Electronic and optical properties of an electro-magnetic non-uniform narrow quantum ring under repulsive scattering centre
Non-uniform height semiconductor quantum rings are studied in order to determine their electronic and optical absorption properties. Theoretical modelling of the structure includes an analytical description of the non-regular multi-hilled confining potential as well as the presence of repulsive scat...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5948
- Acceso en línea:
- http://hdl.handle.net/11407/5948
- Palabra clave:
- 71.70.Ej
73.21.2-b
75.75.1+a
Aharonov–Bohm oscillations
linear and non-linear properties
non-uniform height quantum ring
pseudopotential
quantum ribbon
Quantum ring
Electric field effects
Electromagnetic wave scattering
Light absorption
Magnetic fields
Nanorings
Quantum confinement
Analytical description
Electric and magnetic fields
Electric field strength
Electronic and optical properties
Optical absorption properties
Optical transparency
Repulsive potentials
Theoretical modelling
Optical properties
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_366f3d1b96ce6f75d3925c121930e431 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5948 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Electronic and optical properties of an electro-magnetic non-uniform narrow quantum ring under repulsive scattering centre |
title |
Electronic and optical properties of an electro-magnetic non-uniform narrow quantum ring under repulsive scattering centre |
spellingShingle |
Electronic and optical properties of an electro-magnetic non-uniform narrow quantum ring under repulsive scattering centre 71.70.Ej 73.21.2-b 75.75.1+a Aharonov–Bohm oscillations linear and non-linear properties non-uniform height quantum ring pseudopotential quantum ribbon Quantum ring Electric field effects Electromagnetic wave scattering Light absorption Magnetic fields Nanorings Quantum confinement Analytical description Electric and magnetic fields Electric field strength Electronic and optical properties Optical absorption properties Optical transparency Repulsive potentials Theoretical modelling Optical properties |
title_short |
Electronic and optical properties of an electro-magnetic non-uniform narrow quantum ring under repulsive scattering centre |
title_full |
Electronic and optical properties of an electro-magnetic non-uniform narrow quantum ring under repulsive scattering centre |
title_fullStr |
Electronic and optical properties of an electro-magnetic non-uniform narrow quantum ring under repulsive scattering centre |
title_full_unstemmed |
Electronic and optical properties of an electro-magnetic non-uniform narrow quantum ring under repulsive scattering centre |
title_sort |
Electronic and optical properties of an electro-magnetic non-uniform narrow quantum ring under repulsive scattering centre |
dc.subject.spa.fl_str_mv |
71.70.Ej 73.21.2-b 75.75.1+a Aharonov–Bohm oscillations linear and non-linear properties non-uniform height quantum ring pseudopotential quantum ribbon Quantum ring |
topic |
71.70.Ej 73.21.2-b 75.75.1+a Aharonov–Bohm oscillations linear and non-linear properties non-uniform height quantum ring pseudopotential quantum ribbon Quantum ring Electric field effects Electromagnetic wave scattering Light absorption Magnetic fields Nanorings Quantum confinement Analytical description Electric and magnetic fields Electric field strength Electronic and optical properties Optical absorption properties Optical transparency Repulsive potentials Theoretical modelling Optical properties |
dc.subject.keyword.eng.fl_str_mv |
