Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions
Atrial fibrillation (AF) is the most common arrhythmia within the clinical context. Advanced stages of the AF involve several difficulties in its management and treatment. This occurs mostly because the initiation and perpetuation mechanisms of the AF are still not fully understood. Cardiac scientif...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5811
- Acceso en línea:
- http://hdl.handle.net/11407/5811
- Palabra clave:
- Atrial fibrillation
Fractional calculus
Human atrial electrophysiological models
Myocardium structural heterogeneity
Calculations
Diseases
Electrophysiology
Mathematical operators
Action potential propagation
Atrial fibrillation
Electrophysiological models
Electrophysiological properties
Fractional calculus
Fractional order derivatives
Physiological condition
Structural heterogeneity
Physiological models
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_3865ac027f2114ea91a5e751a2477a60 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5811 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions |
title |
Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions |
spellingShingle |
Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions Atrial fibrillation Fractional calculus Human atrial electrophysiological models Myocardium structural heterogeneity Calculations Diseases Electrophysiology Mathematical operators Action potential propagation Atrial fibrillation Electrophysiological models Electrophysiological properties Fractional calculus Fractional order derivatives Physiological condition Structural heterogeneity Physiological models |
title_short |
Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions |
title_full |
Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions |
title_fullStr |
Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions |
title_full_unstemmed |
Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions |
title_sort |
Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions |
dc.subject.none.fl_str_mv |
Atrial fibrillation Fractional calculus Human atrial electrophysiological models Myocardium structural heterogeneity Calculations Diseases Electrophysiology Mathematical operators Action potential propagation Atrial fibrillation Electrophysiological models Electrophysiological properties Fractional calculus Fractional order derivatives Physiological condition Structural heterogeneity Physiological models |
topic |
Atrial fibrillation Fractional calculus Human atrial electrophysiological models Myocardium structural heterogeneity Calculations Diseases Electrophysiology Mathematical operators Action potential propagation Atrial fibrillation Electrophysiological models Electrophysiological properties Fractional calculus Fractional order derivatives Physiological condition Structural heterogeneity Physiological models |
description |
Atrial fibrillation (AF) is the most common arrhythmia within the clinical context. Advanced stages of the AF involve several difficulties in its management and treatment. This occurs mostly because the initiation and perpetuation mechanisms of the AF are still not fully understood. Cardiac scientific computation has become an important tool in researching the underlying mechanisms of the AF. In this work, an equation of action potential propagation that implements fractional order derivatives is used to model the atrial dynamics. The fractional derivative order represents the structural heterogeneities of the atrial myocardium. Using such mathematical operator, the Courtemanche and Maleckar human atrial electrophysiological models, during healthy and AF conditions, are assessed. The results indicate that, through the fractional order variations, there are electrophysiological properties whose behavior do not depend on the cellular model or physiological conditions. On the other hand, there are properties whose behavior under distinct values of the fractional order, are specific to the cellular model and to the physiological condition and they can be characterized quantitatively and qualitatively. Therefore, the fractional atrial propagation model can be a useful tool for modeling a wide range of electrophysiological scenarios in both healthy and AF conditions. © 2019, Springer Nature Switzerland AG. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:54:07Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:54:07Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.isbn.none.fl_str_mv |
9783030310189 |
dc.identifier.issn.none.fl_str_mv |
18650929 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5811 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-030-31019-6_38 |
identifier_str_mv |
9783030310189 18650929 10.1007/978-3-030-31019-6_38 |
url |
http://hdl.handle.net/11407/5811 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075663296&doi=10.1007%2f978-3-030-31019-6_38&partnerID=40&md5=ac486bfc00fd64e3dbcc24f01e7b2343 |
dc.relation.citationvolume.none.fl_str_mv |
1052 |
dc.relation.citationstartpage.none.fl_str_mv |
440 |
dc.relation.citationendpage.none.fl_str_mv |
450 |
dc.relation.references.none.fl_str_mv |
Bode, F., Kilborn, M., Karasik, P., Franz, M.R., The repolarization-excitability relationship in the human right atrium is unaffected by cycle length, recording site and prior arrhythmias (2001) J. Am. Coll. Cardiol., 37 (3), pp. 920-925 Boutjdir, M., Inhomogeneity of cellular refractoriness in human atrium: Factor of arrhythmia? L hétérogénéité des périodes réfractaires cellulaires de l oreillette humaine: Un facteur d arythmie? (1986) Pacing Clin. Electrophysiol., 9 (6), pp. 1095-1100 Burstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) J. Am. Coll. Cardiol., 51 (8), pp. 802-809 Caballero, R., In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differ-entially on each atria and increases the slow component of the delayed rectifier current in both (2010) J. Am. Coll. Cardiol., 55 (21), pp. 2346-2354 Cherry, E.M., Evans, S.J., Properties of two human atrial cell models in tissue: Restitution, memory, propagation, and reentry (2008) J. Theor. Biol., 254 (3), pp. 674-690 Clayton, R.H., Bernus, O., Cherry, E.M., Dierckx, H., Fenton, F.H., Mirabella, L., Panfilov, V., Zhang, H., Models of cardiac tissue electrophysiology: Progress, challenges and open questions (2011) Prog. Biophys. Mol. Biol., 104, pp. 22-48. , https://doi.org/10.1016/j.pbiomolbio.2010.05.008 Corradi, D., Atrial fibrillation from the pathologist s perspective (2014) Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol., 23 (2), pp. 71-84 Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol., 275 (1), pp. H301-H321. , Pt 2 Dobrev, D., Electrical remodeling in atrial fibrillation (2006) Herz, 31 (2), pp. 108-112 Hertervig, E., Li, Z., Kongstad, O., Holm, M., Olsson, S.B., Yuan, S., Global dispersion of right atrial repolarization in healthy pigs and patients (2003) Scand. Cardiovasc. J (SCJ), 37 (6), pp. 329-333. , https://doi.org/10.1080/14017430310016207 Jalife, J., Mechanisms of persistent atrial fibrillation (2014) Curr. Opin. Cardiol., 29 (1), pp. 20-27 Kamalvand, K., Tan, K., Lloyd, G., Gill, J., Bucknall, C., Sulke, N., Alterations in atrial electrophysiology associated with chronic atrial fibrillation in man (1999) Eur. Heart J., 20 (12), pp. 888-895 Kirchhof, P., 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18 (11), pp. 1609-1678 Kottkamp, H., Human atrial fibrillation substrate: Towards a specific fibrotic atrial cardiomyopathy (2013) Eur. Heart J., 34 (35), pp. 2731-2738 Lalani, G.G., Atrial conduction slows immediately before the onset of human atrial fibrillation a bi-atrial contact mapping study of transitions to atrial fibrillation (2012) JAC, 59 (6), pp. 595-606 Li, Z., Hertervig, E., Yuan, S., Yang, Y., Lin, Z., Olsson, S.B., Dispersion of atrial repolarization in patients with paroxysmal atrial fibrillation (2001) Europace, 3 (4), pp. 285-291 Machado, J.A., Kiryakova, V., The chronicles of fractional calculus (2017) Fract. Calc. Appl. Anal., 20 (2), pp. 307-336. , https://doi.org/10.1515/fca-2017-0017 Maleckar, M.M., Greenstein, J.L., Giles, W.R., Na, T., K+ current changes account for the rate dependence of the action potential in the human atrial myocyte (2009) Am. J. Physiol. Heart Circ. Physiol., 297, pp. H1398-H1410 McDowell, K.S., Zahid, S., Vadakkumpadan, F., Blauer, J., Macleod, R.S., Na, T., Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling (2015) Plos ONE, 10 (2) Narayan, S.M., Kazi, D., Krummen, D.E., Wj, R., Repolarization and activation restitution near human pulmonary veins and atrial fibrillation initiation a mechanism for the initiation of atrial fibrillation by premature beats (2008) J. Am. Coll. Cardiol., 52 (15), pp. 1222-1230 Niederer, S.A., Verification of cardiac tissue electrophysiology simulators using an N-version benchmark (1954) Philos. Trans. R. Soc. a Math. Phys. Eng. Sci, 369, pp. 4331-4351. , 2011) Nygren, A., Leon, L.J., Giles, W.R., Simulaations of the human atrial action potential (2001) Philos. Transsactions R. Soc. A, 359 (1783), pp. 1111-1125 Ogawa, M., Kumagai, K., Gondo, N., Matsumoto, N., Suyama, K., Saku, K., Novel electrophysiologic parameter of dispersion of atrial repolarization: Comparison of different atrial pacing methods (2002) J. Cardiovasc. Electrophysiol., 13 (2), pp. 110-117 Trayanova, N.A., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: A simulation approach (2014) Front. Physiol., 5, p. 435. , http://journal.frontiersin.org/article/10.3389/fphys.2014.00435/abstract Ugarte, J.P., Tobón, C., Orozco-Duque, A., Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study (2019) Entropy, 21 (2), pp. 1-17 Voigt, N., Enhanced sarcoplasmic reticulum Ca2 + leak and increased Na+-Ca2 + exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation (2012) Circulation, 125 (17), pp. 2059-2070 Wilhelms, M., Hettmann, H., Maleckar, M.M., Koivumäki, J.T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Front. Physiol., 3 (487) Xu, Y., Sharma, D., Li, G., Liu, Y., Atrial remodeling: New pathophysiological mechanism of atrial fibrillation (2013) Med. Hypotheses, 80 (1), pp. 53-56 Yang, Q., Liu, F., Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives (2010) Appl. Math. Model., 34, pp. 200-218 Yue, L., Xie, J., Nattel, S., Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation (2011) Cardiovasc. Res., 89 (4), pp. 744-753 Zhang, H., Garratt, C., Zhu, J., Holden, A., Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans (2005) Cardiovasc. Res., 66 (3), pp. 493-502 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Springer |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Communications in Computer and Information Science |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159113322496000 |
spelling |
20192020-04-29T14:54:07Z2020-04-29T14:54:07Z978303031018918650929http://hdl.handle.net/11407/581110.1007/978-3-030-31019-6_38Atrial fibrillation (AF) is the most common arrhythmia within the clinical context. Advanced stages of the AF involve several difficulties in its management and treatment. This occurs mostly because the initiation and perpetuation mechanisms of the AF are still not fully understood. Cardiac scientific computation has become an important tool in researching the underlying mechanisms of the AF. In this work, an equation of action potential propagation that implements fractional order derivatives is used to model the atrial dynamics. The fractional derivative order represents the structural heterogeneities of the atrial myocardium. Using such mathematical operator, the Courtemanche and Maleckar human atrial electrophysiological models, during healthy and AF conditions, are assessed. The results indicate that, through the fractional order variations, there are electrophysiological properties whose behavior do not depend on the cellular model or physiological conditions. On the other hand, there are properties whose behavior under distinct values of the fractional order, are specific to the cellular model and to the physiological condition and they can be characterized quantitatively and qualitatively. Therefore, the fractional atrial propagation model can be a useful tool for modeling a wide range of electrophysiological scenarios in both healthy and AF conditions. © 2019, Springer Nature Switzerland AG.engSpringerFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075663296&doi=10.1007%2f978-3-030-31019-6_38&partnerID=40&md5=ac486bfc00fd64e3dbcc24f01e7b23431052440450Bode, F., Kilborn, M., Karasik, P., Franz, M.R., The repolarization-excitability relationship in the human right atrium is unaffected by cycle length, recording site and prior arrhythmias (2001) J. Am. Coll. Cardiol., 37 (3), pp. 920-925Boutjdir, M., Inhomogeneity of cellular refractoriness in human atrium: Factor of arrhythmia? L hétérogénéité des périodes réfractaires cellulaires de l oreillette humaine: Un facteur d arythmie? (1986) Pacing Clin. Electrophysiol., 9 (6), pp. 1095-1100Burstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) J. Am. Coll. Cardiol., 51 (8), pp. 802-809Caballero, R., In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differ-entially on each atria and increases the slow component of the delayed rectifier current in both (2010) J. Am. Coll. Cardiol., 55 (21), pp. 2346-2354Cherry, E.M., Evans, S.J., Properties of two human atrial cell models in tissue: Restitution, memory, propagation, and reentry (2008) J. Theor. Biol., 254 (3), pp. 674-690Clayton, R.H., Bernus, O., Cherry, E.M., Dierckx, H., Fenton, F.H., Mirabella, L., Panfilov, V., Zhang, H., Models of cardiac tissue electrophysiology: Progress, challenges and open questions (2011) Prog. Biophys. Mol. Biol., 104, pp. 22-48. , https://doi.org/10.1016/j.pbiomolbio.2010.05.008Corradi, D., Atrial fibrillation from the pathologist s perspective (2014) Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol., 23 (2), pp. 71-84Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol., 275 (1), pp. H301-H321. , Pt 2Dobrev, D., Electrical remodeling in atrial fibrillation (2006) Herz, 31 (2), pp. 108-112Hertervig, E., Li, Z., Kongstad, O., Holm, M., Olsson, S.B., Yuan, S., Global dispersion of right atrial repolarization in healthy pigs and patients (2003) Scand. Cardiovasc. J (SCJ), 37 (6), pp. 329-333. , https://doi.org/10.1080/14017430310016207Jalife, J., Mechanisms of persistent atrial fibrillation (2014) Curr. Opin. Cardiol., 29 (1), pp. 20-27Kamalvand, K., Tan, K., Lloyd, G., Gill, J., Bucknall, C., Sulke, N., Alterations in atrial electrophysiology associated with chronic atrial fibrillation in man (1999) Eur. Heart J., 20 (12), pp. 888-895Kirchhof, P., 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18 (11), pp. 1609-1678Kottkamp, H., Human atrial fibrillation substrate: Towards a specific fibrotic atrial cardiomyopathy (2013) Eur. Heart J., 34 (35), pp. 2731-2738Lalani, G.G., Atrial conduction slows immediately before the onset of human atrial fibrillation a bi-atrial contact mapping study of transitions to atrial fibrillation (2012) JAC, 59 (6), pp. 595-606Li, Z., Hertervig, E., Yuan, S., Yang, Y., Lin, Z., Olsson, S.B., Dispersion of atrial repolarization in patients with paroxysmal atrial fibrillation (2001) Europace, 3 (4), pp. 285-291Machado, J.A., Kiryakova, V., The chronicles of fractional calculus (2017) Fract. Calc. Appl. Anal., 20 (2), pp. 307-336. , https://doi.org/10.1515/fca-2017-0017Maleckar, M.M., Greenstein, J.L., Giles, W.R., Na, T., K+ current changes account for the rate dependence of the action potential in the human atrial myocyte (2009) Am. J. Physiol. Heart Circ. Physiol., 297, pp. H1398-H1410McDowell, K.S., Zahid, S., Vadakkumpadan, F., Blauer, J., Macleod, R.S., Na, T., Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling (2015) Plos ONE, 10 (2)Narayan, S.M., Kazi, D., Krummen, D.E., Wj, R., Repolarization and activation restitution near human pulmonary veins and atrial fibrillation initiation a mechanism for the initiation of atrial fibrillation by premature beats (2008) J. Am. Coll. Cardiol., 52 (15), pp. 1222-1230Niederer, S.A., Verification of cardiac tissue electrophysiology simulators using an N-version benchmark (1954) Philos. Trans. R. Soc. a Math. Phys. Eng. Sci, 369, pp. 4331-4351. , 2011)Nygren, A., Leon, L.J., Giles, W.R., Simulaations of the human atrial action potential (2001) Philos. Transsactions R. Soc. A, 359 (1783), pp. 1111-1125Ogawa, M., Kumagai, K., Gondo, N., Matsumoto, N., Suyama, K., Saku, K., Novel electrophysiologic parameter of dispersion of atrial repolarization: Comparison of different atrial pacing methods (2002) J. Cardiovasc. Electrophysiol., 13 (2), pp. 110-117Trayanova, N.A., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: A simulation approach (2014) Front. Physiol., 5, p. 435. , http://journal.frontiersin.org/article/10.3389/fphys.2014.00435/abstractUgarte, J.P., Tobón, C., Orozco-Duque, A., Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study (2019) Entropy, 21 (2), pp. 1-17Voigt, N., Enhanced sarcoplasmic reticulum Ca2 + leak and increased Na+-Ca2 + exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation (2012) Circulation, 125 (17), pp. 2059-2070Wilhelms, M., Hettmann, H., Maleckar, M.M., Koivumäki, J.T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Front. Physiol., 3 (487)Xu, Y., Sharma, D., Li, G., Liu, Y., Atrial remodeling: New pathophysiological mechanism of atrial fibrillation (2013) Med. Hypotheses, 80 (1), pp. 53-56Yang, Q., Liu, F., Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives (2010) Appl. Math. Model., 34, pp. 200-218Yue, L., Xie, J., Nattel, S., Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation (2011) Cardiovasc. Res., 89 (4), pp. 744-753Zhang, H., Garratt, C., Zhu, J., Holden, A., Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans (2005) Cardiovasc. Res., 66 (3), pp. 493-502Communications in Computer and Information ScienceAtrial fibrillationFractional calculusHuman atrial electrophysiological modelsMyocardium structural heterogeneityCalculationsDiseasesElectrophysiologyMathematical operatorsAction potential propagationAtrial fibrillationElectrophysiological modelsElectrophysiological propertiesFractional calculusFractional order derivativesPhysiological conditionStructural heterogeneityPhysiological modelsHuman Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation ConditionsConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Ugarte, J.P., GIMSC, Facultad de Ingenierías, Universidad de San Buenaventura, Medellín, Colombia; Tobón, C., MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecUgarte J.P.Tobón C.11407/5811oai:repository.udem.edu.co:11407/58112020-05-27 15:52:41.206Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |