Microsolvation of F-

A staggering structural diversity for the microsolvation of F- with up to six water molecules is uncovered in this work. Given the structural variety and the proximity in energy among several local minima, we show here that in order to match available experimental data, statistical averages over con...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4880
Acceso en línea:
http://hdl.handle.net/11407/4880
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_397b1e465dec8509b48f1af52a8aff1f
oai_identifier_str oai:repository.udem.edu.co:11407/4880
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Microsolvation of F-
title Microsolvation of F-
spellingShingle Microsolvation of F-
title_short Microsolvation of F-
title_full Microsolvation of F-
title_fullStr Microsolvation of F-
title_full_unstemmed Microsolvation of F-
title_sort Microsolvation of F-
dc.contributor.affiliation.spa.fl_str_mv Florez, E., Universidad de Medellín;Acelas, N., Universidad de Medellín;Ramírez, F., Universidad de Antioquia;Hadad, C., Universidad de Antioquia;Restrepo, A., Universidad de Antioquia
description A staggering structural diversity for the microsolvation of F- with up to six water molecules is uncovered in this work. Given the structural variety and the proximity in energy among several local minima, we show here that in order to match available experimental data, statistical averages over contributing structures are needed, rather than assigning experimental values to isolated structures. Our results suggest that the formal charge in F- is strong enough as to induce partial and total dissociation of water molecules and to alter the nature of the surrounding network of water to water hydrogen bonds. We provide an extensive analysis of bonding interactions under the NBO and QTAIM formalisms, our main results suggest a complex interplay between ionic and covalent characters for the F?H interactions as a function of the separation between the atoms. © 2018 the Owner Societies.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-10-31T13:44:21Z
dc.date.available.none.fl_str_mv 2018-10-31T13:44:21Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 14639076
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4880
dc.identifier.doi.none.fl_str_mv 10.1039/c8cp00819a
identifier_str_mv 14639076
10.1039/c8cp00819a
url http://hdl.handle.net/11407/4880
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044830908&doi=10.1039%2fc8cp00819a&partnerID=40&md5=52959a663f6308fd23d908e0a671c159
dc.relation.citationvolume.spa.fl_str_mv 20
dc.relation.citationissue.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 8909
dc.relation.citationendpage.spa.fl_str_mv 8916
dc.relation.ispartofes.spa.fl_str_mv Physical Chemistry Chemical Physics
dc.relation.references.spa.fl_str_mv Marcus, Y., Effect of ions on the structure of water: Structure making and breaking (2009) Chem. Rev., 109, pp. 1346-1370;Becucci, M., Melandri, S., High-Resolution Spectroscopic Studies of Complexes Formed by Medium-Size Organic Molecules (2016) Chem. Rev., 116, p. 5014;Mahadevi, A.S., Sastry, G.N., Cooperativity in Noncovalent Interactions (2016) Chem. Rev., 116, p. 2775;Gadre, S., Yeole, S.D., Sahu, N., Quantum Chemical Investigations on Molecular Clusters (2014) Chem. Rev., 114, p. 12132;Yang, X., Wang, X.B., Wang, L.S., Photodetachment of F-(H2O)n (n = 1-4): Observation of charge-transfer states [F-(H2O)n +] and the transition state of F + H2O hydrogen abstraction reaction (2001) J. Chem. Phys., 115, p. 2889;Kim, J., Lee, H.M., Suh, S.B., Majumdar, D., Kim, K.S., Comparative ab initio study of the structures, energetics and spectra of X-?(H2O)n=1-4 [X = F, Cl, Br, I] clusters (2000) J. Chem. Phys., 113, p. 5259;Boisson, J., Stirnemann, G., Laage, D., Hynes, J.T., Water reorientation dynamics in the first hydration shells of F- and I- (2011) Phys. Chem. Chem. Phys., 13, p. 19895;Kebarle, P., Arshadi, M., Scarborough, J., Hydration of negative ions in the gas phase (1968) J. Chem. Phys., 49, pp. 817-822;Kebarle, P., Arshadi, M., Scarborough, J., Comparison of individual hydration energies for positive and negative ions on the basis of gas-phase hydration experiments (1969) J. Chem. Phys., 50, pp. 1049-1050;Verwey, E.J.W., The interaction of ion and solvent in aqueous solutions of electrolytes (1942) Recl. Trav. Chim. Pays-Bas, 61, pp. 127-142;Rosseinsky, D.R., Electrode potentials and hydration energies. Theories and correlations (1965) Chem. Rev., 65, pp. 467-490;Buckingham, A.D., A theory of ion-solvent interaction (1957) Discuss. Faraday Soc., 24, pp. 151-157;Vaslow, F., The orientation of water molecules in the field of an alkali ion (1963) J. Phys. Chem., 67, pp. 2773-2776;Chang, T.-M., Dang, L.X., Recent advances in molecular simulations of ion solvation at liquid interfaces (2006) Chem. Rev., 106, pp. 1305-1322;Molina, J.J., Lectez, S., Tazi, S., Salanne, M., Dufrêche, J.-F., Roques, J., Simoni, E., Turq, P., Ions in solutions: Determining their polarizabilities from first-principles (2011) J. Chem. Phys., 134, p. 014511;Omta, A.W., Kropman, M.F., Woutersen, S., Bakker, H.J., Negligible effect of ions on the hydrogen-bond structure in liquid water (2003) Science, 301, pp. 347-349;Omta, A.W., Kropman, M.F., Woutersen, S., Bakker, H.J., Influence of ions on the hydrogen-bond structure in liquid water (2003) J. Chem. Phys., 119, pp. 12457-12461;Kropman, M.F., Bakker, H.J., Vibrational relaxation of liquid water in ionic solvation shells (2003) Chem. Phys. Lett., 370, pp. 741-746;Bakker, H.J., Kropman, M.F., Omta, A.W., Effect of ions on the structure and dynamics of liquid water (2005) J. Phys.: Condens. Matter, 17, p. S3215;Collins, K.D., Washabaugh, M.W., The Hofmeister effect and the behaviour of water at interfaces (1985) Q. Rev. Biophys., 18, pp. 323-422;Cabarcos, O.M., Weinheimer, C.J., Lisy, J.M., Xantheas, S.S., Microscopic hydration of the fluoride anion (1999) J. Chem. Phys., 110, pp. 5-8;Topol, I.A., Tawa, G.J., Burt, S.K., Rashin, A.A., On the structure and thermodynamics of solvated monoatomic ions using a hybrid solvation model (1999) J. Chem. Phys., 111, pp. 10998-11014;Pérez, J.F., Flórez, E., Hadad, C.Z., Fuentealba, P., Restrepo, A., Stochastic search of the quantum conformational space of small lithium and bimetallic lithium-sodium clusters (2008) J. Phys. Chem. A, 112, pp. 5749-5755;Pérez, J.F., Hadad, C.Z., Restrepo, A., Structural studies of the water tetramer (2008) Int. J. Quantum Chem., 108, pp. 1653-1659;Arias, E., Florez, E., Pérez-Torres, J.F., Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters (2017) J. Chem. Phys., 146, p. 244107;Alexandrova, A.N., Boldyrev, A.I., Search for the Lin 0/+1/-1 (n = 5-7) Lowest-Energy Structures Using the ab initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters (2005) J. Chem. Theory Comput., 1, pp. 566-580;Grande-Aztatzi, R., Martinez-Alanis, P.R., Cabellos, J.L., Osorio, E., Martínez, A., Merino, G., Structural Evolution of Small Gold Clusters Doped by One and Two Boron Atoms (2014) J. Comput. Chem., 35, pp. 2288-2296;Ramírez-Manzanares, A., Peña, J., Azpiroz, J.M., Merino, G., A Hierarchical Algorithm for Molecular Similarity (H-FORMS) (2015) J. Comput. Chem., 36, pp. 1456-1466;Frisch, M.J., (2009) Gaussian 09, Revision D.01, , Gaussian, Inc., Wallingford, CT;Bader, R., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press, NY;Weinhold, F., Landis, C., (2012) Discovering Chemistry with Natural Bond Orbitals, , Wiley, New York;Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) NBO 6.0, , Madison;Keith, T.A., (2013) AIMAll (Version 13.05.06), , http://aim.tkgristmill.com, TK Gristmill Software, Overland Park, KS;Ramírez, F., Hadad, C.Z., Guerra, D., David, J., Restrepo, A., Structural studies of the water pentamer (2011) Chem. Phys. Lett., 507, p. 229;Hincapié, G., Acelas, N., Castaño, M., David, J., Restrepo, A., Structural studies of the water hexamer (2010) J. Phys. Chem. A, 114, p. 7809;Acelas, N., Hincapié, G., Guerra, D., David, J., Restrepo, A., Structures, energies, and bonding in the water heptamer (2013) J. Chem. Phys., 139, p. 044310;Trumm, M., Guerrero, Y.O., Réal, F., Masella, M., Vallet, V., Schimmelpfennig, B., Modeling the hydration of mono-atomic anions from the gas phase to the bulk phase: The case of the halide ions F-, Cl-, and Br- (2012) J. Chem. Phys., 136, p. 044509;Arshadi, M., Yamdagni, R., Kebarle, P., Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions (1970) J. Phys. Chem., 74, p. 1475;Hiraoka, K., Mizuse, S., Yamabe, S., Solvation of halide ions with water and acetonitrile in the gas phase (1998) J. Phys. Chem., 92, p. 3943;Espinosa, E., Alkorta, I., Elguero, J., Molins, E., From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H?F-Y systems (2002) J. Chem. Phys., 117, pp. 5529-5542;Linus, P., (1939) The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, , Cornell University Press, Ithaca, New York;Coulson, C.A., (1961) Valence, , Oxford University Press;Gilli, G., Gilli, P., (2009) The Nature of the Hydrogen Bond, , Oxford University Press, New York;Vargas-Caamal, A., Cabellos, J.L., Ortiz-Chi, F., Rzepa, H.S., Restrepo, A., Merino, G., How many water molecules does it take to dissociate HCl? (2016) Chem.-Eur. J., 22, pp. 2812-2818;Gonzalez, J.D., Florez, E., Romero, J., Reyes, A., Restrepo, A., Microsolvation of Mg2+, Ca2+: Strong influence of formal charges in hydrogen bond networks (2013) J. Mol. Model., 19, pp. 1763-1777;Florez, E., Acelas, N., Ibarguen, C., Mondal, S., Cabellos, J.L., Merino, G., Restrepo, A., Microsolvation of NO3 -: Structural exploration and bonding analysis (2016) RSC Adv., 6, pp. 71913-71923
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Royal Society of Chemistry
dc.publisher.program.spa.fl_str_mv Ciencias Básicas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159260931588096
spelling 2018-10-31T13:44:21Z2018-10-31T13:44:21Z201814639076http://hdl.handle.net/11407/488010.1039/c8cp00819aA staggering structural diversity for the microsolvation of F- with up to six water molecules is uncovered in this work. Given the structural variety and the proximity in energy among several local minima, we show here that in order to match available experimental data, statistical averages over contributing structures are needed, rather than assigning experimental values to isolated structures. Our results suggest that the formal charge in F- is strong enough as to induce partial and total dissociation of water molecules and to alter the nature of the surrounding network of water to water hydrogen bonds. We provide an extensive analysis of bonding interactions under the NBO and QTAIM formalisms, our main results suggest a complex interplay between ionic and covalent characters for the F?H interactions as a function of the separation between the atoms. © 2018 the Owner Societies.engRoyal Society of ChemistryCiencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85044830908&doi=10.1039%2fc8cp00819a&partnerID=40&md5=52959a663f6308fd23d908e0a671c159201389098916Physical Chemistry Chemical PhysicsMarcus, Y., Effect of ions on the structure of water: Structure making and breaking (2009) Chem. Rev., 109, pp. 1346-1370;Becucci, M., Melandri, S., High-Resolution Spectroscopic Studies of Complexes Formed by Medium-Size Organic Molecules (2016) Chem. Rev., 116, p. 5014;Mahadevi, A.S., Sastry, G.N., Cooperativity in Noncovalent Interactions (2016) Chem. Rev., 116, p. 2775;Gadre, S., Yeole, S.D., Sahu, N., Quantum Chemical Investigations on Molecular Clusters (2014) Chem. Rev., 114, p. 12132;Yang, X., Wang, X.B., Wang, L.S., Photodetachment of F-(H2O)n (n = 1-4): Observation of charge-transfer states [F-(H2O)n +] and the transition state of F + H2O hydrogen abstraction reaction (2001) J. Chem. Phys., 115, p. 2889;Kim, J., Lee, H.M., Suh, S.B., Majumdar, D., Kim, K.S., Comparative ab initio study of the structures, energetics and spectra of X-?(H2O)n=1-4 [X = F, Cl, Br, I] clusters (2000) J. Chem. Phys., 113, p. 5259;Boisson, J., Stirnemann, G., Laage, D., Hynes, J.T., Water reorientation dynamics in the first hydration shells of F- and I- (2011) Phys. Chem. Chem. Phys., 13, p. 19895;Kebarle, P., Arshadi, M., Scarborough, J., Hydration of negative ions in the gas phase (1968) J. Chem. Phys., 49, pp. 817-822;Kebarle, P., Arshadi, M., Scarborough, J., Comparison of individual hydration energies for positive and negative ions on the basis of gas-phase hydration experiments (1969) J. Chem. Phys., 50, pp. 1049-1050;Verwey, E.J.W., The interaction of ion and solvent in aqueous solutions of electrolytes (1942) Recl. Trav. Chim. Pays-Bas, 61, pp. 127-142;Rosseinsky, D.R., Electrode potentials and hydration energies. Theories and correlations (1965) Chem. Rev., 65, pp. 467-490;Buckingham, A.D., A theory of ion-solvent interaction (1957) Discuss. Faraday Soc., 24, pp. 151-157;Vaslow, F., The orientation of water molecules in the field of an alkali ion (1963) J. Phys. Chem., 67, pp. 2773-2776;Chang, T.-M., Dang, L.X., Recent advances in molecular simulations of ion solvation at liquid interfaces (2006) Chem. Rev., 106, pp. 1305-1322;Molina, J.J., Lectez, S., Tazi, S., Salanne, M., Dufrêche, J.-F., Roques, J., Simoni, E., Turq, P., Ions in solutions: Determining their polarizabilities from first-principles (2011) J. Chem. Phys., 134, p. 014511;Omta, A.W., Kropman, M.F., Woutersen, S., Bakker, H.J., Negligible effect of ions on the hydrogen-bond structure in liquid water (2003) Science, 301, pp. 347-349;Omta, A.W., Kropman, M.F., Woutersen, S., Bakker, H.J., Influence of ions on the hydrogen-bond structure in liquid water (2003) J. Chem. Phys., 119, pp. 12457-12461;Kropman, M.F., Bakker, H.J., Vibrational relaxation of liquid water in ionic solvation shells (2003) Chem. Phys. Lett., 370, pp. 741-746;Bakker, H.J., Kropman, M.F., Omta, A.W., Effect of ions on the structure and dynamics of liquid water (2005) J. Phys.: Condens. Matter, 17, p. S3215;Collins, K.D., Washabaugh, M.W., The Hofmeister effect and the behaviour of water at interfaces (1985) Q. Rev. Biophys., 18, pp. 323-422;Cabarcos, O.M., Weinheimer, C.J., Lisy, J.M., Xantheas, S.S., Microscopic hydration of the fluoride anion (1999) J. Chem. Phys., 110, pp. 5-8;Topol, I.A., Tawa, G.J., Burt, S.K., Rashin, A.A., On the structure and thermodynamics of solvated monoatomic ions using a hybrid solvation model (1999) J. Chem. Phys., 111, pp. 10998-11014;Pérez, J.F., Flórez, E., Hadad, C.Z., Fuentealba, P., Restrepo, A., Stochastic search of the quantum conformational space of small lithium and bimetallic lithium-sodium clusters (2008) J. Phys. Chem. A, 112, pp. 5749-5755;Pérez, J.F., Hadad, C.Z., Restrepo, A., Structural studies of the water tetramer (2008) Int. J. Quantum Chem., 108, pp. 1653-1659;Arias, E., Florez, E., Pérez-Torres, J.F., Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters (2017) J. Chem. Phys., 146, p. 244107;Alexandrova, A.N., Boldyrev, A.I., Search for the Lin 0/+1/-1 (n = 5-7) Lowest-Energy Structures Using the ab initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters (2005) J. Chem. Theory Comput., 1, pp. 566-580;Grande-Aztatzi, R., Martinez-Alanis, P.R., Cabellos, J.L., Osorio, E., Martínez, A., Merino, G., Structural Evolution of Small Gold Clusters Doped by One and Two Boron Atoms (2014) J. Comput. Chem., 35, pp. 2288-2296;Ramírez-Manzanares, A., Peña, J., Azpiroz, J.M., Merino, G., A Hierarchical Algorithm for Molecular Similarity (H-FORMS) (2015) J. Comput. Chem., 36, pp. 1456-1466;Frisch, M.J., (2009) Gaussian 09, Revision D.01, , Gaussian, Inc., Wallingford, CT;Bader, R., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press, NY;Weinhold, F., Landis, C., (2012) Discovering Chemistry with Natural Bond Orbitals, , Wiley, New York;Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) NBO 6.0, , Madison;Keith, T.A., (2013) AIMAll (Version 13.05.06), , http://aim.tkgristmill.com, TK Gristmill Software, Overland Park, KS;Ramírez, F., Hadad, C.Z., Guerra, D., David, J., Restrepo, A., Structural studies of the water pentamer (2011) Chem. Phys. Lett., 507, p. 229;Hincapié, G., Acelas, N., Castaño, M., David, J., Restrepo, A., Structural studies of the water hexamer (2010) J. Phys. Chem. A, 114, p. 7809;Acelas, N., Hincapié, G., Guerra, D., David, J., Restrepo, A., Structures, energies, and bonding in the water heptamer (2013) J. Chem. Phys., 139, p. 044310;Trumm, M., Guerrero, Y.O., Réal, F., Masella, M., Vallet, V., Schimmelpfennig, B., Modeling the hydration of mono-atomic anions from the gas phase to the bulk phase: The case of the halide ions F-, Cl-, and Br- (2012) J. Chem. Phys., 136, p. 044509;Arshadi, M., Yamdagni, R., Kebarle, P., Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions (1970) J. Phys. Chem., 74, p. 1475;Hiraoka, K., Mizuse, S., Yamabe, S., Solvation of halide ions with water and acetonitrile in the gas phase (1998) J. Phys. Chem., 92, p. 3943;Espinosa, E., Alkorta, I., Elguero, J., Molins, E., From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H?F-Y systems (2002) J. Chem. Phys., 117, pp. 5529-5542;Linus, P., (1939) The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, , Cornell University Press, Ithaca, New York;Coulson, C.A., (1961) Valence, , Oxford University Press;Gilli, G., Gilli, P., (2009) The Nature of the Hydrogen Bond, , Oxford University Press, New York;Vargas-Caamal, A., Cabellos, J.L., Ortiz-Chi, F., Rzepa, H.S., Restrepo, A., Merino, G., How many water molecules does it take to dissociate HCl? (2016) Chem.-Eur. J., 22, pp. 2812-2818;Gonzalez, J.D., Florez, E., Romero, J., Reyes, A., Restrepo, A., Microsolvation of Mg2+, Ca2+: Strong influence of formal charges in hydrogen bond networks (2013) J. Mol. Model., 19, pp. 1763-1777;Florez, E., Acelas, N., Ibarguen, C., Mondal, S., Cabellos, J.L., Merino, G., Restrepo, A., Microsolvation of NO3 -: Structural exploration and bonding analysis (2016) RSC Adv., 6, pp. 71913-71923ScopusMicrosolvation of F-Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Florez, E., Universidad de Medellín;Acelas, N., Universidad de Medellín;Ramírez, F., Universidad de Antioquia;Hadad, C., Universidad de Antioquia;Restrepo, A., Universidad de AntioquiaFlorez E.Acelas N.Ramírez F.Hadad C.Restrepo A.http://purl.org/coar/access_right/c_16ec11407/4880oai:repository.udem.edu.co:11407/48802020-05-27 19:14:02.387Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co