Electric field effects Electromagnetic wave scattering Light absorption Magnetic fields Nanorings Quantum confinement Analytical description Electric and magnetic fields Electric field strength Electronic and optical properties Optical absorption properties Optical transparency Repulsive potentials Theoretical modelling Optical properties |
description |
Non-uniform height semiconductor quantum rings are studied in order to determine their electronic and optical absorption properties. Theoretical modelling of the structure includes an analytical description of the non-regular multi-hilled confining potential as well as the presence of repulsive scattering centre and external crossing electric and magnetic fields. We have discussed the features of localised and extended (rotational, Aharonov–Bohm-like) states in the presence of the magnetic field. A modification of the spectrum, with the appearance of a Stark-like behaviour, and its corresponding modification related to the repulsive potential is analysed when the electric field effect is considered. In double-hilled structures, these properties of the energy spectrum are of main importance in explaining the apparent optical transparency induced within a certain range of the electric field strength. The presence of the repulsive centre is found to cause a moderate redshift of the light absorption response. © 2020 Informa UK Limited, trading as Taylor & Francis Group. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:13Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:13Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
14786435 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5948 |
dc.identifier.doi.none.fl_str_mv |
10.1080/14786435.2020.1861356 |
identifier_str_mv |
14786435 10.1080/14786435.2020.1861356 |
url |
http://hdl.handle.net/11407/5948 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098577474&doi=10.1080%2f14786435.2020.1861356&partnerID=40&md5=264b9305ac74889b4b3607c6126fa204 |
dc.relation.references.none.fl_str_mv |
Jacak, L., Hawrylak, P., Wojs, A., (1998) Quantum Dots, , Springer, Berlin Bimberg, D., Grundmann, M., Ledentsov, N.N., (1999) Quantum Dot Heterostructures, , John Wiley & Sons, and, Berlin Fomin, V.M., (2014) Physics of Quantum Rings, , Springer-Verlag, Heidelberg Aierken, A., Hakkarainen, T., Riikonen, J., Sopanen, M., Inas island-to-ring transformation by a partial capping layer (2008) J. Cryst. Growth, 310, pp. 5077-5080 Linares-García, G., Meza-Montes, L., Stinaff, E., Alsolamy, S.M., Ware, M.E., Mazur, Y.I., Wang, Z.M., Salamo, G.J., Optical properties of a quantum dot-ring system grown using droplet epitaxy (2016) Nanoscale Res. Lett., 11, p. 309. , p Boonpeng, P., Kiravittaya, S., Thainoi, S., Panyakeow, S., Ratanathammaphan, S., Ingaas quantum-dot-in-ring structure by droplet epitaxy (2013) J. Cryst. Growth, 378, pp. 435-438 Lorke, A., Luyken, R.J., Govorov, A.O., Kotthaus, J.P., Spectroscopy of nanoscopic semiconductor rings (2000) Phys. Rev. Lett., 84, p. 2223. , p Ling, H.S., Wang, S.Y., Lee, C.P., Lo, M.C., Characteristics of In (Ga) As quantum ring infrared photodetectors (2009) J. Appl. Phys., 105, p. 034504. , p Mazur, Y.I., Lopes-Oliveira, V., de Souza, L.D., Lopez-Richard, V., Teodoro, M.D., Dorogan, V.G., Benamara, M., Salamo, G.J., Carrier transfer in vertically stacked quantum ring-quantum dot chains (2015) J. Appl. Phys., 117, p. 154307. , p Wen, Z.C., Wei, H.X., Han, X.F., Patterned nanoring magnetic tunnel junctions (2007) Appl. Phys. Lett., 91, p. 122511. , p de Sousa, G.O., da Costa, D.R., Chaves, A., Farias, G.A., Peeters, F.M., Unusual quantum confined Stark effect and Aharonov-Bohm oscillations in semiconductor quantum rings with anisotropic effective masses (2017) Phys. Rev. B, 95, p. 205414. , p Voskoboynikov, O., Recovery of the Aharonov-Bohm oscillations in asymmetrical quantum rings (2016) AIP Adv., 6, p. 075204. , p Bejan, D., Donor impurity-related nonlinear optical rectification in a two-dimensional quantum ring under magnetic field (2017) Phys. Lett. A, 381, pp. 3307-3313 Liang, S., Xie, W., Shen, H., Optical properties in a two-dimensional quantum ring: confinement potential and Aharonov–Bohm effect (2011) Opt. Commun., 284, pp. 5818-5828 Fulla, M.R., Marín, J.H., Gutiérrez, W., Mora-Ramos, M.E., Duque, C.A., Essential properties of a D2+ molecular complex confined in ring-like nanostructures under external probes: magnetic field and hydrostatic pressure (2014) Superlattices Microstruct., 67, pp. 207-220 Suaza, Y.A., Fulla, M.R., Laroze, D., Baghramyan, H.M., Marin, J.H., Intense laser field effect on D2+ molecular complex localized in semiconductor quantum wells (2019) Chem. Phys. Lett., 730, pp. 384-390 Chak-Man, L., Jun-Qin, L., Wen-Ying, R., Chak-Hong, R., Energy spectra of a magnetic quantum ring with an off-center impurity (2006) Commun. Theor. Phys., 45, p. 737. , p Monozon, B.S., Schmelcher, P., Impurity center in a semiconductor quantum ring in the presence of crossed magnetic and electric fields (2003) Phys. Rev. B, 67, p. 045203. , p Sherly, I.J., Nithiananthi, P., Effect of confining potential on the exciton stability at various locations in a parabolic and square quantum ring (2020) Phys. Scripta, 95, p. 055102. , p Bejan, D., Stan, C., Aharonov-Bohm effect in pseudo-elliptic quantum rings: influence of geometry, eccentricity and electric field (2019) Eur. Phys. J. Plus, 134, pp. 1-14 Xie, W., Aharonov–Bohm oscillation of Raman scattering in a quantum ring (2014) Phys. B, 438, pp. 88-90 Gharaati, A., Khordad, R., Gharaati, A., A new confinement potential in spherical quantum dots: modified Gaussian potential (2010) Superlattices Microstruct., 48, pp. 276-287 Liang, S., Xie, W., Shen, H., Optical properties in a two-dimensional quantum ring: confinement potential and Aharonov–Bohm effect (2011) Opt. Commun., 284, pp. 5818-5828 Linares-García, G., Meza-Montes, L., Stinaff, E., Alsolamy, S.M., Ware, M.E., Mazur, Y.I., Wang, Z.M., Salamo, G.J., Optical properties of a quantum dot-ring system grown using droplet epitaxy (2016) Nanoscale Res. Lett., 11, p. 309. , p Boonpeng, P., Kiravittaya, S., Thainoi, S., Panyakeow, S., Ratanathammaphan, S., Ingaas quantum-dot-in-ring structure by droplet epitaxy (2013) J.Cryst. Growth, 378, pp. 435-438 Suaza, Y.A., Fonnegra-García, D., Fulla, M.R., Salazar-Santa, J.D., Marín, J.H., Donor impurity states in a non-uniform quantum strip: geometrical and electro-magnetic field effects (2017) Superlattices Microstruct., 103, pp. 127-138 Suaza, Y.A., Laroze, D., Fulla, M.R., Marín, J.H., D2+ molecular complex in non-uniform height quantum ribbon under crossed electric and magnetic fields (2018) Chem. Phys. Lett., 699, pp. 267-274 Ahn, D., Chuang, S.L., Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field (1987) IEEE J. Quant. Electron., 23, pp. 2196-2204 Mrabti, T., Labdouti, Z., Mouadili, A., El Boudouti, E.H., Djafari-Rouhani, B., Aharonov-Bohm-effect induced transparency and reflection in mesoscopic rings side coupled to a quantum wire (2020) Phys. E, 116, p. 113770. , p |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
dc.source.none.fl_str_mv |
Philosophical Magazine |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159150347714560 |
spelling |
20202021-02-05T14:58:13Z2021-02-05T14:58:13Z14786435http://hdl.handle.net/11407/594810.1080/14786435.2020.1861356Non-uniform height semiconductor quantum rings are studied in order to determine their electronic and optical absorption properties. Theoretical modelling of the structure includes an analytical description of the non-regular multi-hilled confining potential as well as the presence of repulsive scattering centre and external crossing electric and magnetic fields. We have discussed the features of localised and extended (rotational, Aharonov–Bohm-like) states in the presence of the magnetic field. A modification of the spectrum, with the appearance of a Stark-like behaviour, and its corresponding modification related to the repulsive potential is analysed when the electric field effect is considered. In double-hilled structures, these properties of the energy spectrum are of main importance in explaining the apparent optical transparency induced within a certain range of the electric field strength. The presence of the repulsive centre is found to cause a moderate redshift of the light absorption response. © 2020 Informa UK Limited, trading as Taylor & Francis Group.engTaylor and Francis Ltd.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85098577474&doi=10.1080%2f14786435.2020.1861356&partnerID=40&md5=264b9305ac74889b4b3607c6126fa204Jacak, L., Hawrylak, P., Wojs, A., (1998) Quantum Dots, , Springer, BerlinBimberg, D., Grundmann, M., Ledentsov, N.N., (1999) Quantum Dot Heterostructures, , John Wiley & Sons, and, BerlinFomin, V.M., (2014) Physics of Quantum Rings, , Springer-Verlag, HeidelbergAierken, A., Hakkarainen, T., Riikonen, J., Sopanen, M., Inas island-to-ring transformation by a partial capping layer (2008) J. Cryst. Growth, 310, pp. 5077-5080Linares-García, G., Meza-Montes, L., Stinaff, E., Alsolamy, S.M., Ware, M.E., Mazur, Y.I., Wang, Z.M., Salamo, G.J., Optical properties of a quantum dot-ring system grown using droplet epitaxy (2016) Nanoscale Res. Lett., 11, p. 309. , pBoonpeng, P., Kiravittaya, S., Thainoi, S., Panyakeow, S., Ratanathammaphan, S., Ingaas quantum-dot-in-ring structure by droplet epitaxy (2013) J. Cryst. Growth, 378, pp. 435-438Lorke, A., Luyken, R.J., Govorov, A.O., Kotthaus, J.P., Spectroscopy of nanoscopic semiconductor rings (2000) Phys. Rev. Lett., 84, p. 2223. , pLing, H.S., Wang, S.Y., Lee, C.P., Lo, M.C., Characteristics of In (Ga) As quantum ring infrared photodetectors (2009) J. Appl. Phys., 105, p. 034504. , pMazur, Y.I., Lopes-Oliveira, V., de Souza, L.D., Lopez-Richard, V., Teodoro, M.D., Dorogan, V.G., Benamara, M., Salamo, G.J., Carrier transfer in vertically stacked quantum ring-quantum dot chains (2015) J. Appl. Phys., 117, p. 154307. , pWen, Z.C., Wei, H.X., Han, X.F., Patterned nanoring magnetic tunnel junctions (2007) Appl. Phys. Lett., 91, p. 122511. , pde Sousa, G.O., da Costa, D.R., Chaves, A., Farias, G.A., Peeters, F.M., Unusual quantum confined Stark effect and Aharonov-Bohm oscillations in semiconductor quantum rings with anisotropic effective masses (2017) Phys. Rev. B, 95, p. 205414. , pVoskoboynikov, O., Recovery of the Aharonov-Bohm oscillations in asymmetrical quantum rings (2016) AIP Adv., 6, p. 075204. , pBejan, D., Donor impurity-related nonlinear optical rectification in a two-dimensional quantum ring under magnetic field (2017) Phys. Lett. A, 381, pp. 3307-3313Liang, S., Xie, W., Shen, H., Optical properties in a two-dimensional quantum ring: confinement potential and Aharonov–Bohm effect (2011) Opt. Commun., 284, pp. 5818-5828Fulla, M.R., Marín, J.H., Gutiérrez, W., Mora-Ramos, M.E., Duque, C.A., Essential properties of a D2+ molecular complex confined in ring-like nanostructures under external probes: magnetic field and hydrostatic pressure (2014) Superlattices Microstruct., 67, pp. 207-220Suaza, Y.A., Fulla, M.R., Laroze, D., Baghramyan, H.M., Marin, J.H., Intense