental, 163, pp. 531-538; Kumar Tiwari, A., Kumar, A., Raheman, H., Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process (2007) Biomass and Bioenergy, 31 (8), pp. 569-575; Laniecki, M., Ignacik, M., Water - gas shift reaction over sulfided molybdenum catalysts supported on TiO 2 - ZrO 2 mixed oxides Support characterization and catalytic activity (2006) Catalysis Today, 116, pp. 400-407; Liu, J., Fan, K., Tian, W., Liu, C., Rong, L., Hydroprocessing of Jatropha oil over NiMoCe/Al2O3 catalyst (2012) International Journal of Hydrogen Energy, 37 (23), pp. 17731-17737; Martinez-Herrera, J., Siddhuraju, P., Francis, G., Davila-Ortiz, G., Becker, K., Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico (2006) Food Chemistry, 96 (1), pp. 80-89; Mukherjee, P., Varshney, A., Johnson, T.S., Jha, T.B., Jatropha curcas: A review on biotechnological status and challenges (2011) Plant Biotechnology Reports, 5 (3), pp. 197-215; Nikulshin, P.A., Salnikov, V.A., Mozhaev, A.V., Minaev, P.P., Kogan, V.M., Pimerzin, A.A., Relationship between active phase morphology and catalytic properties of the carbon-alumina- supported Co(Ni)Mo catalysts in HDS and HYD reactions (2014) Journal of Catalysis, 309, pp. 386-396; Romero, M.J.A., Pizzi, A., Toscano, G., Busca, G., Bosio, B., Arato, E., Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels (2015) Waste Management, 47, pp. 62-68. , (New York, N.Y.); Sankaranarayanan, T.M., Banu, M., Pandurangan, A., Sivasanker, S., Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites (2011) Bioresource Technology, 102 (22), pp. 10717-10723; Satyarthi, J.K., Chiranjeevi, T., Gokak, D.T., Viswanathan, P.S., An overview of catalytic conversion of vegetable oils/fats into middle distillates (2013) Catalysis Science & Technology, 3 (1), pp. 70-80; Sotelo-boy, R., Liu, Y., Minowa, T., Renewable Diesel Production from the Hydrotreating of Rapeseed Oil with Pt / Zeolite and NiMo / Al2 O3 Catalysts (2011) Industrial & Engineering Chemistry Research, 50 (5), pp. 2791-2799; Srifa, A., Faungnawakij, K., Itthibenchapong, V., Viriya-empikul, N., Charinpanitkul, T., Assabumrungrat, S., Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst (2014) Bioresource Technology, 158, pp. 81-90; Verma, D., Rana, B.S., Kumar, R., Sibi, M.G., Sinha, A.K., Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11, Applied Catalysis A (2015) General, 490, pp. 108-116; Wang, H.Y., Jiao, T.T., Li, Z.X., Li, C.S., Zhang, S.J., Zhang, J.L., Study on palm oil hydrogenation for clean fuel over Ni-Mo-W/γ-Al2O3-ZSM-5 catalyst (2015) Fuel Processing Technology, 139, pp. 91-99ScopusNiMo-sulfide supported on activated carbon to produce renewable dieselArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Química de Recursos Energéticos y Medio Ambiente, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, UdeA - Colombia, Calle 70 No. 52-21, Medellín, Colombia; Universidad de Antioquia, Energy Resources and Environmental Chemistry Group, Colombia; University of Medellin in Colombia, Colombia; Institute of Chemistry, Energy Resources and Environmental Chemistry Group, University of Antioquia, ColombiaTapia J., Acelas N.Y., López D., Moreno A.Tapia, J., Química de Recursos Energéticos y Medio Ambiente, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, UdeA - Colombia, Calle 70 No. 52-21, Medellín, Colombia, Universidad de Antioquia, Energy Resources and Environmental Chemistry Group, Colombia; Acelas, N.Y., University of Medellin in Colombia, Colombia; López, D., Química de Recursos Energéticos y Medio Ambiente, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, UdeA - Colombia, Calle 70 No. 52-21, Medellín, Colombia, Universidad de Antioquia, Energy Resources and Environmental Chemistry Group, Colombia; Moreno, A., Química de Recursos Energéticos y Medio Ambiente, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, UdeA - Colombia, Calle 70 No. 52-21, Medellín, Colombia, Institute of Chemistry, Energy Resources and Environmental Chemistry Group, University of Antioquia, ColombiaActivated carbon; Hydroprocessing; Jatropha oil; n-paraffin; NiMoDue to their weak polarity and large surface area, activated carbon supports have the potential to enhance the dispersion of metal-sulfides. It is expected that the absence of a strong metal-support interaction can result in the formation of a very active and stable Ni-Mo-S phase. In this study, catalysts with different amounts of nickel and molybdenum supported on a commercial activated carbon were prepared by a co-impregnation method and characterized by BET, XRF, and SEM techniques. The catalytic activity for hydroprocessing of Jatropha oil was evaluated in a batch reactor, and the composition of the liquid and gaseous products were determined. Results showed that gaseous products are mainly composed of high amounts of propane and small amounts of other light hydrocarbons (C1 to C5). Liquid hydrocarbon products consisted of a mixture containing mainly n-paraffins of C15-C18 and some oxygenated compounds. The catalysts with a mass fraction of 3 % Ni, 15 % Mo (Ni3Mo15/AC) presented the highest selectivity toward C17-C18 hydrocarbons, with a product distribution similar to a commercial alumina-supported Ni-Mo-S catalyst.http://purl.org/coar/access_right/c_16ec11407/4566oai:repository.udem.edu.co:11407/45662020-05-27 18:33:12.657Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |