Floor Accelerations for the Design of Non-Structural and Structural Elements that are not Part of the Seismic Resistance System in Buildings

The purpose is to evaluate the method used in the Colombian Earthquake Resistant Construction Regulations (NSR-10) to calculate the floor accelerations that are necessary to design non-structural elements and structural elements that are not part of the seismic resistance system. The study compares...

Full description

Autores:
Barbosa, Ricardo E.
Álvarez E., José J.
Carrillo León, Julian
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/5508
Acceso en línea:
http://hdl.handle.net/11407/5508
https://doi.org/10.22395/rium.v17n33a5
Palabra clave:
Floor acceleration
Building contents
Earthquake damage
Instrumented building
Non-structural element
Seismic resistance system
Aceleração de piso
Conteúdo de edifícios
Dano por sismo
Edifício instrumentado
Elemento não estrutural
Sistema de resistência sísmica
Aceleración de piso
Contenido de edificios
Daño por sismo
Edificio instrumentado
Elemento no estructural
Sistema de resistencia sísmica
Rights
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id REPOUDEM2_34abd9485c6340060445bc28c78ed8e6
oai_identifier_str oai:repository.udem.edu.co:11407/5508
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.eng.fl_str_mv Floor Accelerations for the Design of Non-Structural and Structural Elements that are not Part of the Seismic Resistance System in Buildings
dc.title.por.fl_str_mv Acelerações de piso para o desenho de elementos não estruturais e estruturais que não fazem parte do sistema de resistência sísmica em edifícios
dc.title.spa.fl_str_mv Aceleraciones de piso para diseño de elementos no estructurales y estructurales que no hacen parte del sistema de resistencia sísmica en edificios
title Floor Accelerations for the Design of Non-Structural and Structural Elements that are not Part of the Seismic Resistance System in Buildings
spellingShingle Floor Accelerations for the Design of Non-Structural and Structural Elements that are not Part of the Seismic Resistance System in Buildings
Floor acceleration
Building contents
Earthquake damage
Instrumented building
Non-structural element
Seismic resistance system
Aceleração de piso
Conteúdo de edifícios
Dano por sismo
Edifício instrumentado
Elemento não estrutural
Sistema de resistência sísmica
Aceleración de piso
Contenido de edificios
Daño por sismo
Edificio instrumentado
Elemento no estructural
Sistema de resistencia sísmica
title_short Floor Accelerations for the Design of Non-Structural and Structural Elements that are not Part of the Seismic Resistance System in Buildings
title_full Floor Accelerations for the Design of Non-Structural and Structural Elements that are not Part of the Seismic Resistance System in Buildings
title_fullStr Floor Accelerations for the Design of Non-Structural and Structural Elements that are not Part of the Seismic Resistance System in Buildings
title_full_unstemmed Floor Accelerations for the Design of Non-Structural and Structural Elements that are not Part of the Seismic Resistance System in Buildings
title_sort Floor Accelerations for the Design of Non-Structural and Structural Elements that are not Part of the Seismic Resistance System in Buildings
dc.creator.fl_str_mv Barbosa, Ricardo E.
Álvarez E., José J.
Carrillo León, Julian
dc.contributor.author.none.fl_str_mv Barbosa, Ricardo E.
Álvarez E., José J.
Carrillo León, Julian
dc.subject.eng.fl_str_mv Floor acceleration
Building contents
Earthquake damage
Instrumented building
Non-structural element
Seismic resistance system
topic Floor acceleration
Building contents
Earthquake damage
Instrumented building
Non-structural element
Seismic resistance system
Aceleração de piso
Conteúdo de edifícios
Dano por sismo
Edifício instrumentado
Elemento não estrutural
Sistema de resistência sísmica
Aceleración de piso
Contenido de edificios
Daño por sismo
Edificio instrumentado
Elemento no estructural
Sistema de resistencia sísmica
dc.subject.por.fl_str_mv Aceleração de piso
Conteúdo de edifícios
Dano por sismo
Edifício instrumentado
Elemento não estrutural
Sistema de resistência sísmica
dc.subject.spa.fl_str_mv Aceleración de piso
Contenido de edificios
Daño por sismo
Edificio instrumentado
Elemento no estructural
Sistema de resistencia sísmica
description The purpose is to evaluate the method used in the Colombian Earthquake Resistant Construction Regulations (NSR-10) to calculate the floor accelerations that are necessary to design non-structural elements and structural elements that are not part of the seismic resistance system. The study compares the maximum floor accelerations calculated with NSR-10, ASCE 7-10, UBC-97, Eurocode 8-04 and NZS 1170.5-04, with the maximum floor accelerations measured in specimens tested on a vibrating table, and in existing buildings during real earthquakes. The article also proposes a modification to the method currently used by NSR-10. The proposed modification generates a more accurate estimate of the accelerations needed to design these elements in medium and high-rise buildings. The proposed recommendations are based on the results of the evaluation of the method currently used in NSR-10, the procedure used in other seismic-resistant standards, experimental results measured in reinforced concrete structure models and accelerations recorded in instrumented buildings.
publishDate 2018
dc.date.created.none.fl_str_mv 2018-06-27
dc.date.accessioned.none.fl_str_mv 2019-11-07T15:03:02Z
dc.date.available.none.fl_str_mv 2019-11-07T15:03:02Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.local.spa.fl_str_mv Artículo científico
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1692-3324
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5508
dc.identifier.doi.none.fl_str_mv https://doi.org/10.22395/rium.v17n33a5
dc.identifier.eissn.none.fl_str_mv 2248-4094
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.udem.edu.co/
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 1692-3324
2248-4094
reponame:Repositorio Institucional Universidad de Medellín
repourl:https://repository.udem.edu.co/
instname:Universidad de Medellín
url http://hdl.handle.net/11407/5508
https://doi.org/10.22395/rium.v17n33a5
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.uri.none.fl_str_mv https://revistas.udem.edu.co/index.php/ingenierias/article/view/2183
dc.relation.citationvolume.none.fl_str_mv 17
dc.relation.citationissue.none.fl_str_mv 33
dc.relation.citationstartpage.none.fl_str_mv 99
dc.relation.citationendpage.none.fl_str_mv 119
dc.relation.references.spa.fl_str_mv [1] M. Rodríguez, J. Restrepo y J. Carr, “Earthquake-induced floor horizontal accelerations in buildings,” Journal of Earthquake Engineering and Structural Dynamics, vol. 31, pp. 693-718, 2002.
[2] J. Jaramillo, “Evaluación aproximada de la aceleración absoluta en sistema de múltiples grados de libertad considerando la participación de n formas modales,” Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, vol. 4, N°. 2, pp. 87-98, 2005.
[3] J. Carrillo y G. González, “Evaluación de la demanda sísmica fuera del plano en edificios,” Revista Ciencia e Ingeniería Neogranadina, vol. 15, pp. 44-61, 2005.
[4] NSR-10, Reglamento Colombiano de Construcción Sismo Resistente ‒NSR-10, Asociación Colombiana de Ingeniería Sísmica, AIS, Tomo 1, Bogotá, 2010.
[5] ASCE 7-10, Minimum design loads for buildings and other structures, ASCE/SEI 7-10, Reston, VA, 2010.
[6] UBC-97, “Uniform building code – Vol. 2: Structural engineering design provisions,” presentado en International Conference of Building Officials, Whittier, California, EE. UU., 1997.
[7] Eurocódigo 8-04, Design of structures for earthquake resistance, European Committee for Standardization, 2004.
[8] NZS 1170.5-04, New Zealand Standard: Structural design actions – Part 5: Earthquake actions. Standards, Nueva Zelanda, 2004.
[9] FEMA, Reducing de risks of nonstructural earthquake damage –A practical guide, FEME E-74, Washington, 2012.
[10] FEMA, NEHRP recommended provisions for seismic regulations for new buildings and other structures, Part 1: Provisions, FEMA 302, Washington, 1997.
[11] FEMA, NEHRP recommended provisions for seismic regulations for new buildings and other structures, Part 2: Commentary, FEMA 303, Washington, 1997.
[12] EngSolutions RCB, Structural software for analysis and design of reinforced concrete buildings for earthquake and wind forces, V8.5, EngSolutions, Inc., Florida, 2015.
[13] M. Sozen, S. Otani, P. Gulkan y N. Nielsen, “The University of Illinois earthquake simulator,” presentado en Proceedings of the 4th World Conference on Earthquake Engineering, Santiago de Chile, vol. III, 1969.
[14] A. Lepage, J. Shoemaker y A. Memari, “Accelerations of nonstructural components during nonlinear seismic response of multistory structures,” Journal of Architectural Engineering, ASCE, vol. 18, N°. 4, pp. 285-297, 2012.
[15] J. Aristizabal y M. Sozen, “Behavior of ten-story reinforced concrete walls subjected to earthquake motions”, Structural Research Series, N°. 431, Univ. of Illinois, Urbana, Illinois, 1976.
[16] J. Lybas y M. Sozen, “Effect of beam strength and stiffness on dynamic behavior of reinforced concrete coupled walls,” Structural Research Series, N°. 444, Univ. of Illinois, Urbana, Illinois, 1977.
