AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study
Researchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in th...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4279
- Acceso en línea:
- http://hdl.handle.net/11407/4279
- Palabra clave:
- Computer Simulation
Crystal Structure
Nitrides
Point Defects
Solid Solutions
Superlattices
Atoms
Computer simulation
Crystal atomic structure
Crystal structure
Gold
Lattice theory
Nitrides
Nitrogen
Point defects
Refractory metal compounds
Solid solutions
Superlattices
Transition metals
Zinc sulfide
Density functional theory studies
Face-centered cubes (fcc)
Interstitial nitrogen
Interstitial sites
Pseudopotential plane-wave method
Series transitions
Transition metal nitrides
Wurtzite structure
Density functional theory
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_3845d2678a0b50c8b66a3070226b8cc8 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4279 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study |
title |
AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study |
spellingShingle |
AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study Computer Simulation Crystal Structure Nitrides Point Defects Solid Solutions Superlattices Atoms Computer simulation Crystal atomic structure Crystal structure Gold Lattice theory Nitrides Nitrogen Point defects Refractory metal compounds Solid solutions Superlattices Transition metals Zinc sulfide Density functional theory studies Face-centered cubes (fcc) Interstitial nitrogen Interstitial sites Pseudopotential plane-wave method Series transitions Transition metal nitrides Wurtzite structure Density functional theory |
title_short |
AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study |
title_full |
AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study |
title_fullStr |
AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study |
title_full_unstemmed |
AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study |
title_sort |
AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study |
dc.contributor.affiliation.spa.fl_str_mv |
Quintero, J.H., Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, Colombia Gonzalez-Hernandez, R., Grupo de Investigación en Física Aplicada, Universidad Del Norte, Barranquilla, Colombia Ospina, R., Escuela de Física, Centro de Materiales y Nanociencia, Universidad Industrial de Santander, Bucaramanga, Colombia Marino, A., Laboratorio de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogotá D.C., Colombia |
dc.subject.keyword.eng.fl_str_mv |
Computer Simulation Crystal Structure Nitrides Point Defects Solid Solutions Superlattices Atoms Computer simulation Crystal atomic structure Crystal structure Gold Lattice theory Nitrides Nitrogen Point defects Refractory metal compounds Solid solutions Superlattices Transition metals Zinc sulfide Density functional theory studies Face-centered cubes (fcc) Interstitial nitrogen Interstitial sites Pseudopotential plane-wave method Series transitions Transition metal nitrides Wurtzite structure Density functional theory |
topic |
Computer Simulation Crystal Structure Nitrides Point Defects Solid Solutions Superlattices Atoms Computer simulation Crystal atomic structure Crystal structure Gold Lattice theory Nitrides Nitrogen Point defects Refractory metal compounds Solid solutions Superlattices Transition metals Zinc sulfide Density functional theory studies Face-centered cubes (fcc) Interstitial nitrogen Interstitial sites Pseudopotential plane-wave method Series transitions Transition metal nitrides Wurtzite structure Density functional theory |
description |
Researchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites. © Published under licence by IOP Publishing Ltd. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:44Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:44Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.identifier.issn.none.fl_str_mv |
