Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions

Atrial fibrillation (AF) is the most common arrhythmia within the clinical context. Advanced stages of the AF involve several difficulties in its management and treatment. This occurs mostly because the initiation and perpetuation mechanisms of the AF are still not fully understood. Cardiac scientif...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5811
Acceso en línea:
http://hdl.handle.net/11407/5811
Palabra clave:
Atrial fibrillation
Fractional calculus
Human atrial electrophysiological models
Myocardium structural heterogeneity
Calculations
Diseases
Electrophysiology
Mathematical operators
Action potential propagation
Atrial fibrillation
Electrophysiological models
Electrophysiological properties
Fractional calculus
Fractional order derivatives
Physiological condition
Structural heterogeneity
Physiological models
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_3865ac027f2114ea91a5e751a2477a60
oai_identifier_str oai:repository.udem.edu.co:11407/5811
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions
title Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions
spellingShingle Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions
Atrial fibrillation
Fractional calculus
Human atrial electrophysiological models
Myocardium structural heterogeneity
Calculations
Diseases
Electrophysiology
Mathematical operators
Action potential propagation
Atrial fibrillation
Electrophysiological models
Electrophysiological properties
Fractional calculus
Fractional order derivatives
Physiological condition
Structural heterogeneity
Physiological models
title_short Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions
title_full Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions
title_fullStr Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions
title_full_unstemmed Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions
title_sort Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions
dc.subject.none.fl_str_mv Atrial fibrillation
Fractional calculus
Human atrial electrophysiological models
Myocardium structural heterogeneity
Calculations
Diseases
Electrophysiology
Mathematical operators
Action potential propagation
Atrial fibrillation
Electrophysiological models
Electrophysiological properties
Fractional calculus
Fractional order derivatives
Physiological condition
Structural heterogeneity
Physiological models
topic Atrial fibrillation
Fractional calculus
Human atrial electrophysiological models
Myocardium structural heterogeneity
Calculations
Diseases
Electrophysiology
Mathematical operators
Action potential propagation
Atrial fibrillation
Electrophysiological models
Electrophysiological properties
Fractional calculus
Fractional order derivatives
Physiological condition
Structural heterogeneity
Physiological models
description Atrial fibrillation (AF) is the most common arrhythmia within the clinical context. Advanced stages of the AF involve several difficulties in its management and treatment. This occurs mostly because the initiation and perpetuation mechanisms of the AF are still not fully understood. Cardiac scientific computation has become an important tool in researching the underlying mechanisms of the AF. In this work, an equation of action potential propagation that implements fractional order derivatives is used to model the atrial dynamics. The fractional derivative order represents the structural heterogeneities of the atrial myocardium. Using such mathematical operator, the Courtemanche and Maleckar human atrial electrophysiological models, during healthy and AF conditions, are assessed. The results indicate that, through the fractional order variations, there are electrophysiological properties whose behavior do not depend on the cellular model or physiological conditions. On the other hand, there are properties whose behavior under distinct values of the fractional order, are specific to the cellular model and to the physiological condition and they can be characterized quantitatively and qualitatively. Therefore, the fractional atrial propagation model can be a useful tool for modeling a wide range of electrophysiological scenarios in both healthy and AF conditions. © 2019, Springer Nature Switzerland AG.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:54:07Z
dc.date.available.none.fl_str_mv 2020-04-29T14:54:07Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.isbn.none.fl_str_mv 9783030310189
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5811
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-31019-6_38
identifier_str_mv 9783030310189
18650929
10.1007/978-3-030-31019-6_38