[17] D. Abrams y M. Sozen, “Experimental study of frame-wall interaction in reinforced concrete structures subjected to strong earthquake motions,” Structural Research Series, n°. 460, Univ. of Illinois, Urbana, Illinois, 1979.
[18] J. Moehle y M. Sozen, “Experiments to study earthquake response of R/C structures with stiffness interruptions,” Structural Research Series, n°. 482, Univ. of Illinois, Urbana, Illinois, 1980.
[19] T. Healey y M. Sozen, “Experimental study of the dynamic response of a ten-story reinforced concrete frame with a tall first story,” Structural Research Series, n°. 450, Univ. of Illinois, Urbana, Illinois, 1978.
[20] J. Moehle y M. Sozen, “Earthquake simulations tests of a ten-story reinforced concrete frame with discontinued first-level beam,” Structural Research Series, n°. 451, Univ. of Illinois, Urbana, Illinois, 1978.
[21] H. Ceceen, “Response of ten-story reinforced concrete model frames to simulated earthquakes,” Ph.D. thesis, Univ. of Illinois, Urbana, Illinois, 1979.
[22] A. Schultz, “An experimental and analytical study of the earthquake response of R/C frames with yielding columns,” Ph.D. thesis, Univ. of Illinois, Urbana, Illinois, 1985.
[23] S. Wood, “Experiments to study the earthquake response of concrete frames with setbacks,” Ph.D. thesis, Univ. of Illinois, Urbana, Illinois, 1986.
[24] M. Eberhard y M. Sozen, “Experiments and analyses to study the seismic response of reinforced concrete frame-wall structures with yielding columns,” Structural Research Series No. 548, Univ. of Illinois, Urbana, Illinois, 1989.
[25] NEEShub, “The George E. Brown, Jr. Network for Earthquake Engineering Simulation,” [En línea], Disponible: https://nees.org/warehouse, 2017.
[26] CESMD, “Center for engineering strong motion data,”USGS, CGS, ANSS. [En línea], Disponible: https://www.strongmotioncenter.org, 2017.
[27] R. Drake y R. Bachman, “1994 NEHRP Provisions for Architectural, Mechanical, and Electrical Components,” presentado en Proceedings of the 5th U.S. National Conference on Earthquake Engineering, 1994.
[28] R. Drake y R. Bachman, “Interpretations of instrumented building seismic data and implications for building codes,” presentado en Proceedings of the 1995 SEAOC Annual Convention, 1995.
[29] R. Goel y A. Chopra, “Period Formulas for Moment-Resisting Frame Buildings,” Journal Structural Engineering, ASCE, vol. 123, N°. 11, pp. 1454-1461, 1997.
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ingenierías Universidad de Medellín
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.creativecommons.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv p. 99-119
dc.format.medium.spa.fl_str_mv Electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Lat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.publisher.spa.fl_str_mv Universidad de Medellín
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.publisher.place.spa.fl_str_mv Medellín
dc.source.spa.fl_str_mv Revista Ingenierías Universidad de Medellín; Vol. 17 Núm. 33 (2018): Julio-Diciembre; 99-119
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159182710964224
spelling Barbosa, Ricardo E.Álvarez E., José J.Carrillo León, JulianBarbosa, Ricardo E.; Florida Atlantic UniversityÁlvarez E., José J.; Sociedad Colombiana de Ingenieros, SCICarrillo León, Julian; Departamento de Ingeniería Civil, Universidad Militar Nueva Granada, UMNG2019-11-07T15:03:02Z2019-11-07T15:03:02Z2018-06-271692-3324http://hdl.handle.net/11407/5508https://doi.org/10.22395/rium.v17n33a52248-4094reponame:Repositorio Institucional Universidad de Medellínrepourl:https://repository.udem.edu.co/instname:Universidad de MedellínThe purpose is to evaluate the method used in the Colombian Earthquake Resistant Construction Regulations (NSR-10) to calculate the floor accelerations that are necessary to design non-structural elements and structural elements that are not part of the seismic resistance system. The study compares the maximum floor accelerations calculated with NSR-10, ASCE 7-10, UBC-97, Eurocode 8-04 and NZS 1170.5-04, with the maximum floor accelerations measured in specimens tested on a vibrating table, and in existing buildings during real earthquakes. The article also proposes a modification to the method currently used by NSR-10. The proposed modification generates a more accurate estimate of the accelerations needed to design these elements in medium and high-rise buildings. The proposed recommendations are based on the results of the evaluation of the method currently used in NSR-10, the procedure used in other seismic-resistant standards, experimental results measured in reinforced concrete structure models and accelerations recorded in instrumented buildings.O propósito do artigo é avaliar o método usado no Regulamento colombiano de construção sismorresistente ( NSR-10) para calcular as acelerações de piso que são necessárias para desenhar elementos não estruturais e elementos estruturais que não fazem parte do sistema de resistência sísmica. No estudo, as acelerações máximas de pisos calculadas com as normas NSR-10, ASCE 7-10, UBC-97, o Eurocódigo 8-04 e NZS 1170.5-04 são comparadas com as acelerações máximas de piso medidas em modelos ensaiados em mesa vibratória e em construções existentes durante sismos reais. No artigo também se propõe uma modificação ao método utilizado atualmente pela NSR-10. A modificação proposta gera uma estimativa mais acertada das acelerações necessárias para desenhar esses elementos em edifícios de altura média e grande. As recomendações propostas se fundamentam nos resultados da avaliação do método usado atualmente na NSR-10, no procedimento usado em outras normas sismorresistentes, em resultados experimentais medidos em modelos de estruturas de concreto reforçado e em acelerações registradas em edifícios instrumentados.El propósito del artículo es evaluar el método usado en el Reglamento colombiano de construcción sismo resistente ( NSR-10) para calcular las aceleraciones de piso que son necesarias para diseñar elementos no estructurales y elementos estructurales que no hacen parte del sistema de resistencia sísmica. En el estudio se comparan las aceleraciones máximas de pisos calculadas con las normas NSR-10, ASCE 7-10, UBC-97, el Eurocódigo 8-04 y NZS 1170.5-04, con las aceleraciones máximas de piso medidas en especímenes ensayados en mesa vibratoria, y en edificaciones existentes durante sismos reales. En el artículo también se propone una modificación al método actualmente utilizado por la NSR-10. La modificación propuesta genera una estimación más acertada de las aceleraciones necesarias para diseñar estos elementos en edificios de mediana y gran altura. Las recomendaciones propuestas se fundamentan en los resultados de la evaluación del método usado actualmente en la NSR-10, el procedimiento usado en otras normas sismorresistentes, en resultados experimentales medidos en modelos de estructuras de concreto reforzado y en aceleraciones registradas en edificios instrumentados.p. 99-119Electrónicoapplication/pdfspaUniversidad de MedellínFacultad de IngenieríasMedellínhttps://revistas.udem.edu.co/index.php/ingenierias/article/view/2183173399119[1] M. Rodríguez, J. Restrepo y J. Carr, “Earthquake-induced floor horizontal accelerations in buildings,” Journal of Earthquake Engineering and Structural Dynamics, vol. 31, pp. 693-718, 2002.[2] J. Jaramillo, “Evaluación aproximada de la aceleración absoluta en sistema de múltiples grados de libertad considerando la participación de n formas modales,” Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, vol. 4, N°. 2, pp. 87-98, 2005.[3] J. Carrillo y G. González, “Evaluación de la demanda sísmica fuera del plano en edificios,” Revista Ciencia e Ingeniería Neogranadina, vol. 15, pp. 44-61, 2005.[4] NSR-10, Reglamento Colombiano de Construcción Sismo Resistente ‒NSR-10, Asociación Colombiana de Ingeniería Sísmica, AIS, Tomo 1, Bogotá, 2010.[5] ASCE 7-10, Minimum design loads for buildings and other structures, ASCE/SEI 7-10, Reston, VA, 2010.[6] UBC-97, “Uniform building code – Vol. 2: Structural engineering design provisions,” presentado en International Conference of Building Officials, Whittier, California, EE. UU., 1997.[7] Eurocódigo 8-04, Design of structures for earthquake resistance, European Committee for Standardization, 2004.[8] NZS 1170.5-04, New Zealand Standard: Structural design actions – Part 5: Earthquake actions. Standards, Nueva Zelanda, 2004.[9] FEMA, Reducing de risks of nonstructural earthquake damage –A practical guide, FEME E-74, Washington, 2012.[10] FEMA, NEHRP recommended provisions for seismic regulations for new buildings and other structures, Part 1: Provisions, FEMA 302, Washington, 1997.[11] FEMA, NEHRP recommended provisions for seismic regulations for new buildings and other structures, Part 2: Commentary, FEMA 303, Washington, 1997.[12] EngSolutions RCB, Structural software for analysis and design of reinforced concrete buildings for earthquake and wind forces, V8.5, EngSolutions, Inc., Florida, 2015.[13] M. Sozen, S. Otani, P. Gulkan y N. Nielsen, “The University of Illinois earthquake simulator,” presentado en Proceedings of the 4th World Conference on Earthquake Engineering, Santiago de Chile, vol. III, 1969.[14] A. Lepage, J. Shoemaker y A. Memari, “Accelerations of nonstructural components during nonlinear seismic response of multistory structures,” Journal of Architectural Engineering, ASCE, vol. 18, N°. 4, pp. 285-297, 2012.[15] J. Aristizabal y M. Sozen, “Behavior of ten-story reinforced concrete walls subjected to earthquake motions”, Structural Research Series, N°. 431, Univ. of Illinois, Urbana, Illinois, 1976.[16] J. Lybas y M. Sozen, “Effect of beam strength and stiffness on dynamic behavior of reinforced concrete coupled walls,” Structural Research Series, N°. 444, Univ. of Illinois, Urbana, Illinois, 1977.[17] D. Abrams y M. Sozen, “Experimental study of frame-wall interaction in reinforced concrete structures subjected to strong earthquake motions,” Structural Research Series, n°. 460, Univ. of Illinois, Urbana, Illinois, 1979.[18] J. Moehle y M. Sozen, “Experiments to study earthquake response of R/C structures with stiffness interruptions,” Structural Research Series, n°. 482, Univ. of Illinois, Urbana, Illinois, 1980.[19] T. Healey y M. Sozen, “Experimental study of the dynamic response of a ten-story reinforced concrete frame with a tall first story,” Structural Research Series, n°. 450, Univ. of Illinois, Urbana, Illinois, 1978.[20] J. Moehle y M. Sozen, “Earthquake simulations tests of a ten-story reinforced concrete frame with discontinued first-level beam,” Structural Research Series, n°. 451, Univ. of Illinois, Urbana, Illinois, 1978.[21] H. Ceceen, “Response of ten-story reinforced concrete model frames to simulated earthquakes,” Ph.D. thesis, Univ. of Illinois, Urbana, Illinois, 1979.[22] A. Schultz, “An experimental and analytical study of the earthquake response of R/C frames with yielding columns,” Ph.D. thesis, Univ. of Illinois, Urbana, Illinois, 1985.[23] S. Wood, “Experiments to study the earthquake response of concrete frames with setbacks,” Ph.D. thesis, Univ. of Illinois, Urbana, Illinois, 1986.[24] M. Eberhard y M. Sozen, “Experiments and analyses to study the seismic response of reinforced concrete frame-wall structures with yielding columns,” Structural Research Series No. 548, Univ. of Illinois, Urbana, Illinois, 1989.[25] NEEShub, “The George E. Brown, Jr. Network for Earthquake Engineering Simulation,” [En línea], Disponible: https://nees.org/warehouse, 2017.[26] CESMD, “Center for engineering strong motion data,”USGS, CGS, ANSS. [En línea], Disponible: https://www.strongmotioncenter.org, 2017.[27] R. Drake y R. Bachman, “1994 NEHRP Provisions for Architectural, Mechanical, and Electrical Components,” presentado en Proceedings of the 5th U.S. National Conference on Earthquake Engineering, 1994.[28] R. Drake y R. Bachman, “Interpretations of instrumented building seismic data and implications for building codes,” presentado en Proceedings of the 1995 SEAOC Annual Convention, 1995.[29] R. Goel y A. Chopra, “Period Formulas for Moment-Resisting Frame Buildings,” Journal Structural Engineering, ASCE, vol. 123, N°. 11, pp. 1454-1461, 1997.Revista Ingenierías Universidad de Medellínhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Ingenierías Universidad de Medellín; Vol. 17 Núm. 33 (2018): Julio-Diciembre; 99-119Floor accelerationBuilding contentsEarthquake damageInstrumented buildingNon-structural elementSeismic resistance systemAceleração de pisoConteúdo de edifíciosDano por sismoEdifício instrumentadoElemento não estruturalSistema de resistência sísmicaAceleración de pisoContenido de edificiosDaño por sismoEdificio instrumentadoElemento no estructuralSistema de resistencia sísmicaFloor Accelerations for the Design of Non-Structural and Structural Elements that are not Part of the Seismic Resistance System in BuildingsAcelerações de piso para o desenho de elementos não estruturais e estruturais que não fazem parte do sistema de resistência sísmica em edifíciosAceleraciones de piso para diseño de elementos no estructurales y estructurales que no hacen parte del sistema de resistencia sísmica en edificiosArticlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad de MedellínLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees11407/5508oai:repository.udem.edu.co:11407/55082021-05-14 14:29:44.66Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co