laser field effect on D2+ molecular complex localized in semiconductor quantum wells (2019) Chem. Phys. Lett., 730, pp. 384-390Chak-Man, L., Jun-Qin, L., Wen-Ying, R., Chak-Hong, R., Energy spectra of a magnetic quantum ring with an off-center impurity (2006) Commun. Theor. Phys., 45, p. 737. , pMonozon, B.S., Schmelcher, P., Impurity center in a semiconductor quantum ring in the presence of crossed magnetic and electric fields (2003) Phys. Rev. B, 67, p. 045203. , pSherly, I.J., Nithiananthi, P., Effect of confining potential on the exciton stability at various locations in a parabolic and square quantum ring (2020) Phys. Scripta, 95, p. 055102. , pBejan, D., Stan, C., Aharonov-Bohm effect in pseudo-elliptic quantum rings: influence of geometry, eccentricity and electric field (2019) Eur. Phys. J. Plus, 134, pp. 1-14Xie, W., Aharonov–Bohm oscillation of Raman scattering in a quantum ring (2014) Phys. B, 438, pp. 88-90Gharaati, A., Khordad, R., Gharaati, A., A new confinement potential in spherical quantum dots: modified Gaussian potential (2010) Superlattices Microstruct., 48, pp. 276-287Liang, S., Xie, W., Shen, H., Optical properties in a two-dimensional quantum ring: confinement potential and Aharonov–Bohm effect (2011) Opt. Commun., 284, pp. 5818-5828Linares-García, G., Meza-Montes, L., Stinaff, E., Alsolamy, S.M., Ware, M.E., Mazur, Y.I., Wang, Z.M., Salamo, G.J., Optical properties of a quantum dot-ring system grown using droplet epitaxy (2016) Nanoscale Res. Lett., 11, p. 309. , pBoonpeng, P., Kiravittaya, S., Thainoi, S., Panyakeow, S., Ratanathammaphan, S., Ingaas quantum-dot-in-ring structure by droplet epitaxy (2013) J.Cryst. Growth, 378, pp. 435-438Suaza, Y.A., Fonnegra-García, D., Fulla, M.R., Salazar-Santa, J.D., Marín, J.H., Donor impurity states in a non-uniform quantum strip: geometrical and electro-magnetic field effects (2017) Superlattices Microstruct., 103, pp. 127-138Suaza, Y.A., Laroze, D., Fulla, M.R., Marín, J.H., D2+ molecular complex in non-uniform height quantum ribbon under crossed electric and magnetic fields (2018) Chem. Phys. Lett., 699, pp. 267-274Ahn, D., Chuang, S.L., Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field (1987) IEEE J. Quant. Electron., 23, pp. 2196-2204Mrabti, T., Labdouti, Z., Mouadili, A., El Boudouti, E.H., Djafari-Rouhani, B., Aharonov-Bohm-effect induced transparency and reflection in mesoscopic rings side coupled to a quantum wire (2020) Phys. E, 116, p. 113770. , pPhilosophical Magazine71.70.Ej73.21.2-b75.75.1+aAharonov–Bohm oscillationslinear and non-linear propertiesnon-uniform height quantum ringpseudopotentialquantum ribbonQuantum ringElectric field effectsElectromagnetic wave scatteringLight absorptionMagnetic fieldsNanoringsQuantum confinementAnalytical descriptionElectric and magnetic fieldsElectric field strengthElectronic and optical propertiesOptical absorption propertiesOptical transparencyRepulsive potentialsTheoretical modellingOptical propertiesElectronic and optical properties of an electro-magnetic non-uniform narrow quantum ring under repulsive scattering centreArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Salazar-Santa, J.D., Grupo Cerámicos y Vítreos, Escuela de Física, Universidad Nacional de Colombia, Medellín, ColombiaMora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, MexicoMarín, J.H., Grupo Cerámicos y Vítreos, Escuela de Física, Universidad Nacional de Colombia, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecSalazar-Santa J.D.Mora-Ramos M.E.Marín J.H.11407/5948oai:repository.udem.edu.co:11407/59482021-02-05 09:58:13.163Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |