Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]

Objective: This article proposes a prediction model applicable to the propagation of noise generated by fixed sources as the result of the analysis of the phenomena related to the generation and propagation of sound levels and the subsequent correlation between the estimated levels and the data reco...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5664
Acceso en línea:
http://hdl.handle.net/11407/5664
Palabra clave:
ISO 9613 Part 2
Noise
Noise propagation
Data flow analysis
Forecasting
Correlation coefficient
Experimental program
Free field conditions
ISO 9613 Part 2
Meteorological variables
Noise
Noise propagation
Propagation of sounds
Acoustic noise
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_39fe8d35cda60c18d621a3b5855857c5
oai_identifier_str oai:repository.udem.edu.co:11407/5664
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]
title Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]
spellingShingle Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]
ISO 9613 Part 2
Noise
Noise propagation
Data flow analysis
Forecasting
Correlation coefficient
Experimental program
Free field conditions
ISO 9613 Part 2
Meteorological variables
Noise
Noise propagation
Propagation of sounds
Acoustic noise
title_short Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]
title_full Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]
title_fullStr Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]
title_full_unstemmed Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]
title_sort Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]
dc.subject.none.fl_str_mv ISO 9613 Part 2
Noise
Noise propagation
Data flow analysis
Forecasting
Correlation coefficient
Experimental program
Free field conditions
ISO 9613 Part 2
Meteorological variables
Noise
Noise propagation
Propagation of sounds
Acoustic noise
topic ISO 9613 Part 2
Noise
Noise propagation
Data flow analysis
Forecasting
Correlation coefficient
Experimental program
Free field conditions
ISO 9613 Part 2
Meteorological variables
Noise
Noise propagation
Propagation of sounds
Acoustic noise
description Objective: This article proposes a prediction model applicable to the propagation of noise generated by fixed sources as the result of the analysis of the phenomena related to the generation and propagation of sound levels and the subsequent correlation between the estimated levels and the data recorded in the field. Materials and methods: An experimental program was designed that included the measurement of sound pressure levels with a sound level meter in free field conditions for different weather conditions and distances from the noise emission source for comparison with the levels estimated by ISO 9613 Part 2. A statistical analysis of the data recorded in the field was performed to observe their dependence on the meteorological variables recorded during the measurements. Results and discussion: The standard error for the proposed prediction method is 11.4 dB(A), and the absolute average error is 9.1 dB(A). The correlation coefficient of the proposed model is 0.87. A statistically significant relationship exists between the variables at the 95.0% confidence level. Conclusion: A propagation model that presented a better fit than the method of ISO 9613 Part 2 and a higher correlation coefficient was obtained. © 2019, Pontificia Universidad Javeriana. All rights reserved.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:36Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:36Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 1232126
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5664
dc.identifier.doi.none.fl_str_mv 10.11144/Javeriana.iyu23-2.mpng
identifier_str_mv 1232126
10.11144/Javeriana.iyu23-2.mpng
url http://hdl.handle.net/11407/5664
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070234820&doi=10.11144%2fJaveriana.iyu23-2.mpng&partnerID=40&md5=85e338c7ee77b187561dcf479919521c
dc.relation.citationvolume.none.fl_str_mv 23
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.references.none.fl_str_mv Economou, P., Charalampous, P., A comparison of ISO 9613-2 and advanced calculation methods using olive tree labterrain, an outdoor sound propagation software application: Predictions versus experimental results (2012) Proceedings of the Inst. of Acoustics, 34
Wondollek, M., (2009) Sound from Wind Turbines in Forest Areas, Uppsala Universitet, Uppsala, , Sweden, Tech. Rep
Bérengier, M., Outdoor sound propagation: A short review on analytical and numerical approaches (2003) Acta Acustica United with Acustica. [Online], 89, pp. 980-991. , http://acoustique.ec-lyon.fr/publi/berengier_acta03.pdf
Attenborough, K., Developments in modelling and measuring ground impedance (2001) in 17Th International Congress on Acoustics, Rome, pp. 1-2
(1996), ISO 9613-2
(2007) National Physical Laboratory, pp. 1-30. , London
van Den Berg, G., (2006) The Sound of High Winds: The Effect of Atmospheric Stability on Wind Turbine Sound and Microphone Noise, , Ph.D. dissertation, University of Groningen, Groningen
Cummings, J., The variability factor in wind turbine noise (2013) In 5Th International Conference on Wind Turbine Noise, Denver, pp. 1-17
(2003), ). ISO 1996-1
(2010), ISO 3744
Conceição, L., Wind turbine noise prediction (2008) M.S. Thesis, Eng. Aeroesp., Ins. Sup. Téc., Univ, , Téc. de Lisboa, Lisboa
Moriarty, P., Migliore, P., Semi-empirical aeroacoustic noise prediction code for wind turbines (2003) Nat. Ren. Energy Lab. [Online], , http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.197.1153&rep=rep1&type=pdf
Zhu, W., (2004) Modelling of Noise from Wind Turbines, , M.S. thesis, Wind Energy, Tech. Univ. of Denmark. Lyngby
Hoogzaad, S., Measuring and calculating turbine noise immission in the Netherlands, in Wind expert meeting sound propagation models (2009) Stockholm, pp. 7-16
Oerlemans, S., Location and quantification of noise sources on a wind turbine (2006) J. of Sound and Vibration, 299, pp. 869-883
Attenborough, K., A review of ground impedance models for propagation modellingin Forum Acusticum (2002) Sevilla, pp. 1-6
Prospathopoulos, J., Voutsinas, S., Application of a ray theory model to the prediction of noise emission from isolated wind turbines and wind parks (2007) Wind Energy, 10, pp. 103-119
Fuglsang, P., Aagaard, H., Implementation and verification of an aeroacoustic noise prediction model for wind turbines (1996) Risø Nat. Lab. [Online], , http://orbit.dtu.dk/fedora/objects/orbit:90419/datastreams/file_e8a71a1b-af6e-4b39-a587-f0c70097d5ac/content
Kruse, H., (2008) In-Situ Measurement of Ground Impedances, , Ph.D. dissertation, Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky, Universität Oldenburg, Oldenburg
Lamancusa, J.S., (2000) Noise Control, , Pennsylvania: Pennsylvania State University
Molina, F., (1990) Modelo De dispersión Gaussiano De Contaminantes atmosféricos, Ing. San, , Univ. de Antioquia, Medellín
Echeverri, C.A., Simulación de ruido de tránsito automotor como herramienta para el rediseño de rutas de transporte público colectivo en el municipio de Medellín (2011) Revista Ingenierías Universidad De Medellín, 10, pp. 19-29. , Jun
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Pontificia Universidad Javeriana
dc.publisher.program.none.fl_str_mv Ingeniería Ambiental;Ingeniería de Sistemas
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Pontificia Universidad Javeriana
dc.source.none.fl_str_mv Ingenieria y Universidad
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481165012631552
spelling 20192020-04-29T14:53:36Z2020-04-29T14:53:36Z1232126http://hdl.handle.net/11407/566410.11144/Javeriana.iyu23-2.mpngObjective: This article proposes a prediction model applicable to the propagation of noise generated by fixed sources as the result of the analysis of the phenomena related to the generation and propagation of sound levels and the subsequent correlation between the estimated levels and the data recorded in the field. Materials and methods: An experimental program was designed that included the measurement of sound pressure levels with a sound level meter in free field conditions for different weather conditions and distances from the noise emission source for comparison with the levels estimated by ISO 9613 Part 2. A statistical analysis of the data recorded in the field was performed to observe their dependence on the meteorological variables recorded during the measurements. Results and discussion: The standard error for the proposed prediction method is 11.4 dB(A), and the absolute average error is 9.1 dB(A). The correlation coefficient of the proposed model is 0.87. A statistically significant relationship exists between the variables at the 95.0% confidence level. Conclusion: A propagation model that presented a better fit than the method of ISO 9613 Part 2 and a higher correlation coefficient was obtained. © 2019, Pontificia Universidad Javeriana. All rights reserved.engPontificia Universidad JaverianaIngeniería Ambiental;Ingeniería de SistemasFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070234820&doi=10.11144%2fJaveriana.iyu23-2.mpng&partnerID=40&md5=85e338c7ee77b187561dcf479919521c232Economou, P., Charalampous, P., A comparison of ISO 9613-2 and advanced calculation methods using olive tree labterrain, an outdoor sound propagation software application: Predictions versus experimental results (2012) Proceedings of the Inst. of Acoustics, 34Wondollek, M., (2009) Sound from Wind Turbines in Forest Areas, Uppsala Universitet, Uppsala, , Sweden, Tech. RepBérengier, M., Outdoor sound propagation: A short review on analytical and numerical approaches (2003) Acta Acustica United with Acustica. [Online], 89, pp. 980-991. , http://acoustique.ec-lyon.fr/publi/berengier_acta03.pdfAttenborough, K., Developments in modelling and measuring ground impedance (2001) in 17Th International Congress on Acoustics, Rome, pp. 1-2(1996), ISO 9613-2(2007) National Physical Laboratory, pp. 1-30. , Londonvan Den Berg, G., (2006) The Sound of High Winds: The Effect of Atmospheric Stability on Wind Turbine Sound and Microphone Noise, , Ph.D. dissertation, University of Groningen, GroningenCummings, J., The variability factor in wind turbine noise (2013) In 5Th International Conference on Wind Turbine Noise, Denver, pp. 1-17(2003), ). ISO 1996-1(2010), ISO 3744Conceição, L., Wind turbine noise prediction (2008) M.S. Thesis, Eng. Aeroesp., Ins. Sup. Téc., Univ, , Téc. de Lisboa, LisboaMoriarty, P., Migliore, P., Semi-empirical aeroacoustic noise prediction code for wind turbines (2003) Nat. Ren. Energy Lab. [Online], , http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.197.1153&rep=rep1&type=pdfZhu, W., (2004) Modelling of Noise from Wind Turbines, , M.S. thesis, Wind Energy, Tech. Univ. of Denmark. LyngbyHoogzaad, S., Measuring and calculating turbine noise immission in the Netherlands, in Wind expert meeting sound propagation models (2009) Stockholm, pp. 7-16Oerlemans, S., Location and quantification of noise sources on a wind turbine (2006) J. of Sound and Vibration, 299, pp. 869-883Attenborough, K., A review of ground impedance models for propagation modellingin Forum Acusticum (2002) Sevilla, pp. 1-6Prospathopoulos, J., Voutsinas, S., Application of a ray theory model to the prediction of noise emission from isolated wind turbines and wind parks (2007) Wind Energy, 10, pp. 103-119Fuglsang, P., Aagaard, H., Implementation and verification of an aeroacoustic noise prediction model for wind turbines (1996) Risø Nat. Lab. [Online], , http://orbit.dtu.dk/fedora/objects/orbit:90419/datastreams/file_e8a71a1b-af6e-4b39-a587-f0c70097d5ac/contentKruse, H., (2008) In-Situ Measurement of Ground Impedances, , Ph.D. dissertation, Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky, Universität Oldenburg, OldenburgLamancusa, J.S., (2000) Noise Control, , Pennsylvania: Pennsylvania State UniversityMolina, F., (1990) Modelo De dispersión Gaussiano De Contaminantes atmosféricos, Ing. San, , Univ. de Antioquia, MedellínEcheverri, C.A., Simulación de ruido de tránsito automotor como herramienta para el rediseño de rutas de transporte público colectivo en el municipio de Medellín (2011) Revista Ingenierías Universidad De Medellín, 10, pp. 19-29. , JunIngenieria y UniversidadISO 9613 Part 2NoiseNoise propagationData flow analysisForecastingCorrelation coefficientExperimental programFree field conditionsISO 9613 Part 2Meteorological variablesNoiseNoise propagationPropagation of soundsAcoustic noiseModel for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Londoño, C.E., Universidad Medellín, Medellín, Colombia; Pabón, J.O., Universidad Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecLondoño C.E.Pabón J.O.11407/5664oai:repository.udem.edu.co:11407/56642020-05-27 16:34:38.342Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co