AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study

Researchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in th...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4279
Acceso en línea:
http://hdl.handle.net/11407/4279
Palabra clave:
Computer Simulation
Crystal Structure
Nitrides
Point Defects
Solid Solutions
Superlattices
Atoms
Computer simulation
Crystal atomic structure
Crystal structure
Gold
Lattice theory
Nitrides
Nitrogen
Point defects
Refractory metal compounds
Solid solutions
Superlattices
Transition metals
Zinc sulfide
Density functional theory studies
Face-centered cubes (fcc)
Interstitial nitrogen
Interstitial sites
Pseudopotential plane-wave method
Series transitions
Transition metal nitrides
Wurtzite structure
Density functional theory
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_3845d2678a0b50c8b66a3070226b8cc8
oai_identifier_str oai:repository.udem.edu.co:11407/4279
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study
title AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study
spellingShingle AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study
Computer Simulation
Crystal Structure
Nitrides
Point Defects
Solid Solutions
Superlattices
Atoms
Computer simulation
Crystal atomic structure
Crystal structure
Gold
Lattice theory
Nitrides
Nitrogen
Point defects
Refractory metal compounds
Solid solutions
Superlattices
Transition metals
Zinc sulfide
Density functional theory studies
Face-centered cubes (fcc)
Interstitial nitrogen
Interstitial sites
Pseudopotential plane-wave method
Series transitions
Transition metal nitrides
Wurtzite structure
Density functional theory
title_short AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study
title_full AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study
title_fullStr AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study
title_full_unstemmed AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study
title_sort AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study
dc.contributor.affiliation.spa.fl_str_mv Quintero, J.H., Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, Colombia
Gonzalez-Hernandez, R., Grupo de Investigación en Física Aplicada, Universidad Del Norte, Barranquilla, Colombia
Ospina, R., Escuela de Física, Centro de Materiales y Nanociencia, Universidad Industrial de Santander, Bucaramanga, Colombia
Marino, A., Laboratorio de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
dc.subject.keyword.eng.fl_str_mv Computer Simulation
Crystal Structure
Nitrides
Point Defects
Solid Solutions
Superlattices
Atoms
Computer simulation
Crystal atomic structure
Crystal structure
Gold
Lattice theory
Nitrides
Nitrogen
Point defects
Refractory metal compounds
Solid solutions
Superlattices
Transition metals
Zinc sulfide
Density functional theory studies
Face-centered cubes (fcc)
Interstitial nitrogen
Interstitial sites
Pseudopotential plane-wave method
Series transitions
Transition metal nitrides
Wurtzite structure
Density functional theory
topic Computer Simulation
Crystal Structure
Nitrides
Point Defects
Solid Solutions
Superlattices
Atoms
Computer simulation
Crystal atomic structure
Crystal structure
Gold
Lattice theory
Nitrides
Nitrogen
Point defects
Refractory metal compounds
Solid solutions
Superlattices
Transition metals
Zinc sulfide
Density functional theory studies
Face-centered cubes (fcc)
Interstitial nitrogen
Interstitial sites
Pseudopotential plane-wave method
Series transitions
Transition metal nitrides
Wurtzite structure
Density functional theory
description Researchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites. © Published under licence by IOP Publishing Ltd.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:44Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:44Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4279
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/850/1/012002
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 17426588
10.1088/1742-6596/850/1/012002
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4279
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85022062627&doi=10.1088%2f1742-6596%2f850%2f1%2f012002&partnerID=40&md5=5812470d8966f71b42e9673e1de6cf95
dc.relation.ispartofes.spa.fl_str_mv Journal of Physics: Conference Series
Journal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017
dc.relation.references.spa.fl_str_mv Al-Brithen, H., & Smith, A. R. (2000). Molecular beam epitaxial growth of atomically smooth scandium nitride films. Applied Physics Letters, 77(16), 2485-2487.
Alves, L., Hase, T. P. A., Hunt, M. R. C., Brieva, A. C., & Šiller, L. (2008). X-ray diffraction study of gold nitride films: Observation of a solid solution phase. Journal of Applied Physics, 104(11) doi:10.1063/1.3040717
Caricato, A. P., Fernàndez, M., Leggieri, G., Luches, A., Martino, M., Romano, F., . . . Meda, L. (2007). Reactive pulsed laser deposition of gold nitride thin films. Applied Surface Science, 253(19), 8037-8040. doi:10.1016/j.apsusc.2007.02.081
Devia, A., Benavides, V., Castillo, H. A., & Quintero, J. (2006). Effects of the substrate temperature in AuN thin films by means of x-ray diffraction. AIP Conference Proceedings, 875, 258-261. doi:10.1063/1.2405944
Devia, A., Castillo, H. A., Benavides, V. J., Arango, Y. C., & Quintero, J. H. (2008). Growth and characterization of AuN films through the pulsed arc technique. Materials Characterization, 59(2), 105-107. doi:10.1016/j.matchar.2006.10.023
Evans, R. C. (1964). An Introduction to Crystal Chemistry.
Giannozzi, P. (2009). J.Phys: Cond.Matt, 21(39)
Hugh, O. (1996). Pierson Handbook of Refractory Carbides and Nitrides.
Kanoun, M. B., & Goumri-Said, S. (2007). Investigation of structural stability and electronic properties of CuN, AgN and AuN by first principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 362(1), 73-83. doi:10.1016/j.physleta.2006.09.100
Krishnamurthy, S., Montalti, M., Wardle, M. G., Shaw, M. J., Briddon, P. R., Svensson, K., . . . Šiller, L. (2004). Nitrogen ion irradiation of au(110): Photoemission spectroscopy and possible crystal structures of gold nitride. Physical Review B - Condensed Matter and Materials Physics, 70(4), 045414-1-045414-5. doi:10.1103/PhysRevB.70.045414
Laasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Physical Review B, 47(16), 10142-10153. doi:10.1103/PhysRevB.47.10142
Maruyama, T., & Morishita, T. (1996). Copper nitride and tin nitride thin films for write-once optical recording media. Applied Physics Letters, 69(7), 890-891. doi:10.1063/1.117978
Methfessel, M., & Paxton, A. T. (1989). High-precision sampling for brillouin-zone integration in metals. Physical Review B, 40(6), 3616-3621. doi:10.1103/PhysRevB.40.3616
Mohammed, S., Suleiman, H., & Joubert Daniel, P. (2013). Cond-Mat.Mtrl-Sci.
Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188
Murnaghan, F. D. (1944). The compressibility of media under extreme pressures. Proc.Natl.Acad.Sci.U.S.A., 30, 244-247.
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865
Quintero, J. H., Arango, P. J., Ospina, R., Mello, A., & Mariño, A. (2015). AuN films - structure and chemical binding. Surface and Interface Analysis, 47(6), 701-705. doi:10.1002/sia.5766
Quintero, J. H., Mariño, A., & Arango, P. J. (2013). Differences between thin films deposition systems in the production transition metal nitride. Journal of Physics: Conference Series, 466(1) doi:10.1088/1742-6596/466/1/012002
Quintero, J. H., Mariño, A., Šiller, L., Restrepo-Parra, E., & Caro-Lopera, F. J. (2017). Rocking curves of gold nitride species prepared by arc pulsed - physical assisted plasma vapor deposition. Surface and Coatings Technology, 309, 249-257. doi:10.1016/j.surfcoat.2016.11.081
Quintero, J. H., Ospina, R., Cárdenas, O. O., Alzate, G. I., & Devia, A. (2008). Phys.Scr, 131.
Quintero, J. H., Ospina, R., & Mello, A. (2016). Obtaining au thin films in atmosphere of reactive nitrogen through magnetron sputtering. Journal of Physics: Conference Series, 687(1) doi:10.1088/1742-6596/687/1/012006
Ranjan, V., Bellaiche, L., & Walter, E. J. (2003). Strained hexagonal ScN: A material with unusual structural and optical properties. Physical Review Letters, 90(25 I), 2576021-2576024.
Shanley, E. S., & Ennis, J. L. (1991). The chemistry and free energy of formation of silver nitride. Industrial and Engineering Chemistry Research, 30(11), 2503-2506. doi:10.1021/ie00059a023
Spyropoulos-Antonakakis, N., Sarantopoulou, E., Kollia, Z., Dražic, G., & Kobe, S. (2011). Schottky and charge memory effects in InN nanodomains. Applied Physics Letters, 99(15) doi:10.1063/1.3651327
Yu, R., & Zhang, X. F. (2005). Family of noble metal nitrides: First principles calculations of the elastic stability. Physical Review B - Condensed Matter and Materials Physics, 72(5) doi:10.1103/PhysRevB.72.054103
Yu, R., & Zhang, X. F. (2005). Platinum nitride with fluorite structure. Applied Physics Letters, 86(12), 1-3. doi:10.1063/1.1890466
Zerr, A., Miehe, G., & Riedel, R. (2003). Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nature Materials, 2(3), 185-189. doi:10.1038/nmat836
Zhan, Q., Yu, R., He, L., Li, D., Nie, H., & Ong, C. (2003). Microstructural study on multilayer [FeTaN/TaN]5 films. Materials Letters, 57(24-25), 3904-3909. doi:10.1016/S0167-577X(03)00238-6
Zhan, Q., Yu, R., He, L. L., & Li, D. X. (2002). Microstructural characterization of fe-N thin films. Thin Solid Films, 411(2), 225-228. doi:10.1016/S0040-6090(02)00289-4
Zhao, E., Wang, J., Meng, J., & Wu, Z. (2010). Structural, mechanical and electronic properties of 4d transition metal mononitrides by first-principles. Computational Materials Science, 47(4), 1064-1071. doi:10.1016/j.commatsci.2009.12.011
Zhao, E., & Wu, Z. (2008). Electronic and mechanical properties of 5d transition metal mononitrides via first principles. Journal of Solid State Chemistry, 181(10), 2814-2827. doi:10.1016/j.jssc.2008.07.022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Institute of Physics Publishing
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/4279/2/10.%20AuNx%20stabilization%20with%20interstitial%20nitrogen%20atoms%20A%20Density%20Functional%20Theory%20Study.pdf.jpg
http://repository.udem.edu.co/bitstream/11407/4279/1/10.%20AuNx%20stabilization%20with%20interstitial%20nitrogen%20atoms%20A%20Density%20Functional%20Theory%20Study.pdf
bitstream.checksum.fl_str_mv e6fcdd9b96681478073e9a37f94effec
9cb58a64a0ce07a7dc4066e46fde66a1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159190204088320
spelling 2017-12-19T19:36:44Z2017-12-19T19:36:44Z201717426588http://hdl.handle.net/11407/427910.1088/1742-6596/850/1/012002reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínResearchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85022062627&doi=10.1088%2f1742-6596%2f850%2f1%2f012002&partnerID=40&md5=5812470d8966f71b42e9673e1de6cf95Journal of Physics: Conference SeriesJournal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017Al-Brithen, H., & Smith, A. R. (2000). Molecular beam epitaxial growth of atomically smooth scandium nitride films. Applied Physics Letters, 77(16), 2485-2487.Alves, L., Hase, T. P. A., Hunt, M. R. C., Brieva, A. C., & Šiller, L. (2008). X-ray diffraction study of gold nitride films: Observation of a solid solution phase. Journal of Applied Physics, 104(11) doi:10.1063/1.3040717Caricato, A. P., Fernàndez, M., Leggieri, G., Luches, A., Martino, M., Romano, F., . . . Meda, L. (2007). Reactive pulsed laser deposition of gold nitride thin films. Applied Surface Science, 253(19), 8037-8040. doi:10.1016/j.apsusc.2007.02.081Devia, A., Benavides, V., Castillo, H. A., & Quintero, J. (2006). Effects of the substrate temperature in AuN thin films by means of x-ray diffraction. AIP Conference Proceedings, 875, 258-261. doi:10.1063/1.2405944Devia, A., Castillo, H. A., Benavides, V. J., Arango, Y. C., & Quintero, J. H. (2008). Growth and characterization of AuN films through the pulsed arc technique. Materials Characterization, 59(2), 105-107. doi:10.1016/j.matchar.2006.10.023Evans, R. C. (1964). An Introduction to Crystal Chemistry.Giannozzi, P. (2009). J.Phys: Cond.Matt, 21(39)Hugh, O. (1996). Pierson Handbook of Refractory Carbides and Nitrides.Kanoun, M. B., & Goumri-Said, S. (2007). Investigation of structural stability and electronic properties of CuN, AgN and AuN by first principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 362(1), 73-83. doi:10.1016/j.physleta.2006.09.100Krishnamurthy, S., Montalti, M., Wardle, M. G., Shaw, M. J., Briddon, P. R., Svensson, K., . . . Šiller, L. (2004). Nitrogen ion irradiation of au(110): Photoemission spectroscopy and possible crystal structures of gold nitride. Physical Review B - Condensed Matter and Materials Physics, 70(4), 045414-1-045414-5. doi:10.1103/PhysRevB.70.045414Laasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Physical Review B, 47(16), 10142-10153. doi:10.1103/PhysRevB.47.10142Maruyama, T., & Morishita, T. (1996). Copper nitride and tin nitride thin films for write-once optical recording media. Applied Physics Letters, 69(7), 890-891. doi:10.1063/1.117978Methfessel, M., & Paxton, A. T. (1989). High-precision sampling for brillouin-zone integration in metals. Physical Review B, 40(6), 3616-3621. doi:10.1103/PhysRevB.40.3616Mohammed, S., Suleiman, H., & Joubert Daniel, P. (2013). Cond-Mat.Mtrl-Sci.Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188Murnaghan, F. D. (1944). The compressibility of media under extreme pressures. Proc.Natl.Acad.Sci.U.S.A., 30, 244-247.Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865Quintero, J. H., Arango, P. J., Ospina, R., Mello, A., & Mariño, A. (2015). AuN films - structure and chemical binding. Surface and Interface Analysis, 47(6), 701-705. doi:10.1002/sia.5766Quintero, J. H., Mariño, A., & Arango, P. J. (2013). Differences between thin films deposition systems in the production transition metal nitride. Journal of Physics: Conference Series, 466(1) doi:10.1088/1742-6596/466/1/012002Quintero, J. H., Mariño, A., Šiller, L., Restrepo-Parra, E., & Caro-Lopera, F. J. (2017). Rocking curves of gold nitride species prepared by arc pulsed - physical assisted plasma vapor deposition. Surface and Coatings Technology, 309, 249-257. doi:10.1016/j.surfcoat.2016.11.081Quintero, J. H., Ospina, R., Cárdenas, O. O., Alzate, G. I., & Devia, A. (2008). Phys.Scr, 131.Quintero, J. H., Ospina, R., & Mello, A. (2016). Obtaining au thin films in atmosphere of reactive nitrogen through magnetron sputtering. Journal of Physics: Conference Series, 687(1) doi:10.1088/1742-6596/687/1/012006Ranjan, V., Bellaiche, L., & Walter, E. J. (2003). Strained hexagonal ScN: A material with unusual structural and optical properties. Physical Review Letters, 90(25 I), 2576021-2576024.Shanley, E. S., & Ennis, J. L. (1991). The chemistry and free energy of formation of silver nitride. Industrial and Engineering Chemistry Research, 30(11), 2503-2506. doi:10.1021/ie00059a023Spyropoulos-Antonakakis, N., Sarantopoulou, E., Kollia, Z., Dražic, G., & Kobe, S. (2011). Schottky and charge memory effects in InN nanodomains. Applied Physics Letters, 99(15) doi:10.1063/1.3651327Yu, R., & Zhang, X. F. (2005). Family of noble metal nitrides: First principles calculations of the elastic stability. Physical Review B - Condensed Matter and Materials Physics, 72(5) doi:10.1103/PhysRevB.72.054103Yu, R., & Zhang, X. F. (2005). Platinum nitride with fluorite structure. Applied Physics Letters, 86(12), 1-3. doi:10.1063/1.1890466Zerr, A., Miehe, G., & Riedel, R. (2003). Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nature Materials, 2(3), 185-189. doi:10.1038/nmat836Zhan, Q., Yu, R., He, L., Li, D., Nie, H., & Ong, C. (2003). Microstructural study on multilayer [FeTaN/TaN]5 films. Materials Letters, 57(24-25), 3904-3909. doi:10.1016/S0167-577X(03)00238-6Zhan, Q., Yu, R., He, L. L., & Li, D. X. (2002). Microstructural characterization of fe-N thin films. Thin Solid Films, 411(2), 225-228. doi:10.1016/S0040-6090(02)00289-4Zhao, E., Wang, J., Meng, J., & Wu, Z. (2010). Structural, mechanical and electronic properties of 4d transition metal mononitrides by first-principles. Computational Materials Science, 47(4), 1064-1071. doi:10.1016/j.commatsci.2009.12.011Zhao, E., & Wu, Z. (2008). Electronic and mechanical properties of 5d transition metal mononitrides via first principles. Journal of Solid State Chemistry, 181(10), 2814-2827. doi:10.1016/j.jssc.2008.07.022ScopusAuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory StudyConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fQuintero, J.H., Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, ColombiaGonzalez-Hernandez, R., Grupo de Investigación en Física Aplicada, Universidad Del Norte, Barranquilla, ColombiaOspina, R., Escuela de Física, Centro de Materiales y Nanociencia, Universidad Industrial de Santander, Bucaramanga, ColombiaMarino, A., Laboratorio de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogotá D.C., ColombiaQuintero J.H.Gonzalez-Hernandez R.Ospina R.Marino A.Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, ColombiaGrupo de Investigación en Física Aplicada, Universidad Del Norte, Barranquilla, ColombiaEscuela de Física, Centro de Materiales y Nanociencia, Universidad Industrial de Santander, Bucaramanga, ColombiaLaboratorio de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogotá D.C., ColombiaComputer SimulationCrystal StructureNitridesPoint DefectsSolid SolutionsSuperlatticesAtomsComputer simulationCrystal atomic structureCrystal structureGoldLattice theoryNitridesNitrogenPoint defectsRefractory metal compoundsSolid solutionsSuperlatticesTransition metalsZinc sulfideDensity functional theory studiesFace-centered cubes (fcc)Interstitial nitrogenInterstitial sitesPseudopotential plane-wave methodSeries transitionsTransition metal nitridesWurtzite structureDensity functional theoryResearchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites. © Published under licence by IOP Publishing Ltd.http://purl.org/coar/access_right/c_16ecTHUMBNAIL10. AuNx stabilization with interstitial nitrogen atoms A Density Functional Theory Study.pdf.jpg10. AuNx stabilization with interstitial nitrogen atoms A Density Functional Theory Study.pdf.jpgIM Thumbnailimage/jpeg3910http://repository.udem.edu.co/bitstream/11407/4279/2/10.%20AuNx%20stabilization%20with%20interstitial%20nitrogen%20atoms%20A%20Density%20Functional%20Theory%20Study.pdf.jpge6fcdd9b96681478073e9a37f94effecMD52ORIGINAL10. AuNx stabilization with interstitial nitrogen atoms A Density Functional Theory Study.pdf10. AuNx stabilization with interstitial nitrogen atoms A Density Functional Theory Study.pdfapplication/pdf1405753http://repository.udem.edu.co/bitstream/11407/4279/1/10.%20AuNx%20stabilization%20with%20interstitial%20nitrogen%20atoms%20A%20Density%20Functional%20Theory%20Study.pdf9cb58a64a0ce07a7dc4066e46fde66a1MD5111407/4279oai:repository.udem.edu.co:11407/42792020-05-27 17:51:00.375Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co