url http://hdl.handle.net/11407/5811
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075663296&doi=10.1007%2f978-3-030-31019-6_38&partnerID=40&md5=ac486bfc00fd64e3dbcc24f01e7b2343
dc.relation.citationvolume.none.fl_str_mv 1052
dc.relation.citationstartpage.none.fl_str_mv 440
dc.relation.citationendpage.none.fl_str_mv 450
dc.relation.references.none.fl_str_mv Bode, F., Kilborn, M., Karasik, P., Franz, M.R., The repolarization-excitability relationship in the human right atrium is unaffected by cycle length, recording site and prior arrhythmias (2001) J. Am. Coll. Cardiol., 37 (3), pp. 920-925
Boutjdir, M., Inhomogeneity of cellular refractoriness in human atrium: Factor of arrhythmia? L hétérogénéité des périodes réfractaires cellulaires de l oreillette humaine: Un facteur d arythmie? (1986) Pacing Clin. Electrophysiol., 9 (6), pp. 1095-1100
Burstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) J. Am. Coll. Cardiol., 51 (8), pp. 802-809
Caballero, R., In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differ-entially on each atria and increases the slow component of the delayed rectifier current in both (2010) J. Am. Coll. Cardiol., 55 (21), pp. 2346-2354
Cherry, E.M., Evans, S.J., Properties of two human atrial cell models in tissue: Restitution, memory, propagation, and reentry (2008) J. Theor. Biol., 254 (3), pp. 674-690
Clayton, R.H., Bernus, O., Cherry, E.M., Dierckx, H., Fenton, F.H., Mirabella, L., Panfilov, V., Zhang, H., Models of cardiac tissue electrophysiology: Progress, challenges and open questions (2011) Prog. Biophys. Mol. Biol., 104, pp. 22-48. , https://doi.org/10.1016/j.pbiomolbio.2010.05.008
Corradi, D., Atrial fibrillation from the pathologist s perspective (2014) Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol., 23 (2), pp. 71-84
Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol., 275 (1), pp. H301-H321. , Pt 2
Dobrev, D., Electrical remodeling in atrial fibrillation (2006) Herz, 31 (2), pp. 108-112
Hertervig, E., Li, Z., Kongstad, O., Holm, M., Olsson, S.B., Yuan, S., Global dispersion of right atrial repolarization in healthy pigs and patients (2003) Scand. Cardiovasc. J (SCJ), 37 (6), pp. 329-333. , https://doi.org/10.1080/14017430310016207
Jalife, J., Mechanisms of persistent atrial fibrillation (2014) Curr. Opin. Cardiol., 29 (1), pp. 20-27
Kamalvand, K., Tan, K., Lloyd, G., Gill, J., Bucknall, C., Sulke, N., Alterations in atrial electrophysiology associated with chronic atrial fibrillation in man (1999) Eur. Heart J., 20 (12), pp. 888-895
Kirchhof, P., 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18 (11), pp. 1609-1678
Kottkamp, H., Human atrial fibrillation substrate: Towards a specific fibrotic atrial cardiomyopathy (2013) Eur. Heart J., 34 (35), pp. 2731-2738
Lalani, G.G., Atrial conduction slows immediately before the onset of human atrial fibrillation a bi-atrial contact mapping study of transitions to atrial fibrillation (2012) JAC, 59 (6), pp. 595-606
Li, Z., Hertervig, E., Yuan, S., Yang, Y., Lin, Z., Olsson, S.B., Dispersion of atrial repolarization in patients with paroxysmal atrial fibrillation (2001) Europace, 3 (4), pp. 285-291
Machado, J.A., Kiryakova, V., The chronicles of fractional calculus (2017) Fract. Calc. Appl. Anal., 20 (2), pp. 307-336. , https://doi.org/10.1515/fca-2017-0017
Maleckar, M.M., Greenstein, J.L., Giles, W.R., Na, T., K+ current changes account for the rate dependence of the action potential in the human atrial myocyte (2009) Am. J. Physiol. Heart Circ. Physiol., 297, pp. H1398-H1410
McDowell, K.S., Zahid, S., Vadakkumpadan, F., Blauer, J., Macleod, R.S., Na, T., Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling (2015) Plos ONE, 10 (2)
Narayan, S.M., Kazi, D., Krummen, D.E., Wj, R., Repolarization and activation restitution near human pulmonary veins and atrial fibrillation initiation a mechanism for the initiation of atrial fibrillation by premature beats (2008) J. Am. Coll. Cardiol., 52 (15), pp. 1222-1230
Niederer, S.A., Verification of cardiac tissue electrophysiology simulators using an N-version benchmark (1954) Philos. Trans. R. Soc. a Math. Phys. Eng. Sci, 369, pp. 4331-4351. , 2011)
Nygren, A., Leon, L.J., Giles, W.R., Simulaations of the human atrial action potential (2001) Philos. Transsactions R. Soc. A, 359 (1783), pp. 1111-1125
Ogawa, M., Kumagai, K., Gondo, N., Matsumoto, N., Suyama, K., Saku, K., Novel electrophysiologic parameter of dispersion of atrial repolarization: Comparison of different atrial pacing methods (2002) J. Cardiovasc. Electrophysiol., 13 (2), pp. 110-117
Trayanova, N.A., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: A simulation approach (2014) Front. Physiol., 5, p. 435. , http://journal.frontiersin.org/article/10.3389/fphys.2014.00435/abstract
Ugarte, J.P., Tobón, C., Orozco-Duque, A., Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study (2019) Entropy, 21 (2), pp. 1-17
Voigt, N., Enhanced sarcoplasmic reticulum Ca2 + leak and increased Na+-Ca2 + exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation (2012) Circulation, 125 (17), pp. 2059-2070
Wilhelms, M., Hettmann, H., Maleckar, M.M., Koivumäki, J.T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Front. Physiol., 3 (487)
Xu, Y., Sharma, D., Li, G., Liu, Y., Atrial remodeling: New pathophysiological mechanism of atrial fibrillation (2013) Med. Hypotheses, 80 (1), pp. 53-56
Yang, Q., Liu, F., Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives (2010) Appl. Math. Model., 34, pp. 200-218
Yue, L., Xie, J., Nattel, S., Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation (2011) Cardiovasc. Res., 89 (4), pp. 744-753
Zhang, H., Garratt, C., Zhu, J., Holden, A., Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans (2005) Cardiovasc. Res., 66 (3), pp. 493-502
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Springer
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Communications in Computer and Information Science
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481158468468736
spelling 20192020-04-29T14:54:07Z2020-04-29T14:54:07Z978303031018918650929http://hdl.handle.net/11407/581110.1007/978-3-030-31019-6_38Atrial fibrillation (AF) is the most common arrhythmia within the clinical context. Advanced stages of the AF involve several difficulties in its management and treatment. This occurs mostly because the initiation and perpetuation mechanisms of the AF are still not fully understood. Cardiac scientific computation has become an important tool in researching the underlying mechanisms of the AF. In this work, an equation of action potential propagation that implements fractional order derivatives is used to model the atrial dynamics. The fractional derivative order represents the structural heterogeneities of the atrial myocardium. Using such mathematical operator, the Courtemanche and Maleckar human atrial electrophysiological models, during healthy and AF conditions, are assessed. The results indicate that, through the fractional order variations, there are electrophysiological properties whose behavior do not depend on the cellular model or physiological conditions. On the other hand, there are properties whose behavior under distinct values of the fractional order, are specific to the cellular model and to the physiological condition and they can be characterized quantitatively and qualitatively. Therefore, the fractional atrial propagation model can be a useful tool for modeling a wide range of electrophysiological scenarios in both healthy and AF conditions. © 2019, Springer Nature Switzerland AG.engSpringerFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075663296&doi=10.1007%2f978-3-030-31019-6_38&partnerID=40&md5=ac486bfc00fd64e3dbcc24f01e7b23431052440450Bode, F., Kilborn, M., Karasik, P., Franz, M.R., The repolarization-excitability relationship in the human right atrium is unaffected by cycle length, recording site and prior arrhythmias (2001) J. Am. Coll. Cardiol., 37 (3), pp. 920-925Boutjdir, M., Inhomogeneity of cellular refractoriness in human atrium: Factor of arrhythmia? L hétérogénéité des périodes réfractaires cellulaires de l oreillette humaine: Un facteur d arythmie? (1986) Pacing Clin. Electrophysiol., 9 (6), pp. 1095-1100Burstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) J. Am. Coll. Cardiol., 51 (8), pp. 802-809Caballero, R., In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differ-entially on each atria and increases the slow component of the delayed rectifier current in both (2010) J. Am. Coll. Cardiol., 55 (21), pp. 2346-2354Cherry, E.M., Evans, S.J., Properties of two human atrial cell models in tissue: Restitution, memory, propagation, and reentry (2008) J. Theor. Biol., 254 (3), pp. 674-690Clayton, R.H., Bernus, O., Cherry, E.M., Dierckx, H., Fenton, F.H., Mirabella, L., Panfilov, V., Zhang, H., Models of cardiac tissue electrophysiology: Progress, challenges and open questions (2011) Prog. Biophys. Mol. Biol., 104, pp. 22-48. , https://doi.org/10.1016/j.pbiomolbio.2010.05.008Corradi, D., Atrial fibrillation from the pathologist s perspective (2014) Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol., 23 (2), pp. 71-84Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol., 275 (1), pp. H301-H321. , Pt 2Dobrev, D., Electrical remodeling in atrial fibrillation (2006) Herz, 31 (2), pp. 108-112Hertervig, E., Li, Z., Kongstad, O., Holm, M., Olsson, S.B., Yuan, S., Global dispersion of right atrial repolarization in healthy pigs and patients (2003) Scand. Cardiovasc. J (SCJ), 37 (6), pp. 329-333. , https://doi.org/10.1080/14017430310016207Jalife, J., Mechanisms of persistent atrial fibrillation (2014) Curr. Opin. Cardiol., 29 (1), pp. 20-27Kamalvand, K., Tan, K., Lloyd, G., Gill, J., Bucknall, C., Sulke, N., Alterations in atrial electrophysiology associated with chronic atrial fibrillation in man (1999) Eur. Heart J., 20 (12), pp. 888-895Kirchhof, P., 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18 (11), pp. 1609-1678Kottkamp, H., Human atrial fibrillation substrate: Towards a specific fibrotic atrial cardiomyopathy (2013) Eur. Heart J., 34 (35), pp. 2731-2738Lalani, G.G., Atrial conduction slows immediately before the onset of human atrial fibrillation a bi-atrial contact mapping study of transitions to atrial fibrillation (2012) JAC, 59 (6), pp. 595-606Li, Z., Hertervig, E., Yuan, S., Yang, Y., Lin, Z., Olsson, S.B., Dispersion of atrial repolarization in patients with paroxysmal atrial fibrillation (2001) Europace, 3 (4), pp. 285-291Machado, J.A., Kiryakova, V., The chronicles of fractional calculus (2017) Fract. Calc. Appl. Anal., 20 (2), pp. 307-336. , https://doi.org/10.1515/fca-2017-0017Maleckar, M.M., Greenstein, J.L., Giles, W.R., Na, T., K+ current changes account for the rate dependence of the action potential in the human atrial myocyte (2009) Am. J. Physiol. Heart Circ. Physiol., 297, pp. H1398-H1410McDowell, K.S., Zahid, S., Vadakkumpadan, F., Blauer, J., Macleod, R.S., Na, T., Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling (2015) Plos ONE, 10 (2)Narayan, S.M., Kazi, D., Krummen, D.E., Wj, R., Repolarization and activation restitution near human pulmonary veins and atrial fibrillation initiation a mechanism for the initiation of atrial fibrillation by premature beats (2008) J. Am. Coll. Cardiol., 52 (15), pp. 1222-1230Niederer, S.A., Verification of cardiac tissue electrophysiology simulators using an N-version benchmark (1954) Philos. Trans. R. Soc. a Math. Phys. Eng. Sci, 369, pp. 4331-4351. , 2011)Nygren, A., Leon, L.J., Giles, W.R., Simulaations of the human atrial action potential (2001) Philos. Transsactions R. Soc. A, 359 (1783), pp. 1111-1125Ogawa, M., Kumagai, K., Gondo, N., Matsumoto, N., Suyama, K., Saku, K., Novel electrophysiologic parameter of dispersion of atrial repolarization: Comparison of different atrial pacing methods (2002) J. Cardiovasc. Electrophysiol., 13 (2), pp. 110-117Trayanova, N.A., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: A simulation approach (2014) Front. Physiol., 5, p. 435. , http://journal.frontiersin.org/article/10.3389/fphys.2014.00435/abstractUgarte, J.P., Tobón, C., Orozco-Duque, A., Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study (2019) Entropy, 21 (2), pp. 1-17Voigt, N., Enhanced sarcoplasmic reticulum Ca2 + leak and increased Na+-Ca2 + exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation (2012) Circulation, 125 (17), pp. 2059-2070Wilhelms, M., Hettmann, H., Maleckar, M.M., Koivumäki, J.T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Front. Physiol., 3 (487)Xu, Y., Sharma, D., Li, G., Liu, Y., Atrial remodeling: New pathophysiological mechanism of atrial fibrillation (2013) Med. Hypotheses, 80 (1), pp. 53-56Yang, Q., Liu, F., Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives (2010) Appl. Math. Model., 34, pp. 200-218Yue, L., Xie, J., Nattel, S., Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation (2011) Cardiovasc. Res., 89 (4), pp. 744-753Zhang, H., Garratt, C., Zhu, J., Holden, A., Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans (2005) Cardiovasc. Res., 66 (3), pp. 493-502Communications in Computer and Information ScienceAtrial fibrillationFractional calculusHuman atrial electrophysiological modelsMyocardium structural heterogeneityCalculationsDiseasesElectrophysiologyMathematical operatorsAction potential propagationAtrial fibrillationElectrophysiological modelsElectrophysiological propertiesFractional calculusFractional order derivativesPhysiological conditionStructural heterogeneityPhysiological modelsHuman Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation ConditionsConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Ugarte, J.P., GIMSC, Facultad de Ingenierías, Universidad de San Buenaventura, Medellín, Colombia; Tobón, C., MATBIOM, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecUgarte J.P.Tobón C.11407/5811oai:repository.udem.edu.co:11407/58112020-05-27 15:52:41.206Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co