Improvement of the algorithm ADR in an internet of things network LoRaWAN by using machine learning [Mejoramiento del algoritmo ADR en una red de internet de las cosas LoRaWAN usando aprendizaje de máquina]
The Internet of Things (IoT) is an enabling paradigm for Industry 4.0, where sensors and actuators connect to the Internet. The protocol LoRaWAN (Long Range Area Network) is one of the most used in the IoT, and its primary objective is to transmit sensor information over long distances with minimal...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5968
- Acceso en línea:
- http://hdl.handle.net/11407/5968
- Palabra clave:
- Energy consumption
Industry 4.0
Internet of Things
LoRaWAN
Machine Learning
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_3fcb2e541aaacbc12a1b4f78df2bd892 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5968 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Improvement of the algorithm ADR in an internet of things network LoRaWAN by using machine learning [Mejoramiento del algoritmo ADR en una red de internet de las cosas LoRaWAN usando aprendizaje de máquina] |
title |
Improvement of the algorithm ADR in an internet of things network LoRaWAN by using machine learning [Mejoramiento del algoritmo ADR en una red de internet de las cosas LoRaWAN usando aprendizaje de máquina] |
spellingShingle |
Improvement of the algorithm ADR in an internet of things network LoRaWAN by using machine learning [Mejoramiento del algoritmo ADR en una red de internet de las cosas LoRaWAN usando aprendizaje de máquina] Energy consumption Industry 4.0 Internet of Things LoRaWAN Machine Learning |
title_short |
Improvement of the algorithm ADR in an internet of things network LoRaWAN by using machine learning [Mejoramiento del algoritmo ADR en una red de internet de las cosas LoRaWAN usando aprendizaje de máquina] |
title_full |
Improvement of the algorithm ADR in an internet of things network LoRaWAN by using machine learning [Mejoramiento del algoritmo ADR en una red de internet de las cosas LoRaWAN usando aprendizaje de máquina] |
title_fullStr |
Improvement of the algorithm ADR in an internet of things network LoRaWAN by using machine learning [Mejoramiento del algoritmo ADR en una red de internet de las cosas LoRaWAN usando aprendizaje de máquina] |
title_full_unstemmed |
Improvement of the algorithm ADR in an internet of things network LoRaWAN by using machine learning [Mejoramiento del algoritmo ADR en una red de internet de las cosas LoRaWAN usando aprendizaje de máquina] |
title_sort |
Improvement of the algorithm ADR in an internet of things network LoRaWAN by using machine learning [Mejoramiento del algoritmo ADR en una red de internet de las cosas LoRaWAN usando aprendizaje de máquina] |
dc.subject.spa.fl_str_mv |
Energy consumption Industry 4.0 Internet of Things LoRaWAN Machine Learning |
topic |
Energy consumption Industry 4.0 Internet of Things LoRaWAN Machine Learning |
description |
The Internet of Things (IoT) is an enabling paradigm for Industry 4.0, where sensors and actuators connect to the Internet. The protocol LoRaWAN (Long Range Area Network) is one of the most used in the IoT, and its primary objective is to transmit sensor information over long distances with minimal energy consumption. This protocol implements Adaptive Data Rate scheme to optimize the energy consumed per node, which, when evaluated through exhaustive simulations in Omnet ++, has exhibited opportunities for improvement in convergence time. The present work shows machine learning models based on parametric and non-parametric methods based on Support Vector Machines (SVM) and Artificial Neural Networks (ANN). The results indicate that the SVM and ANN methods have a success rate greater than 90% in the estimated parameters. © 2020, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:20Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:20Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
16469895 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5968 |
dc.identifier.doi.none.fl_str_mv |
10.17013/risti.39.67-83 |
identifier_str_mv |
16469895 10.17013/risti.39.67-83 |
url |
http://hdl.handle.net/11407/5968 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096957529&doi=10.17013%2fristi.39.67-83&partnerID=40&md5=c79d738b60d7ba057aa7880318f398eb |
dc.relation.citationvolume.none.fl_str_mv |
2020 |
dc.relation.citationissue.none.fl_str_mv |
39 |
dc.relation.citationstartpage.none.fl_str_mv |
67 |
dc.relation.citationendpage.none.fl_str_mv |
83 |
dc.relation.references.none.fl_str_mv |
