In this paper, we define and discuss a class of generalized Wishart distributions under elliptical models. We derive the non-central moments of the likelihood ratio statistic for testing the equality of two covariance matrices under elliptical models for the corresponding matrices. Known classical e...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/1347
- Acceso en línea:
- http://hdl.handle.net/11407/1347
- Palabra clave:
- Elliptical models
H-function
Likelihood ratio statistic
Mellin transform
Zonal polynomials
- Rights
- restrictedAccess
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_4181e1088b8e5e6c2a2abd6145915354 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/1347 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
spelling |
2015-10-09T13:17:49Z2015-10-09T13:17:49Z20149727671http://hdl.handle.net/11407/1347In this paper, we define and discuss a class of generalized Wishart distributions under elliptical models. We derive the non-central moments of the likelihood ratio statistic for testing the equality of two covariance matrices under elliptical models for the corresponding matrices. Known classical expressions for the Gaussian model are then deduced from these general results. Finally, the exact distribution of the Wilks’ statistic under a specific distribution, including the Gaussian distribution as a particular member, is derived.engIndian Statistical Institutehttp://link.springer.com/article/10.1007%2Fs13171-013-0047-7#page-1Sankhya: The Indian Journal of Statistics, agosto de 2014, volume 76, pp 179-194ScopusArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecDepartamento de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaCentro de Investigación en, Matemáticas, Monterrey, MexicoDepartment of Mathematics and Statistics, McMaster University, Hamilton, ON, CanadaDepartment of Statistics, King AbdulAziz University, Jeddah, Saudi ArabiaCaro-Lopera F.J.Gonzalez-Farias G.Balakrishnan N.Elliptical modelsH-functionLikelihood ratio statisticMellin transformZonal polynomialsOn generalized wishart distributions - I: Likelihood ratio test for homogeneity of covariance matrices11407/1347oai:repository.udem.edu.co:11407/13472020-05-27 16:32:05.008Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |
dc.title.english.eng.fl_str_mv |
On generalized wishart distributions - I: Likelihood ratio test for homogeneity of covariance matrices |
dc.contributor.affiliation.spa.fl_str_mv |
Departamento de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia Centro de Investigación en, Matemáticas, Monterrey, Mexico Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada Department of Statistics, King AbdulAziz University, Jeddah, Saudi Arabia |
dc.subject.keyword.eng.fl_str_mv |
Elliptical models H-function Likelihood ratio statistic Mellin transform Zonal polynomials |
topic |
Elliptical models H-function Likelihood ratio statistic Mellin transform Zonal polynomials |
spellingShingle |
Elliptical models H-function Likelihood ratio statistic Mellin transform Zonal polynomials |
description |
In this paper, we define and discuss a class of generalized Wishart distributions under elliptical models. We derive the non-central moments of the likelihood ratio statistic for testing the equality of two covariance matrices under elliptical models for the corresponding matrices. Known classical expressions for the Gaussian model are then deduced from these general results. Finally, the exact distribution of the Wilks’ statistic under a specific distribution, including the Gaussian distribution as a particular member, is derived. |
publishDate |
2014 |
dc.date.created.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2015-10-09T13:17:49Z |
dc.date.available.none.fl_str_mv |
2015-10-09T13:17:49Z |
dc.type.eng.fl_str_mv |
Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
9727671 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/1347 |
identifier_str_mv |
9727671 |
url |
http://hdl.handle.net/11407/1347 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
http://link.springer.com/article/10.1007%2Fs13171-013-0047-7#page-1 |
dc.relation.ispartofen.eng.fl_str_mv |
Sankhya: The Indian Journal of Statistics, agosto de 2014, volume 76, pp 179-194 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Indian Statistical Institute |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159150214545408 |