NiMo-sulfide supported on activated carbon to produce renewable diesel

Due to their weak polarity and large surface area, activated carbon supports have the potential to enhance the dispersion of metal-sulfides. It is expected that the absence of a strong metal-support interaction can result in the formation of a very active and stable Ni-Mo-S phase. In this study, cat...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4566
Acceso en línea:
http://hdl.handle.net/11407/4566
Palabra clave:
Activated carbon; Hydroprocessing; Jatropha oil; n-paraffin; NiMo
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_435e1b61619e7c7c7a17eaa56183aa10
oai_identifier_str oai:repository.udem.edu.co:11407/4566
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv NiMo-sulfide supported on activated carbon to produce renewable diesel
title NiMo-sulfide supported on activated carbon to produce renewable diesel
spellingShingle NiMo-sulfide supported on activated carbon to produce renewable diesel
Activated carbon; Hydroprocessing; Jatropha oil; n-paraffin; NiMo
title_short NiMo-sulfide supported on activated carbon to produce renewable diesel
title_full NiMo-sulfide supported on activated carbon to produce renewable diesel
title_fullStr NiMo-sulfide supported on activated carbon to produce renewable diesel
title_full_unstemmed NiMo-sulfide supported on activated carbon to produce renewable diesel
title_sort NiMo-sulfide supported on activated carbon to produce renewable diesel
dc.contributor.affiliation.spa.fl_str_mv Química de Recursos Energéticos y Medio Ambiente, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, UdeA - Colombia, Calle 70 No. 52-21, Medellín, Colombia; Universidad de Antioquia, Energy Resources and Environmental Chemistry Group, Colombia; University of Medellin in Colombia, Colombia; Institute of Chemistry, Energy Resources and Environmental Chemistry Group, University of Antioquia, Colombia
dc.subject.keyword.eng.fl_str_mv Activated carbon; Hydroprocessing; Jatropha oil; n-paraffin; NiMo
topic Activated carbon; Hydroprocessing; Jatropha oil; n-paraffin; NiMo
description Due to their weak polarity and large surface area, activated carbon supports have the potential to enhance the dispersion of metal-sulfides. It is expected that the absence of a strong metal-support interaction can result in the formation of a very active and stable Ni-Mo-S phase. In this study, catalysts with different amounts of nickel and molybdenum supported on a commercial activated carbon were prepared by a co-impregnation method and characterized by BET, XRF, and SEM techniques. The catalytic activity for hydroprocessing of Jatropha oil was evaluated in a batch reactor, and the composition of the liquid and gaseous products were determined. Results showed that gaseous products are mainly composed of high amounts of propane and small amounts of other light hydrocarbons (C1 to C5). Liquid hydrocarbon products consisted of a mixture containing mainly n-paraffins of C15-C18 and some oxygenated compounds. The catalysts with a mass fraction of 3 % Ni, 15 % Mo (Ni3Mo15/AC) presented the highest selectivity toward C17-C18 hydrocarbons, with a product distribution similar to a commercial alumina-supported Ni-Mo-S catalyst.
publishDate 2017
dc.date.created.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2018-04-13T16:34:37Z
dc.date.available.none.fl_str_mv 2018-04-13T16:34:37Z
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 1227483
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4566
dc.identifier.doi.none.fl_str_mv 10.11144/Javeriana.SC22-1.nsoa
identifier_str_mv 1227483
10.11144/Javeriana.SC22-1.nsoa
url http://hdl.handle.net/11407/4566
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019095232&doi=10.11144%2fJaveriana.SC22-1.nsoa&partnerID=40&md5=d8f26d59fb04c9d749b6d71154061dcf
dc.relation.ispartofes.spa.fl_str_mv Universitas Scientiarum
dc.relation.references.spa.fl_str_mv Breysse, M., Geantet, C., Afanasiev, P., Blanchard, J., Vrinat, M., Recent studies on the preparation, activation and design of active phases and supports of hydrotreating catalysts (2008) Catalysis Today, 130 (1), pp. 3-13; Chen, N., Gong, S., Qian, E.W., Single-step Hydroconversion of Jatropha Oil to High Quality Fuel Oil over Reduced Nickel-Molybdenum catalysts (2013) Journal of the Japan Petroleum Institute, 56 (1), pp. 249-252; Furimsky, E., Chemistry of Catalytic Hydrodeoxygenation, Catalysis Reviews (1983) Science and Engineering, 25, pp. 421-458; García-Dávila, J., Ocaranza-Sánchez, E., Rojas-López, M., Muñoz-Arroyo, J.A., Ramírez, J., Martínez-Ayala, A.L., Jatropha curcas L. oil hydroconversion over hydrodesulfurization catalysts for biofuel production (2014) Fuel, 135, pp. 380-386; Kouzu, M., Kuriki, Y., Hamdy, F., Sakanishi, K., Sugimoto, Y., Saito, I., Catalytic potential of carbon-supported NiMo-sulfide for ultra-deep hydrodesulfurization of diesel fuel (2004) Applied Catalysis A: General, 265 (1), pp. 61-67; Kubicka, D., Kaluza, L., Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts (2010) Applied Catalysis A: General, 372 (2), pp. 199-208; Kukushkin, R.G., Bulavchenko, O.A., Kaichev, V.V., Yakovlev, V.A., Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters, Applied Catalysis B (2015) Environmental, 163, pp. 531-538; Kumar Tiwari, A., Kumar, A., Raheman, H., Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process (2007) Biomass and Bioenergy, 31 (8), pp. 569-575; Laniecki, M., Ignacik, M., Water - gas shift reaction over sulfided molybdenum catalysts supported on TiO 2 - ZrO 2 mixed oxides Support characterization and catalytic activity (2006) Catalysis Today, 116, pp. 400-407; Liu, J., Fan, K., Tian, W., Liu, C., Rong, L., Hydroprocessing of Jatropha oil over NiMoCe/Al2O3 catalyst (2012) International Journal of Hydrogen Energy, 37 (23), pp. 17731-17737; Martinez-Herrera, J., Siddhuraju, P., Francis, G., Davila-Ortiz, G., Becker, K., Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico (2006) Food Chemistry, 96 (1), pp. 80-89; Mukherjee, P., Varshney, A., Johnson, T.S., Jha, T.B., Jatropha curcas: A review on biotechnological status and challenges (2011) Plant Biotechnology Reports, 5 (3), pp. 197-215; Nikulshin, P.A., Salnikov, V.A., Mozhaev, A.V., Minaev, P.P., Kogan, V.M., Pimerzin, A.A., Relationship between active phase morphology and catalytic properties of the carbon-alumina- supported Co(Ni)Mo catalysts in HDS and HYD reactions (2014) Journal of Catalysis, 309, pp. 386-396; Romero, M.J.A., Pizzi, A., Toscano, G., Busca, G., Bosio, B., Arato, E., Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels (2015) Waste Management, 47, pp. 62-68. , (New York, N.Y.); Sankaranarayanan, T.M., Banu, M., Pandurangan, A., Sivasanker, S., Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites (2011) Bioresource Technology, 102 (22), pp. 10717-10723; Satyarthi, J.K., Chiranjeevi, T., Gokak, D.T., Viswanathan, P.S., An overview of catalytic conversion of vegetable oils/fats into middle distillates (2013) Catalysis Science & Technology, 3 (1), pp. 70-80; Sotelo-boy, R., Liu, Y., Minowa, T., Renewable Diesel Production from the Hydrotreating of Rapeseed Oil with Pt / Zeolite and NiMo / Al2 O3 Catalysts (2011) Industrial & Engineering Chemistry Research, 50 (5), pp. 2791-2799; Srifa, A., Faungnawakij, K., Itthibenchapong, V., Viriya-empikul, N., Charinpanitkul, T., Assabumrungrat, S., Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst (2014) Bioresource Technology, 158, pp. 81-90; Verma, D., Rana, B.S., Kumar, R., Sibi, M.G., Sinha, A.K., Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11, Applied Catalysis A (2015) General, 490, pp. 108-116; Wang, H.Y., Jiao, T.T., Li, Z.X., Li, C.S., Zhang, S.J., Zhang, J.L., Study on palm oil hydrogenation for clean fuel over Ni-Mo-W/γ-Al2O3-ZSM-5 catalyst (2015) Fuel Processing Technology, 139, pp. 91-99
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Pontificia Universidad Javeriana
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159230125473792
spelling 2018-04-13T16:34:37Z2018-04-13T16:34:37Z20171227483http://hdl.handle.net/11407/456610.11144/Javeriana.SC22-1.nsoaDue to their weak polarity and large surface area, activated carbon supports have the potential to enhance the dispersion of metal-sulfides. It is expected that the absence of a strong metal-support interaction can result in the formation of a very active and stable Ni-Mo-S phase. In this study, catalysts with different amounts of nickel and molybdenum supported on a commercial activated carbon were prepared by a co-impregnation method and characterized by BET, XRF, and SEM techniques. The catalytic activity for hydroprocessing of Jatropha oil was evaluated in a batch reactor, and the composition of the liquid and gaseous products were determined. Results showed that gaseous products are mainly composed of high amounts of propane and small amounts of other light hydrocarbons (C1 to C5). Liquid hydrocarbon products consisted of a mixture containing mainly n-paraffins of C15-C18 and some oxygenated compounds. The catalysts with a mass fraction of 3 % Ni, 15 % Mo (Ni3Mo15/AC) presented the highest selectivity toward C17-C18 hydrocarbons, with a product distribution similar to a commercial alumina-supported Ni-Mo-S catalyst.engPontificia Universidad JaverianaFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85019095232&doi=10.11144%2fJaveriana.SC22-1.nsoa&partnerID=40&md5=d8f26d59fb04c9d749b6d71154061dcfUniversitas ScientiarumBreysse, M., Geantet, C., Afanasiev, P., Blanchard, J., Vrinat, M., Recent studies on the preparation, activation and design of active phases and supports of hydrotreating catalysts (2008) Catalysis Today, 130 (1), pp. 3-13; Chen, N., Gong, S., Qian, E.W., Single-step Hydroconversion of Jatropha Oil to High Quality Fuel Oil over Reduced Nickel-Molybdenum catalysts (2013) Journal of the Japan Petroleum Institute, 56 (1), pp. 249-252; Furimsky, E., Chemistry of Catalytic Hydrodeoxygenation, Catalysis Reviews (1983) Science and Engineering, 25, pp. 421-458; García-Dávila, J., Ocaranza-Sánchez, E., Rojas-López, M., Muñoz-Arroyo, J.A., Ramírez, J., Martínez-Ayala, A.L., Jatropha curcas L. oil hydroconversion over hydrodesulfurization catalysts for biofuel production (2014) Fuel, 135, pp. 380-386; Kouzu, M., Kuriki, Y., Hamdy, F., Sakanishi, K., Sugimoto, Y., Saito, I., Catalytic potential of carbon-supported NiMo-sulfide for ultra-deep hydrodesulfurization of diesel fuel (2004) Applied Catalysis A: General, 265 (1), pp. 61-67; Kubicka, D., Kaluza, L., Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts (2010) Applied Catalysis A: General, 372 (2), pp. 199-208; Kukushkin, R.G., Bulavchenko, O.A., Kaichev, V.V., Yakovlev, V.A., Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters, Applied Catalysis B (2015) Environmental, 163, pp. 531-538; Kumar Tiwari, A., Kumar, A., Raheman, H., Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process (2007) Biomass and Bioenergy, 31 (8), pp. 569-575; Laniecki, M., Ignacik, M., Water - gas shift reaction over sulfided molybdenum catalysts supported on TiO 2 - ZrO 2 mixed oxides Support characterization and catalytic activity (2006) Catalysis Today, 116, pp. 400-407; Liu, J., Fan, K., Tian, W., Liu, C., Rong, L., Hydroprocessing of Jatropha oil over NiMoCe/Al2O3 catalyst (2012) International Journal of Hydrogen Energy, 37 (23), pp. 17731-17737; Martinez-Herrera, J., Siddhuraju, P., Francis, G., Davila-Ortiz, G., Becker, K., Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico (2006) Food Chemistry, 96 (1), pp. 80-89; Mukherjee, P., Varshney, A., Johnson, T.S., Jha, T.B., Jatropha curcas: A review on biotechnological status and challenges (2011) Plant Biotechnology Reports, 5 (3), pp. 197-215; Nikulshin, P.A., Salnikov, V.A., Mozhaev, A.V., Minaev, P.P., Kogan, V.M., Pimerzin, A.A., Relationship between active phase morphology and catalytic properties of the carbon-alumina- supported Co(Ni)Mo catalysts in HDS and HYD reactions (2014) Journal of Catalysis, 309, pp. 386-396; Romero, M.J.A., Pizzi, A., Toscano, G., Busca, G., Bosio, B., Arato, E., Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels (2015) Waste Management, 47, pp. 62-68. , (New York, N.Y.); Sankaranarayanan, T.M., Banu, M., Pandurangan, A., Sivasanker, S., Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites (2011) Bioresource Technology, 102 (22), pp. 10717-10723; Satyarthi, J.K., Chiranjeevi, T., Gokak, D.T., Viswanathan, P.S., An overview of catalytic conversion of vegetable oils/fats into middle distillates (2013) Catalysis Science & Technology, 3 (1), pp. 70-80; Sotelo-boy, R., Liu, Y., Minowa, T., Renewable Diesel Production from the Hydrotreating of Rapeseed Oil with Pt / Zeolite and NiMo / Al2 O3 Catalysts (2011) Industrial & Engineering Chemistry Research, 50 (5), pp. 2791-2799; Srifa, A., Faungnawakij, K., Itthibenchapong, V., Viriya-empikul, N., Charinpanitkul, T., Assabumrungrat, S., Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst (2014) Bioresource Technology, 158, pp. 81-90; Verma, D., Rana, B.S., Kumar, R., Sibi, M.G., Sinha, A.K., Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11, Applied Catalysis A (2015) General, 490, pp. 108-116; Wang, H.Y., Jiao, T.T., Li, Z.X., Li, C.S., Zhang, S.J., Zhang, J.L., Study on palm oil hydrogenation for clean fuel over Ni-Mo-W/γ-Al2O3-ZSM-5 catalyst (2015) Fuel Processing Technology, 139, pp. 91-99ScopusNiMo-sulfide supported on activated carbon to produce renewable dieselArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Química de Recursos Energéticos y Medio Ambiente, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, UdeA - Colombia, Calle 70 No. 52-21, Medellín, Colombia; Universidad de Antioquia, Energy Resources and Environmental Chemistry Group, Colombia; University of Medellin in Colombia, Colombia; Institute of Chemistry, Energy Resources and Environmental Chemistry Group, University of Antioquia, ColombiaTapia J., Acelas N.Y., López D., Moreno A.Tapia, J., Química de Recursos Energéticos y Medio Ambiente, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, UdeA - Colombia, Calle 70 No. 52-21, Medellín, Colombia, Universidad de Antioquia, Energy Resources and Environmental Chemistry Group, Colombia; Acelas, N.Y., University of Medellin in Colombia, Colombia; López, D., Química de Recursos Energéticos y Medio Ambiente, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, UdeA - Colombia, Calle 70 No. 52-21, Medellín, Colombia, Universidad de Antioquia, Energy Resources and Environmental Chemistry Group, Colombia; Moreno, A., Química de Recursos Energéticos y Medio Ambiente, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, UdeA - Colombia, Calle 70 No. 52-21, Medellín, Colombia, Institute of Chemistry, Energy Resources and Environmental Chemistry Group, University of Antioquia, ColombiaActivated carbon; Hydroprocessing; Jatropha oil; n-paraffin; NiMoDue to their weak polarity and large surface area, activated carbon supports have the potential to enhance the dispersion of metal-sulfides. It is expected that the absence of a strong metal-support interaction can result in the formation of a very active and stable Ni-Mo-S phase. In this study, catalysts with different amounts of nickel and molybdenum supported on a commercial activated carbon were prepared by a co-impregnation method and characterized by BET, XRF, and SEM techniques. The catalytic activity for hydroprocessing of Jatropha oil was evaluated in a batch reactor, and the composition of the liquid and gaseous products were determined. Results showed that gaseous products are mainly composed of high amounts of propane and small amounts of other light hydrocarbons (C1 to C5). Liquid hydrocarbon products consisted of a mixture containing mainly n-paraffins of C15-C18 and some oxygenated compounds. The catalysts with a mass fraction of 3 % Ni, 15 % Mo (Ni3Mo15/AC) presented the highest selectivity toward C17-C18 hydrocarbons, with a product distribution similar to a commercial alumina-supported Ni-Mo-S catalyst.http://purl.org/coar/access_right/c_16ec11407/4566oai:repository.udem.edu.co:11407/45662020-05-27 18:33:12.657Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co