Abdelfadeel, K.Q., Cionca, V., Pesch, D., Fair adaptive data rate allocation and power control in lorawan (2018) 2018 IEEE 19Th International Symposium on” a World of Wireless, Mobile and Multimedia Networks”(WoWMoM)., , Paper presented at the Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., Watteyne, T., Understanding the limits of LoRaWAN (2017) IEEE Communications Magazine, 55 (9), pp. 34-40 Bouguera, T., Diouris, J.-F., Chaillout, J.-J., Jaouadi, R., Andrieux, G., Energy consumption model for sensor nodes based on LoRa and LoRaWAN (2018) Sensors, 18 (7), p. 2104 Chen, M., Mao, S., Liu, Y., Big data: A survey (2014) Mobile Networks and Applications, 19 (2), pp. 171-209 de Carvalho-Silva, J., Rodrigues, J.J., Alberti, A.M., Solic, P., Aquino, A.L., LoRaWAN—A low power WAN protocol for Internet of Things: A review and opportunities (2017) Proceedings of the 2017 2Nd International Multidisciplinary Conference on Computer and Energy Science, , SpliTech Gao, W., Du, W., Zhao, Z., Min, G., Singhal, M., Towards Energy-Fairness in LoRa Networks (2019) Proceedings of the 2019 IEEE 39Th International Conference on Distributed Computing Systems (ICDCS) Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M., Industry 4.0 (2014) Business & Information Systems Engineering, 6 (4), pp. 239-242 Lavric, A., Petrariu, A.I., Popa, V., Long range sigfox communication protocol scalability analysis under large-scale, high-density conditions (2019) IEEE Access, 7, pp. 35816-35825 Lee, J., Davari, H., Singh, J., Pandhare, V., Industrial Artificial Intelligence for industry 4.0-based manufacturing systems (2018) Manufacturing Letters, 18, pp. 20-23 Li, S., Raza, U., Khan, A., How Agile is the Adaptive Data Rate Mechanism of LoRaWAN? (2018) Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM) Noble, W.S., What is a support vector machine? (2006) Nature Biotechnology, 24 (12), pp. 1565-1567 Petrasch, R., Hentschke, R., Process modeling for Industry 4.0 applications: Towards an Industry 4.0 process modeling language and method (2016) Proceedings of the 2016 13Th International Joint Conference on Computer Science and Software Engineering (JCSSE) Ratasuk, R., Vejlgaard, B., Mangalvedhe, N., Ghosh, A., NB-IoT system for M2M communication (2016) Proceedings of the The 2016 IEEE Wireless Communications and Networking Conference Reynders, B., Meert, W., Pollin, S., Power and spreading factor control in low power wide area networks (2017) Proceedings of the 2017 IEEE International Conference on Communications (ICC) Reynders, B., Pollin, S., Chirp spread spectrum as a modulation technique for long range communication (2016) Paper Presented at the 2016 Symposium on Communications and Vehicular Technologies (SCVT). San Cheong, P., Bergs, J., Hawinkel, C., Famaey, J., Comparison of LoRaWAN classes and their power consumption (2017) Paper Presented at the 2017 IEEE Symposium on Communications and Vehicular Technology (SCVT). Sandoval, R.M., Garcia-Sanchez, A.-J., Garcia-Haro, J., Performance optimization of LoRa nodes for the future smart city/industry (2019) EURASIP Journal on Wireless Communications and Networking, 2019 (1), pp. 1-13 Sandoval, R.M., Rodenas-Herraiz, D., Garcia-Sanchez, A.-J., Garcia-Haro, J., Deriving and Updating Optimal Transmission Configurations for Lora Networks (2020) IEEE Access, 8, pp. 38586-38595 Schwab, K., (2017) The Fourth Industrial Revolution, , Penguin Random House Grupo Editorial España, 2016 Slabicki, M., Premsankar, G., Di Francesco, M., Adaptive configuration of LoRa networks for dense IoT deployments (2018) Paper Presented at the NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium. Sornin, N., Luis, M., Eirich, T., Kramp, T., Hersent, O., (2015) Lorawan Specification. Lora Alliance, , https://www.lora-alliance.org Wollschlaeger, M., Sauter, T., Jasperneite, J., The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0 (2017) IEEE Industrial Electronics Magazine, 11 (1), pp. 17-27 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Associacao Iberica de Sistemas e Tecnologias de Informacao |
dc.publisher.program.spa.fl_str_mv |
Ingeniería de Telecomunicaciones |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Associacao Iberica de Sistemas e Tecnologias de Informacao |
dc.source.none.fl_str_mv |
RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159121921867776 |
spelling |
20202021-02-05T14:58:20Z2021-02-05T14:58:20Z16469895http://hdl.handle.net/11407/596810.17013/risti.39.67-83The Internet of Things (IoT) is an enabling paradigm for Industry 4.0, where sensors and actuators connect to the Internet. The protocol LoRaWAN (Long Range Area Network) is one of the most used in the IoT, and its primary objective is to transmit sensor information over long distances with minimal energy consumption. This protocol implements Adaptive Data Rate scheme to optimize the energy consumed per node, which, when evaluated through exhaustive simulations in Omnet ++, has exhibited opportunities for improvement in convergence time. The present work shows machine learning models based on parametric and non-parametric methods based on Support Vector Machines (SVM) and Artificial Neural Networks (ANN). The results indicate that the SVM and ANN methods have a success rate greater than 90% in the estimated parameters. © 2020, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.spaAssociacao Iberica de Sistemas e Tecnologias de InformacaoIngeniería de TelecomunicacionesFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85096957529&doi=10.17013%2fristi.39.67-83&partnerID=40&md5=c79d738b60d7ba057aa7880318f398eb2020396783Abdelfadeel, K.Q., Cionca, V., Pesch, D., Fair adaptive data rate allocation and power control in lorawan (2018) 2018 IEEE 19Th International Symposium on” a World of Wireless, Mobile and Multimedia Networks”(WoWMoM)., , Paper presented at theAdelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., Watteyne, T., Understanding the limits of LoRaWAN (2017) IEEE Communications Magazine, 55 (9), pp. 34-40Bouguera, T., Diouris, J.-F., Chaillout, J.-J., Jaouadi, R., Andrieux, G., Energy consumption model for sensor nodes based on LoRa and LoRaWAN (2018) Sensors, 18 (7), p. 2104Chen, M., Mao, S., Liu, Y., Big data: A survey (2014) Mobile Networks and Applications, 19 (2), pp. 171-209de Carvalho-Silva, J., Rodrigues, J.J., Alberti, A.M., Solic, P., Aquino, A.L., LoRaWAN—A low power WAN protocol for Internet of Things: A review and opportunities (2017) Proceedings of the 2017 2Nd International Multidisciplinary Conference on Computer and Energy Science, , SpliTechGao, W., Du, W., Zhao, Z., Min, G., Singhal, M., Towards Energy-Fairness in LoRa Networks (2019) Proceedings of the 2019 IEEE 39Th International Conference on Distributed Computing Systems (ICDCS)Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M., Industry 4.0 (2014) Business & Information Systems Engineering, 6 (4), pp. 239-242Lavric, A., Petrariu, A.I., Popa, V., Long range sigfox communication protocol scalability analysis under large-scale, high-density conditions (2019) IEEE Access, 7, pp. 35816-35825Lee, J., Davari, H., Singh, J., Pandhare, V., Industrial Artificial Intelligence for industry 4.0-based manufacturing systems (2018) Manufacturing Letters, 18, pp. 20-23Li, S., Raza, U., Khan, A., How Agile is the Adaptive Data Rate Mechanism of LoRaWAN? (2018) Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM)Noble, W.S., What is a support vector machine? (2006) Nature Biotechnology, 24 (12), pp. 1565-1567Petrasch, R., Hentschke, R., Process modeling for Industry 4.0 applications: Towards an Industry 4.0 process modeling language and method (2016) Proceedings of the 2016 13Th International Joint Conference on Computer Science and Software Engineering (JCSSE)Ratasuk, R., Vejlgaard, B., Mangalvedhe, N., Ghosh, A., NB-IoT system for M2M communication (2016) Proceedings of the The 2016 IEEE Wireless Communications and Networking ConferenceReynders, B., Meert, W., Pollin, S., Power and spreading factor control in low power wide area networks (2017) Proceedings of the 2017 IEEE International Conference on Communications (ICC)Reynders, B., Pollin, S., Chirp spread spectrum as a modulation technique for long range communication (2016) Paper Presented at the 2016 Symposium on Communications and Vehicular Technologies (SCVT).San Cheong, P., Bergs, J., Hawinkel, C., Famaey, J., Comparison of LoRaWAN classes and their power consumption (2017) Paper Presented at the 2017 IEEE Symposium on Communications and Vehicular Technology (SCVT).Sandoval, R.M., Garcia-Sanchez, A.-J., Garcia-Haro, J., Performance optimization of LoRa nodes for the future smart city/industry (2019) EURASIP Journal on Wireless Communications and Networking, 2019 (1), pp. 1-13Sandoval, R.M., Rodenas-Herraiz, D., Garcia-Sanchez, A.-J., Garcia-Haro, J., Deriving and Updating Optimal Transmission Configurations for Lora Networks (2020) IEEE Access, 8, pp. 38586-38595Schwab, K., (2017) The Fourth Industrial Revolution, , Penguin Random House Grupo Editorial España, 2016Slabicki, M., Premsankar, G., Di Francesco, M., Adaptive configuration of LoRa networks for dense IoT deployments (2018) Paper Presented at the NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium.Sornin, N., Luis, M., Eirich, T., Kramp, T., Hersent, O., (2015) Lorawan Specification. Lora Alliance, , https://www.lora-alliance.orgWollschlaeger, M., Sauter, T., Jasperneite, J., The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0 (2017) IEEE Industrial Electronics Magazine, 11 (1), pp. 17-27RISTI - Revista Iberica de Sistemas e Tecnologias de InformacaoEnergy consumptionIndustry 4.0Internet of ThingsLoRaWANMachine LearningImprovement of the algorithm ADR in an internet of things network LoRaWAN by using machine learning [Mejoramiento del algoritmo ADR en una red de internet de las cosas LoRaWAN usando aprendizaje de máquina]Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1González-Palacio, M., Ingeniería de Telecomunicaciones, Universidad de Medellín, Medellín, 050082, ColombiaSepúlveda-Cano, L.M., Ingeniería de Sistemas, Universidad de Medellín, Medellín, 050082, ColombiaQuiza-Montealegre, J., Ingeniería de Telecomunicaciones, Universidad de Medellín, Medellín, 050082, ColombiaD’amato, J., Instituto Pladema, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, B7001BBO, Argentinahttp://purl.org/coar/access_right/c_16ecGonzález-Palacio M.Sepúlveda-Cano L.M.Quiza-Montealegre J.D’amato J.11407/5968oai:repository.udem.edu.co:11407/59682021-02-05 09:58:20.874Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |