Self-consistent assessment of Englert-Schwinger model on atomic properties

Our manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES mode...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4563
Acceso en línea:
http://hdl.handle.net/11407/4563
Palabra clave:
Physical chemistry; Physics; Atomic properties; Free model; Kohn shams; Pauli potentials; Self-consistent solution; Thomas-Fermi; Atoms
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_3faeef11840deb71b9d8af284e53d7dd
oai_identifier_str oai:repository.udem.edu.co:11407/4563
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Self-consistent assessment of Englert-Schwinger model on atomic properties
title Self-consistent assessment of Englert-Schwinger model on atomic properties
spellingShingle Self-consistent assessment of Englert-Schwinger model on atomic properties
Physical chemistry; Physics; Atomic properties; Free model; Kohn shams; Pauli potentials; Self-consistent solution; Thomas-Fermi; Atoms
title_short Self-consistent assessment of Englert-Schwinger model on atomic properties
title_full Self-consistent assessment of Englert-Schwinger model on atomic properties
title_fullStr Self-consistent assessment of Englert-Schwinger model on atomic properties
title_full_unstemmed Self-consistent assessment of Englert-Schwinger model on atomic properties
title_sort Self-consistent assessment of Englert-Schwinger model on atomic properties
dc.contributor.affiliation.spa.fl_str_mv COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, Aalto, Finland; Universidad de Medellín, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv Physical chemistry; Physics; Atomic properties; Free model; Kohn shams; Pauli potentials; Self-consistent solution; Thomas-Fermi; Atoms
topic Physical chemistry; Physics; Atomic properties; Free model; Kohn shams; Pauli potentials; Self-consistent solution; Thomas-Fermi; Atoms
description Our manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES model generally offers the same accuracy as the well-known TFD-15vW model; however, the ES model corrects the failure in the Pauli potential near-nucleus region. We also point to the inability of describing low-Z atoms as the foremost concern in improving the present model. © 2017 Author(s).
publishDate 2017
dc.date.created.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2018-04-13T16:34:23Z
dc.date.available.none.fl_str_mv 2018-04-13T16:34:23Z
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 219606
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4563
dc.identifier.doi.none.fl_str_mv 10.1063/1.5000908
identifier_str_mv 219606
10.1063/1.5000908
url http://hdl.handle.net/11407/4563
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038964477&doi=10.1063%2f1.5000908&partnerID=40&md5=ddb7fb4daea931cc95a8611e7ea903ce
dc.relation.ispartofes.spa.fl_str_mv Journal of Chemical Physics
dc.relation.references.spa.fl_str_mv Englert, B.-G., Schwinger, J., (1984) Phys. Rev. A, 29, p. 2331; Englert, B.-G., Schwinger, J., (1984) Phys. Rev. A, 29, p. 2339; Englert, B.-G., Schwinger, J., (1984) Phys. Rev. A, 29, p. 2353; Levy, M., Ou-Yang, H., (1988) Phys. Rev. A, 38, p. 625; Karasiev, V.V., Jones, R.S., Trickey, S.B., Harris, F.E., (2009) Phys. Rev. B, 80; Karasiev, V., Trickey, S., (2012) Comput. Phys. Commun., 183, p. 2519; Levämäki, H., Nagy, A., Kokko, K., Vitos, L., (2015) Phys. Rev. A, 92; Finzel, K., (2016) Theor. Chem. Acc., 135, p. 87; Brockherde, F., Vogt, L., Li, L., Tuckerman, M.E., Burke, K., Müller, K.-R., (2017) Nat. Commun., 8, p. 872; Yao, K., Parkhill, J., (2016) J. Chem. Theory Comput., 12, p. 1139; Snyder, J.C., Rupp, M., Hansen, K., Müller, K.-R., Burke, K., (2012) Phys. Rev. Lett., 108; Watson, S., Jesson, B.J., Carter, E.A., Madden, P.A., (1998) Europhys. Lett., 41, p. 37; Del Rio, B.G., Dieterich, J.M., Carter, E.A., (2017) J. Chem. Theory Comput., 13, p. 3684; Mi, W., Zhang, S., Wang, Y., Ma, Y., Miao, M., (2016) J. Chem. Phys., 144; Lehtomäki, J., Makkonen, I., Caro, M.A., Harju, A., Lopez-Acevedo, O., (2014) J. Chem. Phys., 141; Englert, B.-G., (1988) Semiclassical Theory of Atoms, 300. , Lecture Notes in Physics, 3rd ed. (Springer); Trappe, M.-I., Len, Y.L., Ng, H.K., Müller, C.A., Englert, B.-G., (2016) Phys. Rev. A, 93; Trappe, M.-I., Len, Y.L., Ng, H.K., Englert, B.-G., (2017) Ann. Phys., 385, p. 136; Schwinger, J., (1980) Phys. Rev. A, 22, p. 1827; Dirac, P.A.M., (1930) Math. Proc. Cambridge Philos. Soc., 26, pp. 376-385; Yonei, K., Tomishima, Y., (1965) J. Phys. Soc. Jpn., 20, p. 1051; Mortensen, J.J., Hansen, L.B., Jacobsen, K.W., (2005) Phys. Rev. B, 71; Espinosa Leal, L.A., Karpenko, A., Caro, M.A., Lopez-Acevedo, O., (2015) Phys. Chem. Chem. Phys., 17, p. 31463; Haynes, W., (2012) CRC Handbook of Chemistry and Physics, , 93rd ed. (Taylor & Francis); Karasiev, V.V., Chakraborty, D., Shukruto, O.A., Trickey, S.B., (2013) Phys. Rev. B, 88; Perdew, J.P., Constantin, L.A., (2007) Phys. Rev. B, 75
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv American Institute of Physics Inc.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159115447959552
spelling 2018-04-13T16:34:23Z2018-04-13T16:34:23Z2017219606http://hdl.handle.net/11407/456310.1063/1.5000908Our manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES model generally offers the same accuracy as the well-known TFD-15vW model; however, the ES model corrects the failure in the Pauli potential near-nucleus region. We also point to the inability of describing low-Z atoms as the foremost concern in improving the present model. © 2017 Author(s).engAmerican Institute of Physics Inc.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85038964477&doi=10.1063%2f1.5000908&partnerID=40&md5=ddb7fb4daea931cc95a8611e7ea903ceJournal of Chemical PhysicsEnglert, B.-G., Schwinger, J., (1984) Phys. Rev. A, 29, p. 2331; Englert, B.-G., Schwinger, J., (1984) Phys. Rev. A, 29, p. 2339; Englert, B.-G., Schwinger, J., (1984) Phys. Rev. A, 29, p. 2353; Levy, M., Ou-Yang, H., (1988) Phys. Rev. A, 38, p. 625; Karasiev, V.V., Jones, R.S., Trickey, S.B., Harris, F.E., (2009) Phys. Rev. B, 80; Karasiev, V., Trickey, S., (2012) Comput. Phys. Commun., 183, p. 2519; Levämäki, H., Nagy, A., Kokko, K., Vitos, L., (2015) Phys. Rev. A, 92; Finzel, K., (2016) Theor. Chem. Acc., 135, p. 87; Brockherde, F., Vogt, L., Li, L., Tuckerman, M.E., Burke, K., Müller, K.-R., (2017) Nat. Commun., 8, p. 872; Yao, K., Parkhill, J., (2016) J. Chem. Theory Comput., 12, p. 1139; Snyder, J.C., Rupp, M., Hansen, K., Müller, K.-R., Burke, K., (2012) Phys. Rev. Lett., 108; Watson, S., Jesson, B.J., Carter, E.A., Madden, P.A., (1998) Europhys. Lett., 41, p. 37; Del Rio, B.G., Dieterich, J.M., Carter, E.A., (2017) J. Chem. Theory Comput., 13, p. 3684; Mi, W., Zhang, S., Wang, Y., Ma, Y., Miao, M., (2016) J. Chem. Phys., 144; Lehtomäki, J., Makkonen, I., Caro, M.A., Harju, A., Lopez-Acevedo, O., (2014) J. Chem. Phys., 141; Englert, B.-G., (1988) Semiclassical Theory of Atoms, 300. , Lecture Notes in Physics, 3rd ed. (Springer); Trappe, M.-I., Len, Y.L., Ng, H.K., Müller, C.A., Englert, B.-G., (2016) Phys. Rev. A, 93; Trappe, M.-I., Len, Y.L., Ng, H.K., Englert, B.-G., (2017) Ann. Phys., 385, p. 136; Schwinger, J., (1980) Phys. Rev. A, 22, p. 1827; Dirac, P.A.M., (1930) Math. Proc. Cambridge Philos. Soc., 26, pp. 376-385; Yonei, K., Tomishima, Y., (1965) J. Phys. Soc. Jpn., 20, p. 1051; Mortensen, J.J., Hansen, L.B., Jacobsen, K.W., (2005) Phys. Rev. B, 71; Espinosa Leal, L.A., Karpenko, A., Caro, M.A., Lopez-Acevedo, O., (2015) Phys. Chem. Chem. Phys., 17, p. 31463; Haynes, W., (2012) CRC Handbook of Chemistry and Physics, , 93rd ed. (Taylor & Francis); Karasiev, V.V., Chakraborty, D., Shukruto, O.A., Trickey, S.B., (2013) Phys. Rev. B, 88; Perdew, J.P., Constantin, L.A., (2007) Phys. Rev. B, 75ScopusSelf-consistent assessment of Englert-Schwinger model on atomic propertiesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, Aalto, Finland; Universidad de Medellín, Medellín, ColombiaLehtomäki J., Lopez-Acevedo O.Lehtomäki, J., COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, Aalto, Finland; Lopez-Acevedo, O., COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, Aalto, Finland, Universidad de Medellín, Medellín, ColombiaPhysical chemistry; Physics; Atomic properties; Free model; Kohn shams; Pauli potentials; Self-consistent solution; Thomas-Fermi; AtomsOur manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES model generally offers the same accuracy as the well-known TFD-15vW model; however, the ES model corrects the failure in the Pauli potential near-nucleus region. We also point to the inability of describing low-Z atoms as the foremost concern in improving the present model. © 2017 Author(s).http://purl.org/coar/access_right/c_16ec11407/4563oai:repository.udem.edu.co:11407/45632020-05-27 15:54:37.293Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co