17426588 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4279 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/850/1/012002 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
17426588 10.1088/1742-6596/850/1/012002 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4279 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85022062627&doi=10.1088%2f1742-6596%2f850%2f1%2f012002&partnerID=40&md5=5812470d8966f71b42e9673e1de6cf95 |
dc.relation.ispartofes.spa.fl_str_mv |
Journal of Physics: Conference Series Journal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017 |
dc.relation.references.spa.fl_str_mv |
Al-Brithen, H., & Smith, A. R. (2000). Molecular beam epitaxial growth of atomically smooth scandium nitride films. Applied Physics Letters, 77(16), 2485-2487. Alves, L., Hase, T. P. A., Hunt, M. R. C., Brieva, A. C., & Šiller, L. (2008). X-ray diffraction study of gold nitride films: Observation of a solid solution phase. Journal of Applied Physics, 104(11) doi:10.1063/1.3040717 Caricato, A. P., Fernàndez, M., Leggieri, G., Luches, A., Martino, M., Romano, F., . . . Meda, L. (2007). Reactive pulsed laser deposition of gold nitride thin films. Applied Surface Science, 253(19), 8037-8040. doi:10.1016/j.apsusc.2007.02.081 Devia, A., Benavides, V., Castillo, H. A., & Quintero, J. (2006). Effects of the substrate temperature in AuN thin films by means of x-ray diffraction. AIP Conference Proceedings, 875, 258-261. doi:10.1063/1.2405944 Devia, A., Castillo, H. A., Benavides, V. J., Arango, Y. C., & Quintero, J. H. (2008). Growth and characterization of AuN films through the pulsed arc technique. Materials Characterization, 59(2), 105-107. doi:10.1016/j.matchar.2006.10.023 Evans, R. C. (1964). An Introduction to Crystal Chemistry. Giannozzi, P. (2009). J.Phys: Cond.Matt, 21(39) Hugh, O. (1996). Pierson Handbook of Refractory Carbides and Nitrides. Kanoun, M. B., & Goumri-Said, S. (2007). Investigation of structural stability and electronic properties of CuN, AgN and AuN by first principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 362(1), 73-83. doi:10.1016/j.physleta.2006.09.100 Krishnamurthy, S., Montalti, M., Wardle, M. G., Shaw, M. J., Briddon, P. R., Svensson, K., . . . Šiller, L. (2004). Nitrogen ion irradiation of au(110): Photoemission spectroscopy and possible crystal structures of gold nitride. Physical Review B - Condensed Matter and Materials Physics, 70(4), 045414-1-045414-5. doi:10.1103/PhysRevB.70.045414 Laasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Physical Review B, 47(16), 10142-10153. doi:10.1103/PhysRevB.47.10142 Maruyama, T., & Morishita, T. (1996). Copper nitride and tin nitride thin films for write-once optical recording media. Applied Physics Letters, 69(7), 890-891. doi:10.1063/1.117978 Methfessel, M., & Paxton, A. T. (1989). High-precision sampling for brillouin-zone integration in metals. Physical Review B, 40(6), 3616-3621. doi:10.1103/PhysRevB.40.3616 Mohammed, S., Suleiman, H., & Joubert Daniel, P. (2013). Cond-Mat.Mtrl-Sci. Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188 Murnaghan, F. D. (1944). The compressibility of media under extreme pressures. Proc.Natl.Acad.Sci.U.S.A., 30, 244-247. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865 Quintero, J. H., Arango, P. J., Ospina, R., Mello, A., & Mariño, A. (2015). AuN films - structure and chemical binding. Surface and Interface Analysis, 47(6), 701-705. doi:10.1002/sia.5766 Quintero, J. H., Mariño, A., & Arango, P. J. (2013). Differences between thin films deposition systems in the production transition metal nitride. Journal of Physics: Conference Series, 466(1) doi:10.1088/1742-6596/466/1/012002 Quintero, J. H., Mariño, A., Šiller, L., Restrepo-Parra, E., & Caro-Lopera, F. J. (2017). Rocking curves of gold nitride species prepared by arc pulsed - physical assisted plasma vapor deposition. Surface and Coatings Technology, 309, 249-257. doi:10.1016/j.surfcoat.2016.11.081 Quintero, J. H., Ospina, R., Cárdenas, O. O., Alzate, G. I., & Devia, A. (2008). Phys.Scr, 131. Quintero, J. H., Ospina, R., & Mello, A. (2016). Obtaining au thin films in atmosphere of reactive nitrogen through magnetron sputtering. Journal of Physics: Conference Series, 687(1) doi:10.1088/1742-6596/687/1/012006 Ranjan, V., Bellaiche, L., & Walter, E. J. (2003). Strained hexagonal ScN: A material with unusual structural and optical properties. Physical Review Letters, 90(25 I), 2576021-2576024. Shanley, E. S., & Ennis, J. L. (1991). The chemistry and free energy of formation of silver nitride. Industrial and Engineering Chemistry Research, 30(11), 2503-2506. doi:10.1021/ie00059a023 Spyropoulos-Antonakakis, N., Sarantopoulou, E., Kollia, Z., Dražic, G., & Kobe, S. (2011). Schottky and charge memory effects in InN nanodomains. Applied Physics Letters, 99(15) doi:10.1063/1.3651327 Yu, R., & Zhang, X. F. (2005). Family of noble metal nitrides: First principles calculations of the elastic stability. Physical Review B - Condensed Matter and Materials Physics, 72(5) doi:10.1103/PhysRevB.72.054103 Yu, R., & Zhang, X. F. (2005). Platinum nitride with fluorite structure. Applied Physics Letters, 86(12), 1-3. doi:10.1063/1.1890466 Zerr, A., Miehe, G., & Riedel, R. (2003). Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nature Materials, 2(3), 185-189. doi:10.1038/nmat836 Zhan, Q., Yu, R., He, L., Li, D., Nie, H., & Ong, C. (2003). Microstructural study on multilayer [FeTaN/TaN]5 films. Materials Letters, 57(24-25), 3904-3909. doi:10.1016/S0167-577X(03)00238-6 Zhan, Q., Yu, R., He, L. L., & Li, D. X. (2002). Microstructural characterization of fe-N thin films. Thin Solid Films, 411(2), 225-228. doi:10.1016/S0040-6090(02)00289-4 Zhao, E., Wang, J., Meng, J., & Wu, Z. (2010). Structural, mechanical and electronic properties of 4d transition metal mononitrides by first-principles. Computational Materials Science, 47(4), 1064-1071. doi:10.1016/j.commatsci.2009.12.011 Zhao, E., & Wu, Z. (2008). Electronic and mechanical properties of 5d transition metal mononitrides via first principles. Journal of Solid State Chemistry, 181(10), 2814-2827. doi:10.1016/j.jssc.2008.07.022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Institute of Physics Publishing |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
bitstream.url.fl_str_mv |
http://repository.udem.edu.co/bitstream/11407/4279/2/10.%20AuNx%20stabilization%20with%20interstitial%20nitrogen%20atoms%20A%20Density%20Functional%20Theory%20Study.pdf.jpg http://repository.udem.edu.co/bitstream/11407/4279/1/10.%20AuNx%20stabilization%20with%20interstitial%20nitrogen%20atoms%20A%20Density%20Functional%20Theory%20Study.pdf |
bitstream.checksum.fl_str_mv |
e6fcdd9b96681478073e9a37f94effec 9cb58a64a0ce07a7dc4066e46fde66a1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159190204088320 |
spelling |
2017-12-19T19:36:44Z2017-12-19T19:36:44Z201717426588http://hdl.handle.net/11407/427910.1088/1742-6596/850/1/012002reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínResearchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85022062627&doi=10.1088%2f1742-6596%2f850%2f1%2f012002&partnerID=40&md5=5812470d8966f71b42e9673e1de6cf95Journal of Physics: Conference SeriesJournal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017Al-Brithen, H., & Smith, A. R. (2000). Molecular beam epitaxial growth of atomically smooth scandium nitride films. Applied Physics Letters, 77(16), 2485-2487.Alves, L., Hase, T. P. A., Hunt, M. R. C., Brieva, A. C., & Šiller, L. (2008). X-ray diffraction study of gold nitride films: Observation of a solid solution phase. Journal of Applied Physics, 104(11) doi:10.1063/1.3040717Caricato, A. P., Fernàndez, M., Leggieri, G., Luches, A., Martino, M., Romano, F., . . . Meda, L. (2007). Reactive pulsed laser deposition of gold nitride thin films. Applied Surface Science, 253(19), 8037-8040. doi:10.1016/j.apsusc.2007.02.081Devia, A., Benavides, V., Castillo, H. A., & Quintero, J. (2006). Effects of the substrate temperature in AuN thin films by means of x-ray diffraction. AIP Conference Proceedings, 875, 258-261. doi:10.1063/1.2405944Devia, A., Castillo, H. A., Benavides, V. J., Arango, Y. C., & Quintero, J. H. (2008). Growth and characterization of AuN films through the pulsed arc technique. Materials Characterization, 59(2), 105-107. doi:10.1016/j.matchar.2006.10.023Evans, R. C. (1964). An Introduction to Crystal Chemistry.Giannozzi, P. (2009). J.Phys: Cond.Matt, 21(39)Hugh, O. (1996). Pierson Handbook of Refractory Carbides and Nitrides.Kanoun, M. B., & Goumri-Said, S. (2007). Investigation of structural stability and electronic properties of CuN, AgN and AuN by first principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 362(1), 73-83. doi:10.1016/j.physleta.2006.09.100Krishnamurthy, S., Montalti, M., Wardle, M. G., Shaw, M. J., Briddon, P. R., Svensson, K., . . . Šiller, L. (2004). Nitrogen ion irradiation of au(110): Photoemission spectroscopy and possible crystal structures of gold nitride. Physical Review B - Condensed Matter and Materials Physics, 70(4), 045414-1-045414-5. doi:10.1103/PhysRevB.70.045414Laasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Physical Review B, 47(16), 10142-10153. doi:10.1103/PhysRevB.47.10142Maruyama, T., & Morishita, T. (1996). Copper nitride and tin nitride thin films for write-once optical recording media. Applied Physics Letters, 69(7), 890-891. doi:10.1063/1.117978Methfessel, M., & Paxton, A. T. (1989). High-precision sampling for brillouin-zone integration in metals. Physical Review B, 40(6), 3616-3621. doi:10.1103/PhysRevB.40.3616Mohammed, S., Suleiman, H., & Joubert Daniel, P. (2013). Cond-Mat.Mtrl-Sci.Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188Murnaghan, F. D. (1944). The compressibility of media under extreme pressures. Proc.Natl.Acad.Sci.U.S.A., 30, 244-247.Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865Quintero, J. H., Arango, P. J., Ospina, R., Mello, A., & Mariño, A. (2015). AuN films - structure and chemical binding. Surface and Interface Analysis, 47(6), 701-705. doi:10.1002/sia.5766Quintero, J. H., Mariño, A., & Arango, P. J. (2013). Differences between thin films deposition systems in the production transition metal nitride. Journal of Physics: Conference Series, 466(1) doi:10.1088/1742-6596/466/1/012002Quintero, J. H., Mariño, A., Šiller, L., Restrepo-Parra, E., & Caro-Lopera, F. J. (2017). Rocking curves of gold nitride species prepared by arc pulsed - physical assisted plasma vapor deposition. Surface and Coatings Technology, 309, 249-257. doi:10.1016/j.surfcoat.2016.11.081Quintero, J. H., Ospina, R., Cárdenas, O. O., Alzate, G. I., & Devia, A. (2008). Phys.Scr, 131.Quintero, J. H., Ospina, R., & Mello, A. (2016). Obtaining au thin films in atmosphere of reactive nitrogen through magnetron sputtering. Journal of Physics: Conference Series, 687(1) doi:10.1088/1742-6596/687/1/012006Ranjan, V., Bellaiche, L., & Walter, E. J. (2003). Strained hexagonal ScN: A material with unusual structural and optical properties. Physical Review Letters, 90(25 I), 2576021-2576024.Shanley, E. S., & Ennis, J. L. (1991). The chemistry and free energy of formation of silver nitride. Industrial and Engineering Chemistry Research, 30(11), 2503-2506. doi:10.1021/ie00059a023Spyropoulos-Antonakakis, N., Sarantopoulou, E., Kollia, Z., Dražic, G., & Kobe, S. (2011). Schottky and charge memory effects in InN nanodomains. Applied Physics Letters, 99(15) doi:10.1063/1.3651327Yu, R., & Zhang, X. F. (2005). Family of noble metal nitrides: First principles calculations of the elastic stability. Physical Review B - Condensed Matter and Materials Physics, 72(5) doi:10.1103/PhysRevB.72.054103Yu, R., & Zhang, X. F. (2005). Platinum nitride with fluorite structure. Applied Physics Letters, 86(12), 1-3. doi:10.1063/1.1890466Zerr, A., Miehe, G., & Riedel, R. (2003). Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nature Materials, 2(3), 185-189. doi:10.1038/nmat836Zhan, Q., Yu, R., He, L., Li, D., Nie, H., & Ong, C. (2003). Microstructural study on multilayer [FeTaN/TaN]5 films. Materials Letters, 57(24-25), 3904-3909. doi:10.1016/S0167-577X(03)00238-6Zhan, Q., Yu, R., He, L. L., & Li, D. X. (2002). Microstructural characterization of fe-N thin films. Thin Solid Films, 411(2), 225-228. doi:10.1016/S0040-6090(02)00289-4Zhao, E., Wang, J., Meng, J., & Wu, Z. (2010). Structural, mechanical and electronic properties of 4d transition metal mononitrides by first-principles. Computational Materials Science, 47(4), 1064-1071. doi:10.1016/j.commatsci.2009.12.011Zhao, E., & Wu, Z. (2008). Electronic and mechanical properties of 5d transition metal mononitrides via first principles. Journal of Solid State Chemistry, 181(10), 2814-2827. doi:10.1016/j.jssc.2008.07.022ScopusAuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory StudyConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fQuintero, J.H., Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, ColombiaGonzalez-Hernandez, R., Grupo de Investigación en Física Aplicada, Universidad Del Norte, Barranquilla, ColombiaOspina, R., Escuela de Física, Centro de Materiales y Nanociencia, Universidad Industrial de Santander, Bucaramanga, ColombiaMarino, A., Laboratorio de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogotá D.C., ColombiaQuintero J.H.Gonzalez-Hernandez R.Ospina R.Marino A.Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, ColombiaGrupo de Investigación en Física Aplicada, Universidad Del Norte, Barranquilla, ColombiaEscuela de Física, Centro de Materiales y Nanociencia, Universidad Industrial de Santander, Bucaramanga, ColombiaLaboratorio de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogotá D.C., ColombiaComputer SimulationCrystal StructureNitridesPoint DefectsSolid SolutionsSuperlatticesAtomsComputer simulationCrystal atomic structureCrystal structureGoldLattice theoryNitridesNitrogenPoint defectsRefractory metal compoundsSolid solutionsSuperlatticesTransition metalsZinc sulfideDensity functional theory studiesFace-centered cubes (fcc)Interstitial nitrogenInterstitial sitesPseudopotential plane-wave methodSeries transitionsTransition metal nitridesWurtzite structureDensity functional theoryResearchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites. © Published under licence by IOP Publishing Ltd.http://purl.org/coar/access_right/c_16ecTHUMBNAIL10. AuNx stabilization with interstitial nitrogen atoms A Density Functional Theory Study.pdf.jpg10. AuNx stabilization with interstitial nitrogen atoms A Density Functional Theory Study.pdf.jpgIM Thumbnailimage/jpeg3910http://repository.udem.edu.co/bitstream/11407/4279/2/10.%20AuNx%20stabilization%20with%20interstitial%20nitrogen%20atoms%20A%20Density%20Functional%20Theory%20Study.pdf.jpge6fcdd9b96681478073e9a37f94effecMD52ORIGINAL10. AuNx stabilization with interstitial nitrogen atoms A Density Functional Theory Study.pdf10. AuNx stabilization with interstitial nitrogen atoms A Density Functional Theory Study.pdfapplication/pdf1405753http://repository.udem.edu.co/bitstream/11407/4279/1/10.%20AuNx%20stabilization%20with%20interstitial%20nitrogen%20atoms%20A%20Density%20Functional%20Theory%20Study.pdf9cb58a64a0ce07a7dc4066e46fde66a1MD5111407/4279oai:repository.udem.edu.co:11407/42792020-05-27 17:51:00.375Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |