Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]
Objective: This article proposes a prediction model applicable to the propagation of noise generated by fixed sources as the result of the analysis of the phenomena related to the generation and propagation of sound levels and the subsequent correlation between the estimated levels and the data reco...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5664
- Acceso en línea:
- http://hdl.handle.net/11407/5664
- Palabra clave:
- ISO 9613 Part 2
Noise
Noise propagation
Data flow analysis
Forecasting
Correlation coefficient
Experimental program
Free field conditions
ISO 9613 Part 2
Meteorological variables
Noise
Noise propagation
Propagation of sounds
Acoustic noise
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_39fe8d35cda60c18d621a3b5855857c5 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5664 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas] |
title |
Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas] |
spellingShingle |
Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas] ISO 9613 Part 2 Noise Noise propagation Data flow analysis Forecasting Correlation coefficient Experimental program Free field conditions ISO 9613 Part 2 Meteorological variables Noise Noise propagation Propagation of sounds Acoustic noise |
title_short |
Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas] |
title_full |
Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas] |
title_fullStr |
Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas] |
title_full_unstemmed |
Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas] |
title_sort |
Model for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas] |
dc.subject.none.fl_str_mv |
ISO 9613 Part 2 Noise Noise propagation Data flow analysis Forecasting Correlation coefficient Experimental program Free field conditions ISO 9613 Part 2 Meteorological variables Noise Noise propagation Propagation of sounds Acoustic noise |
topic |
ISO 9613 Part 2 Noise Noise propagation Data flow analysis Forecasting Correlation coefficient Experimental program Free field conditions ISO 9613 Part 2 Meteorological variables Noise Noise propagation Propagation of sounds Acoustic noise |
description |
Objective: This article proposes a prediction model applicable to the propagation of noise generated by fixed sources as the result of the analysis of the phenomena related to the generation and propagation of sound levels and the subsequent correlation between the estimated levels and the data recorded in the field. Materials and methods: An experimental program was designed that included the measurement of sound pressure levels with a sound level meter in free field conditions for different weather conditions and distances from the noise emission source for comparison with the levels estimated by ISO 9613 Part 2. A statistical analysis of the data recorded in the field was performed to observe their dependence on the meteorological variables recorded during the measurements. Results and discussion: The standard error for the proposed prediction method is 11.4 dB(A), and the absolute average error is 9.1 dB(A). The correlation coefficient of the proposed model is 0.87. A statistically significant relationship exists between the variables at the 95.0% confidence level. Conclusion: A propagation model that presented a better fit than the method of ISO 9613 Part 2 and a higher correlation coefficient was obtained. © 2019, Pontificia Universidad Javeriana. All rights reserved. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:36Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:36Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
1232126 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5664 |
dc.identifier.doi.none.fl_str_mv |
10.11144/Javeriana.iyu23-2.mpng |
identifier_str_mv |
1232126 10.11144/Javeriana.iyu23-2.mpng |
url |
http://hdl.handle.net/11407/5664 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070234820&doi=10.11144%2fJaveriana.iyu23-2.mpng&partnerID=40&md5=85e338c7ee77b187561dcf479919521c |
dc.relation.citationvolume.none.fl_str_mv |
23 |
dc.relation.citationissue.none.fl_str_mv |
2 |
dc.relation.references.none.fl_str_mv |
Economou, P., Charalampous, P., A comparison of ISO 9613-2 and advanced calculation methods using olive tree labterrain, an outdoor sound propagation software application: Predictions versus experimental results (2012) Proceedings of the Inst. of Acoustics, 34 Wondollek, M., (2009) Sound from Wind Turbines in Forest Areas, Uppsala Universitet, Uppsala, , Sweden, Tech. Rep Bérengier, M., Outdoor sound propagation: A short review on analytical and numerical approaches (2003) Acta Acustica United with Acustica. [Online], 89, pp. 980-991. , http://acoustique.ec-lyon.fr/publi/berengier_acta03.pdf Attenborough, K., Developments in modelling and measuring ground impedance (2001) in 17Th International Congress on Acoustics, Rome, pp. 1-2 (1996), ISO 9613-2 (2007) National Physical Laboratory, pp. 1-30. , London van Den Berg, G., (2006) The Sound of High Winds: The Effect of Atmospheric Stability on Wind Turbine Sound and Microphone Noise, , Ph.D. dissertation, University of Groningen, Groningen Cummings, J., The variability factor in wind turbine noise (2013) In 5Th International Conference on Wind Turbine Noise, Denver, pp. 1-17 (2003), ). ISO 1996-1 (2010), ISO 3744 Conceição, L., Wind turbine noise prediction (2008) M.S. Thesis, Eng. Aeroesp., Ins. Sup. Téc., Univ, , Téc. de Lisboa, Lisboa Moriarty, P., Migliore, P., Semi-empirical aeroacoustic noise prediction code for wind turbines (2003) Nat. Ren. Energy Lab. [Online], , http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.197.1153&rep=rep1&type=pdf Zhu, W., (2004) Modelling of Noise from Wind Turbines, , M.S. thesis, Wind Energy, Tech. Univ. of Denmark. Lyngby Hoogzaad, S., Measuring and calculating turbine noise immission in the Netherlands, in Wind expert meeting sound propagation models (2009) Stockholm, pp. 7-16 Oerlemans, S., Location and quantification of noise sources on a wind turbine (2006) J. of Sound and Vibration, 299, pp. 869-883 Attenborough, K., A review of ground impedance models for propagation modellingin Forum Acusticum (2002) Sevilla, pp. 1-6 Prospathopoulos, J., Voutsinas, S., Application of a ray theory model to the prediction of noise emission from isolated wind turbines and wind parks (2007) Wind Energy, 10, pp. 103-119 Fuglsang, P., Aagaard, H., Implementation and verification of an aeroacoustic noise prediction model for wind turbines (1996) Risø Nat. Lab. [Online], , http://orbit.dtu.dk/fedora/objects/orbit:90419/datastreams/file_e8a71a1b-af6e-4b39-a587-f0c70097d5ac/content Kruse, H., (2008) In-Situ Measurement of Ground Impedances, , Ph.D. dissertation, Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky, Universität Oldenburg, Oldenburg Lamancusa, J.S., (2000) Noise Control, , Pennsylvania: Pennsylvania State University Molina, F., (1990) Modelo De dispersión Gaussiano De Contaminantes atmosféricos, Ing. San, , Univ. de Antioquia, Medellín Echeverri, C.A., Simulación de ruido de tránsito automotor como herramienta para el rediseño de rutas de transporte público colectivo en el municipio de Medellín (2011) Revista Ingenierías Universidad De Medellín, 10, pp. 19-29. , Jun |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Javeriana |
dc.publisher.program.none.fl_str_mv |
Ingeniería Ambiental;Ingeniería de Sistemas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Pontificia Universidad Javeriana |
dc.source.none.fl_str_mv |
Ingenieria y Universidad |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159152545529856 |
spelling |
20192020-04-29T14:53:36Z2020-04-29T14:53:36Z1232126http://hdl.handle.net/11407/566410.11144/Javeriana.iyu23-2.mpngObjective: This article proposes a prediction model applicable to the propagation of noise generated by fixed sources as the result of the analysis of the phenomena related to the generation and propagation of sound levels and the subsequent correlation between the estimated levels and the data recorded in the field. Materials and methods: An experimental program was designed that included the measurement of sound pressure levels with a sound level meter in free field conditions for different weather conditions and distances from the noise emission source for comparison with the levels estimated by ISO 9613 Part 2. A statistical analysis of the data recorded in the field was performed to observe their dependence on the meteorological variables recorded during the measurements. Results and discussion: The standard error for the proposed prediction method is 11.4 dB(A), and the absolute average error is 9.1 dB(A). The correlation coefficient of the proposed model is 0.87. A statistically significant relationship exists between the variables at the 95.0% confidence level. Conclusion: A propagation model that presented a better fit than the method of ISO 9613 Part 2 and a higher correlation coefficient was obtained. © 2019, Pontificia Universidad Javeriana. All rights reserved.engPontificia Universidad JaverianaIngeniería Ambiental;Ingeniería de SistemasFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070234820&doi=10.11144%2fJaveriana.iyu23-2.mpng&partnerID=40&md5=85e338c7ee77b187561dcf479919521c232Economou, P., Charalampous, P., A comparison of ISO 9613-2 and advanced calculation methods using olive tree labterrain, an outdoor sound propagation software application: Predictions versus experimental results (2012) Proceedings of the Inst. of Acoustics, 34Wondollek, M., (2009) Sound from Wind Turbines in Forest Areas, Uppsala Universitet, Uppsala, , Sweden, Tech. RepBérengier, M., Outdoor sound propagation: A short review on analytical and numerical approaches (2003) Acta Acustica United with Acustica. [Online], 89, pp. 980-991. , http://acoustique.ec-lyon.fr/publi/berengier_acta03.pdfAttenborough, K., Developments in modelling and measuring ground impedance (2001) in 17Th International Congress on Acoustics, Rome, pp. 1-2(1996), ISO 9613-2(2007) National Physical Laboratory, pp. 1-30. , Londonvan Den Berg, G., (2006) The Sound of High Winds: The Effect of Atmospheric Stability on Wind Turbine Sound and Microphone Noise, , Ph.D. dissertation, University of Groningen, GroningenCummings, J., The variability factor in wind turbine noise (2013) In 5Th International Conference on Wind Turbine Noise, Denver, pp. 1-17(2003), ). ISO 1996-1(2010), ISO 3744Conceição, L., Wind turbine noise prediction (2008) M.S. Thesis, Eng. Aeroesp., Ins. Sup. Téc., Univ, , Téc. de Lisboa, LisboaMoriarty, P., Migliore, P., Semi-empirical aeroacoustic noise prediction code for wind turbines (2003) Nat. Ren. Energy Lab. [Online], , http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.197.1153&rep=rep1&type=pdfZhu, W., (2004) Modelling of Noise from Wind Turbines, , M.S. thesis, Wind Energy, Tech. Univ. of Denmark. LyngbyHoogzaad, S., Measuring and calculating turbine noise immission in the Netherlands, in Wind expert meeting sound propagation models (2009) Stockholm, pp. 7-16Oerlemans, S., Location and quantification of noise sources on a wind turbine (2006) J. of Sound and Vibration, 299, pp. 869-883Attenborough, K., A review of ground impedance models for propagation modellingin Forum Acusticum (2002) Sevilla, pp. 1-6Prospathopoulos, J., Voutsinas, S., Application of a ray theory model to the prediction of noise emission from isolated wind turbines and wind parks (2007) Wind Energy, 10, pp. 103-119Fuglsang, P., Aagaard, H., Implementation and verification of an aeroacoustic noise prediction model for wind turbines (1996) Risø Nat. Lab. [Online], , http://orbit.dtu.dk/fedora/objects/orbit:90419/datastreams/file_e8a71a1b-af6e-4b39-a587-f0c70097d5ac/contentKruse, H., (2008) In-Situ Measurement of Ground Impedances, , Ph.D. dissertation, Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky, Universität Oldenburg, OldenburgLamancusa, J.S., (2000) Noise Control, , Pennsylvania: Pennsylvania State UniversityMolina, F., (1990) Modelo De dispersión Gaussiano De Contaminantes atmosféricos, Ing. San, , Univ. de Antioquia, MedellínEcheverri, C.A., Simulación de ruido de tránsito automotor como herramienta para el rediseño de rutas de transporte público colectivo en el municipio de Medellín (2011) Revista Ingenierías Universidad De Medellín, 10, pp. 19-29. , JunIngenieria y UniversidadISO 9613 Part 2NoiseNoise propagationData flow analysisForecastingCorrelation coefficientExperimental programFree field conditionsISO 9613 Part 2Meteorological variablesNoiseNoise propagationPropagation of soundsAcoustic noiseModel for the prediction of noise generated by fixed sources [Modelo para la predicción del ruido proveniente de fuentes fijas]Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Londoño, C.E., Universidad Medellín, Medellín, Colombia; Pabón, J.O., Universidad Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecLondoño C.E.Pabón J.O.11407/5664oai:repository.udem.edu.co:11407/56642020-05-27 16:34:38.342Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |