CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites

In this work, a systematic study on the adsorption of atomic and molecular hydrogen and carbon oxides on cubic (001) and hexagonal (0001) WC surfaces by periodical density functional theory is reported. Calculations have been performed by employing the Perdew-Burke-Ernzerhof exchange correlation fun...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6063
Acceso en línea:
http://hdl.handle.net/11407/6063
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_33867db7d0396a43966a9c957c04c353
oai_identifier_str oai:repository.udem.edu.co:11407/6063
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites
title CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites
spellingShingle CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites
title_short CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites
title_full CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites
title_fullStr CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites
title_full_unstemmed CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites
title_sort CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites
description In this work, a systematic study on the adsorption of atomic and molecular hydrogen and carbon oxides on cubic (001) and hexagonal (0001) WC surfaces by periodical density functional theory is reported. Calculations have been performed by employing the Perdew-Burke-Ernzerhof exchange correlation functional with van der Waals corrections to account for the dispersive force term. In addition, dipole corrections were applied for W- and C-terminated hexagonal WC(0001) surfaces. Good agreement is found between calculated and reported data for representative bulk properties. Regarding surface properties, our results indicate that atomic hydrogen adsorbs quite strongly while H 2 does, in general, dissociatively on the studied surfaces, with very small energy barriers (<0.35 eV) for the cleavage of the H-H bonds. The C sites of the carbide play an essential role in the binding of H atoms and the cleavage of H-H bonds. Studies examining the interaction of tungsten carbide with CO and CO 2 also evidence the importance of C sites. The reactivity of C- and W-terminated (0001) hexagonal WC surfaces significantly differs. Atomic hydrogen, carbon monoxide, and CO 2 are more stable on a C- than on a W-terminated surface, and only this latter termination is able to cleave spontaneously a C-O bond of the CO 2 molecule. This difference in reactivity may open a number of possibilities for fine-tuning the selectivity of the resulting material or designing compounds catalytically active for specific reactions by carefully adjusting the proportion of C, W, and mixed terminations during the synthesis procedure. © 2019 American Chemical Society.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:59:03Z
dc.date.available.none.fl_str_mv 2021-02-05T14:59:03Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 19327447
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6063
dc.identifier.doi.none.fl_str_mv 10.1021/acs.jpcc.8b11840
identifier_str_mv 19327447
10.1021/acs.jpcc.8b11840
url http://hdl.handle.net/11407/6063
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064333647&doi=10.1021%2facs.jpcc.8b11840&partnerID=40&md5=69aeae72a60aa821d282c98c9c4f30dc
dc.relation.citationvolume.none.fl_str_mv 123
dc.relation.citationissue.none.fl_str_mv 14
dc.relation.citationstartpage.none.fl_str_mv 8871
dc.relation.citationendpage.none.fl_str_mv 8883
dc.relation.references.none.fl_str_mv Levy, R.B., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549
Lee, J., Locatelli, S., Oyama, S.T., Boudart, M., Molybdenum Carbide Catalysts 3. Turnover Rates for the Hydrogenolysis of n-butane (1990) J. Catal., 125, pp. 157-170
Lee, J.S., Yeom, M.H., Lee, D.-S., Catalysis by Molybdenum Carbide in Activation of C-C, C-O and C-H bonds (1990) J. Mol. Catal., 62, pp. L45-L51
Lee, J., Yeom, M.H., Park, K.Y., Nam, I.-S., Chung, J.S., Kim, Y.G., Moon, S.H., Preparation and Benzene Hydrogenation Activity of Supported Molybdenum Carbide Catalysts (1991) J. Catal., 128, pp. 126-136
Ledoux, M.J., Huu, C.P., Guille, J., Dunlop, H., Compared Activities of Platinum and High Specific Surface Area Mo 2 C and WC Catalysts for Reforming Reactions: I. Catalyst Activation and Stabilization: Reaction of n-hexane (1992) J. Catal., 134, pp. 383-398
Lee, J.S., Lee, K.H., Lee, J.Y., Selective Chemisorption of Carbon Monoxide and Hydrogen over Supported Molybdenum Carbide Catalysts (1992) J. Phys. Chem., 96, pp. 362-366
Johansson, L., Electronic and Structural Properties of Transition-Metal Carbide and Nitride Surfaces (1995) Surf. Sci. Rep., 21, pp. 177-250
Chen, J.G., Carbide and Nitride Overlayers on Early Transition Metal Surfaces: Preparation, Characterization, and Reactivities (1996) Chem. Rev., 96, pp. 1477-1498
Claridge, J.B., York, A.P.E., Brungs, A.J., Marquez-Alvarez, C., Sloan, J., Tsang, S.C., Green, M.L.H., New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten carbide (1998) J. Catal., 180, pp. 85-100
Oshikawa, K., Nagai, M., Omi, S., Characterization of Molybdenum Carbides for Methane Reforming by TPR, XRD, and XPS (2001) J. Phys. Chem. B, 105, pp. 9124-9131
Hwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212
Liu, P., Rodriguez, J.A., Water-Gas-Shift Reaction on Molybdenum Carbide Surfaces: Essential Role of the Oxycarbide (2006) J. Phys. Chem. B, 110, pp. 19418-19425
Viñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalyst size matters: Tuning the molecular mechanism of the water-gas shift reaction on titanium carbide based compounds (2008) J. Catal., 260, pp. 103-112
Schweitzer, N.M., Schaidle, J.A., Ezekoye, O.K., Pan, X., Linic, S., Thompson, L.T., High Activity Carbide Supported Catalysts for Water Gas Shift (2011) J. Am. Chem. Soc., 133, pp. 2378-2381
Porosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO 2 to CO (2014) Angew. Chem., Int. Ed., 53, pp. 6705-6709
Williams, W.S., Cubic Carbides (1966) Science, 152, pp. 34-42
Nelson, J.A., Wagner, M.J., High Surface Area Nanoparticulate Transition Metal Carbides Prepared by Alkalide Reduction (2002) Chem. Mater., 14, pp. 4460-4463
Hunt, S.T., Nimmanwudipong, T., Román-Leshkov, Y., Engineering Non-Sintered, Metal-Terminated Tungsten Carbide Nanoparticles for Catalysis (2014) Angew. Chem., Int. Ed., 53, pp. 5131-5136
Ferri, T., Gozzi, D., Latini, A., Hydrogen Evolution Reaction (HER) at Thin Film and Bulk TiC Electrodes (2007) Int. J. Hydrogen Energy, 32, pp. 4692-4701
Jalan, V., Frost, D.G., (1989), U.S. Patent 4,795,684
Michalsky, R., Zhang, Y.-J., Peterson, A.A., Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts (2014) ACS Catal., 4, pp. 1274-1278
Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO 2 Activation and Hydrogenation on δ-MoC(001) and β-Mo 2 C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921
Barthos, R., Széchenyi, A., Koós, Á., Solymosi, F., The Decomposition of Ethanol over Mo2C/Carbon Catalysts (2007) Appl. Catal., A, 327, pp. 95-105
Porosoff, M.D., Kattel, S., Li, W., Liu, P., Chen, J.G., Identifying Trends and Descriptors for Selective CO 2 Conversion to CO over Transition Metal Carbides (2015) Chem. Commun., 51, pp. 6988-6991
Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) J. Am. Chem. Soc., 138, pp. 8269-8278
Nikolov, I., Vitanov, T., Nikolova, V., The Effect of the Method of Preparation on the Catalytic Activity of Tungsten Carbide for Hydrogen Evolution (1980) J. Power Sources, 5, pp. 197-206
Nikolov, I., Petrov, K., Vitanov, T., Guschev, A., Tungsten Carbide Cathodes for Electrolysis of Sulphuric Acid Solutions (1983) Int. J. Hydrogen Energy, 8, pp. 437-440
Nikiforov, A.V., Petrushina, I.M., Christensen, E., Alexeev, N.V., Samokhin, A.V., Bjerrum, N.J., WC as a Non-Platinum Hydrogen Evolution Electrocatalyst for High Temperature PEM Water Electrolysers (2012) Int. J. Hydrogen Energy, 37, pp. 18591-18597
Tong, Y.-J., Wu, S.-Y., Chen, H.-T., Adsorption and Reaction of CO and H 2 O on WC(0001) Surface: A First-Principle Investigation (2018) Appl. Surf. Sci., 428, pp. 579-585
Zheng, W., Chen, L., Density Functional Study of H 2 O Adsorption and Dissociation on WC(0001) (2014) Comput. Theor. Chem., 1039, pp. 75-80
Xi, Y., Huang, L., Forrey, R.C., Cheng, H., Interactions between Hydrogen and Tungsten Carbide: A First Principles Study (2014) RSC Adv., 4, pp. 39912-39919
Marinelli, F., Jelea, A., Allouche, A., Interactions of H with Tungsten Carbide Surfaces: An Ab Initio Study (2007) Surf. Sci., 601, pp. 578-587
Gaston, N., Hendy, S., Hydrogen adsorption on model tungsten carbide surfaces (2009) Catal. Today, 146, pp. 223-229
Wang, T., Li, Y.-W., Wang, J., Beller, M., Jiao, H., Dissociative Hydrogen Adsorption on the Hexagonal Mo2C Phase at High Coverage (2014) J. Phys. Chem. C, 118, pp. 8079-8089
Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32
Kresse, G., Hafner, J., Ab initio Molecular Dynamics for Liquid Metals (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 47, pp. 558-561
Kresse, G., Furthmüller, J., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186
Monkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192
Methfessel, M., Paxton, A.T., High-Precision Sampling for Brillouin-Zone Integration in Metals (1989) Phys. Rev. B: Condens. Matter Mater. Phys., 40, pp. 3616-3621
Blöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
Shi, X.-R., Wang, S.-G., Wang, H., Deng, C.-M., Qin, Z., Wang, J., Structure and Stability of β-Mo 2 C Bulk and Surfaces: A Density Functional Theory Study (2009) Surf. Sci., 603, pp. 852-859
Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Catalytic Activity and Product Selectivity Trends for Carbon Dioxide Electroreduction on Transition Metal-Coated Tungsten Carbides (2017) J. Phys. Chem. C, 121, pp. 20306-20314
Grimme, S., Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections (2004) J. Comput. Chem., 25, pp. 1463-1473
Bader, R.F.W., (1990) Atoms in Molecules - A Quantum Theory, , Oxford University Press: New York, USA
Henkelman, G., Arnaldsson, A., Jónsson, H., A Fast and Robust Algorithm for Bader Decomposition of Charge Density (2006) Comput. Mater. Sci., 36, pp. 254-360
Momma, K., Izumi, F., VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276
Mitchell, S.J., Koper, M.T.M., An off-lattice model for Br electrodeposition on Au(100): From DFT to experiment (2004) Surf. Sci., 563, p. 169
Koverga, A.A., Frank, S., Koper, M.T.M., Density Functional Theory Study of Electric Field Effects on CO and OH Adsorption and Co-adsorption on Gold Surfaces (2013) Electrochim. Acta, 101, pp. 244-253
Henkelman, G., Uberuaga, B.P., Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths (2000) J. Chem. Phys., 113, pp. 9901-9904
Henkelman, G., Jónsson, H., Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points (2000) J. Chem. Phys., 113, pp. 9978-9985
Toth, L.E., (1971) Transition Metal Carbides and Nitrides, , Academic: New York, USA
Liu, A.Y., Cohen, M.L., Theoretical Study of the Stability of Cubic WC (1988) Solid State Commun., 67, pp. 907-910
Samsonov, G.V., Vinizkii, I.M., (1976) Handbook of Refractory Compounds, , (In Russian)
Metallurgiya: Moskva, USSR
Liu, A.Y., Wentzcovitch, R.M., Cohen, M.L., Structural and Electronic Properties of WC (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 38, pp. 9483-9489
Politi, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-Index Surfaces (2013) Phys. Chem. Chem. Phys., 15, pp. 12617-12625
Marlo, M., Milman, V., Density-Functional Study of Bulk and Surface Properties of Titanium Nitride Using Different Exchange-Correlation Functionals (2000) Phys. Rev. B: Condens. Matter Mater. Phys., 62, pp. 2899-2907
Li, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Yi, D., Theoretical Study on the Electronic Properties and Stabilities of Low-Index Surfaces of WC Polymorphs (2011) Comput. Mater. Sci., 50, pp. 939-948
Li, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Xu, L., Theoretical study on the stability, elasticity, hardness and electronic structures of W-C binary compounds (2010) J. Alloys Compd., 502, pp. 28-37
Kitchin, J.R., Nørskov, J.K., Barteau, M.A., Chen, J.G., Trends in the Chemical Properties of Early Transition Metal Carbide Surfaces: A Density Functional Study (2005) Catal. Today, 105, pp. 66-73
Bligaard, T., Nørskov, J.K., Dahl, S., Matthiesen, J., Christensen, C.H., Sehested, J., The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis (2004) J. Catal., 224, pp. 206-217
Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the Exchange Current for Hydrogen Evolution (2005) J. Electrochem. Soc., 152, pp. J23-J26
Senanayake, S.D., Ramírez, P.J., Waluyo, I., Kundu, S., Mudiyanselage, K., Liu, Z., Liu, Z., Evans, J., Hydrogenation of CO2 to Methanol on CeOx/Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal-Oxide Interface and Importance of Ce3+ sites (2016) J. Phys. Chem. C, 120, pp. 1778-1784
Rodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., CO2 Hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC Catalysts: Production of CO, Methanol, and Methane (2013) J. Catal., 307, pp. 162-169
Ribeiro, F., Dalla-Betta, R.A., Boudart, M., Baumgartner, J., Iglesia, E., Reactions of Neopentane, Methylcyclohexane, and 3,3-Dimethylpentane on Tungsten Carbides: The Effect of Surface Oxygen on Reaction Pathways (1991) J. Catal., 130, pp. 86-105
Hollak, S.A.W., Gosselink, R.W., Van Es, D.S., Bitter, J.H., Comparison of Tungsten and Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Oleic Acid (2013) ACS Catal., 3, pp. 2837-2844
Gómez-Marín, A.M., Ticianelli, E.A., Analysis of the electrocatalytic activity of α-molybdenum carbide thin porous electrodes toward the hydrogen evolution reaction (2016) Electrochim. Acta, 220, pp. 363-372
Gómez-Marín, A.M., Ticianelly, E.A., Effect of Transition Metals in the Hydrogen Evolution Electrocatalytic Activity of Molybdenum Carbide (2017) Appl. Catal., B, 209, pp. 600-610
Weidman, M.C., Esposito, D.V., Hsu, Y.-C., Chen, J.G., Comparison of Electrochemical Stability of Transition Metal Carbides (WC, W 2 C, Mo 2 C) over a Wide pH Range (2012) J. Power Sources, 202, pp. 11-17
Wan, C., Regmi, Y.N., Leonard, B.M., Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction (2014) Angew. Chem., Int. Ed., 53, pp. 6407-6410
Gajdo, M., Eichler, A., Hafner, J., CO adsorption on close-packed transition and noble metal surfaces: Trends fromab initiocalculations (2004) J. Phys.: Condens. Matter, 16, pp. 1141-1164
Yudanov, I.V., Genest, A., Schauermann, S., Freund, H.-J., Rösch, N., Size Dependence of the Adsorption Energy of CO on Metal Nanoparticles: A DFT Search for the Minimum Value (2012) Nano Lett., 12, pp. 2134-2139
Ren, J., Huo, C.-F., Wang, J., Li, Y.-W., Jiao, H., Surface Structure and Energetics of Oxygen and CO Adsorption on α-Mo 2 C(0001) (2005) Surf. Sci., 596, pp. 212-221
Liu, P., Rodriguez, J.A., Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide: A Theoretical Study (2003) Catal. Lett., 91, pp. 247-252
Tominaga, H., Nagai, M., Density Functional Theory of Water-Gas Shift Reaction on Molybdenum Carbide (2005) J. Phys. Chem. B, 109, pp. 20415-20423
Borodziński, A., Bond, G.C., Selective Hydrogenation of Ethyne in Ethene-Rich Streams on Palladium Catalysts, Part 2: Steady-State Kinetics and Effects of Palladium Particle Size, Carbon Monoxide, and Promoters (2008) Catal. Rev.: Sci. Eng., 50, pp. 379-469
Wu, S.-Y., Ho, J.-J., Adsorption, Dissociation, and Hydrogenation of CO 2 on WC(0001) and WC-Co Alloy Surfaces Investigated with Theoretical Calculations (2012) J. Phys. Chem. C, 116, pp. 13202-13209
Ren, J., Huo, C.-F., Wang, J., Li, Y.-W., Jiao, H., Surface Structure and Energetics of Oxygen and CO Adsorption on α-Mo 2 C(0001) (2005) Surf. Sci., 596, pp. 212-221
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv American Chemical Society
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv Journal of Physical Chemistry C
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159159497588736
spelling 20192021-02-05T14:59:03Z2021-02-05T14:59:03Z19327447http://hdl.handle.net/11407/606310.1021/acs.jpcc.8b11840In this work, a systematic study on the adsorption of atomic and molecular hydrogen and carbon oxides on cubic (001) and hexagonal (0001) WC surfaces by periodical density functional theory is reported. Calculations have been performed by employing the Perdew-Burke-Ernzerhof exchange correlation functional with van der Waals corrections to account for the dispersive force term. In addition, dipole corrections were applied for W- and C-terminated hexagonal WC(0001) surfaces. Good agreement is found between calculated and reported data for representative bulk properties. Regarding surface properties, our results indicate that atomic hydrogen adsorbs quite strongly while H 2 does, in general, dissociatively on the studied surfaces, with very small energy barriers (<0.35 eV) for the cleavage of the H-H bonds. The C sites of the carbide play an essential role in the binding of H atoms and the cleavage of H-H bonds. Studies examining the interaction of tungsten carbide with CO and CO 2 also evidence the importance of C sites. The reactivity of C- and W-terminated (0001) hexagonal WC surfaces significantly differs. Atomic hydrogen, carbon monoxide, and CO 2 are more stable on a C- than on a W-terminated surface, and only this latter termination is able to cleave spontaneously a C-O bond of the CO 2 molecule. This difference in reactivity may open a number of possibilities for fine-tuning the selectivity of the resulting material or designing compounds catalytically active for specific reactions by carefully adjusting the proportion of C, W, and mixed terminations during the synthesis procedure. © 2019 American Chemical Society.engAmerican Chemical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85064333647&doi=10.1021%2facs.jpcc.8b11840&partnerID=40&md5=69aeae72a60aa821d282c98c9c4f30dc1231488718883Levy, R.B., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549Lee, J., Locatelli, S., Oyama, S.T., Boudart, M., Molybdenum Carbide Catalysts 3. Turnover Rates for the Hydrogenolysis of n-butane (1990) J. Catal., 125, pp. 157-170Lee, J.S., Yeom, M.H., Lee, D.-S., Catalysis by Molybdenum Carbide in Activation of C-C, C-O and C-H bonds (1990) J. Mol. Catal., 62, pp. L45-L51Lee, J., Yeom, M.H., Park, K.Y., Nam, I.-S., Chung, J.S., Kim, Y.G., Moon, S.H., Preparation and Benzene Hydrogenation Activity of Supported Molybdenum Carbide Catalysts (1991) J. Catal., 128, pp. 126-136Ledoux, M.J., Huu, C.P., Guille, J., Dunlop, H., Compared Activities of Platinum and High Specific Surface Area Mo 2 C and WC Catalysts for Reforming Reactions: I. Catalyst Activation and Stabilization: Reaction of n-hexane (1992) J. Catal., 134, pp. 383-398Lee, J.S., Lee, K.H., Lee, J.Y., Selective Chemisorption of Carbon Monoxide and Hydrogen over Supported Molybdenum Carbide Catalysts (1992) J. Phys. Chem., 96, pp. 362-366Johansson, L., Electronic and Structural Properties of Transition-Metal Carbide and Nitride Surfaces (1995) Surf. Sci. Rep., 21, pp. 177-250Chen, J.G., Carbide and Nitride Overlayers on Early Transition Metal Surfaces: Preparation, Characterization, and Reactivities (1996) Chem. Rev., 96, pp. 1477-1498Claridge, J.B., York, A.P.E., Brungs, A.J., Marquez-Alvarez, C., Sloan, J., Tsang, S.C., Green, M.L.H., New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten carbide (1998) J. Catal., 180, pp. 85-100Oshikawa, K., Nagai, M., Omi, S., Characterization of Molybdenum Carbides for Methane Reforming by TPR, XRD, and XPS (2001) J. Phys. Chem. B, 105, pp. 9124-9131Hwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212Liu, P., Rodriguez, J.A., Water-Gas-Shift Reaction on Molybdenum Carbide Surfaces: Essential Role of the Oxycarbide (2006) J. Phys. Chem. B, 110, pp. 19418-19425Viñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalyst size matters: Tuning the molecular mechanism of the water-gas shift reaction on titanium carbide based compounds (2008) J. Catal., 260, pp. 103-112Schweitzer, N.M., Schaidle, J.A., Ezekoye, O.K., Pan, X., Linic, S., Thompson, L.T., High Activity Carbide Supported Catalysts for Water Gas Shift (2011) J. Am. Chem. Soc., 133, pp. 2378-2381Porosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO 2 to CO (2014) Angew. Chem., Int. Ed., 53, pp. 6705-6709Williams, W.S., Cubic Carbides (1966) Science, 152, pp. 34-42Nelson, J.A., Wagner, M.J., High Surface Area Nanoparticulate Transition Metal Carbides Prepared by Alkalide Reduction (2002) Chem. Mater., 14, pp. 4460-4463Hunt, S.T., Nimmanwudipong, T., Román-Leshkov, Y., Engineering Non-Sintered, Metal-Terminated Tungsten Carbide Nanoparticles for Catalysis (2014) Angew. Chem., Int. Ed., 53, pp. 5131-5136Ferri, T., Gozzi, D., Latini, A., Hydrogen Evolution Reaction (HER) at Thin Film and Bulk TiC Electrodes (2007) Int. J. Hydrogen Energy, 32, pp. 4692-4701Jalan, V., Frost, D.G., (1989), U.S. Patent 4,795,684Michalsky, R., Zhang, Y.-J., Peterson, A.A., Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts (2014) ACS Catal., 4, pp. 1274-1278Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO 2 Activation and Hydrogenation on δ-MoC(001) and β-Mo 2 C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921Barthos, R., Széchenyi, A., Koós, Á., Solymosi, F., The Decomposition of Ethanol over Mo2C/Carbon Catalysts (2007) Appl. Catal., A, 327, pp. 95-105Porosoff, M.D., Kattel, S., Li, W., Liu, P., Chen, J.G., Identifying Trends and Descriptors for Selective CO 2 Conversion to CO over Transition Metal Carbides (2015) Chem. Commun., 51, pp. 6988-6991Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) J. Am. Chem. Soc., 138, pp. 8269-8278Nikolov, I., Vitanov, T., Nikolova, V., The Effect of the Method of Preparation on the Catalytic Activity of Tungsten Carbide for Hydrogen Evolution (1980) J. Power Sources, 5, pp. 197-206Nikolov, I., Petrov, K., Vitanov, T., Guschev, A., Tungsten Carbide Cathodes for Electrolysis of Sulphuric Acid Solutions (1983) Int. J. Hydrogen Energy, 8, pp. 437-440Nikiforov, A.V., Petrushina, I.M., Christensen, E., Alexeev, N.V., Samokhin, A.V., Bjerrum, N.J., WC as a Non-Platinum Hydrogen Evolution Electrocatalyst for High Temperature PEM Water Electrolysers (2012) Int. J. Hydrogen Energy, 37, pp. 18591-18597Tong, Y.-J., Wu, S.-Y., Chen, H.-T., Adsorption and Reaction of CO and H 2 O on WC(0001) Surface: A First-Principle Investigation (2018) Appl. Surf. Sci., 428, pp. 579-585Zheng, W., Chen, L., Density Functional Study of H 2 O Adsorption and Dissociation on WC(0001) (2014) Comput. Theor. Chem., 1039, pp. 75-80Xi, Y., Huang, L., Forrey, R.C., Cheng, H., Interactions between Hydrogen and Tungsten Carbide: A First Principles Study (2014) RSC Adv., 4, pp. 39912-39919Marinelli, F., Jelea, A., Allouche, A., Interactions of H with Tungsten Carbide Surfaces: An Ab Initio Study (2007) Surf. Sci., 601, pp. 578-587Gaston, N., Hendy, S., Hydrogen adsorption on model tungsten carbide surfaces (2009) Catal. Today, 146, pp. 223-229Wang, T., Li, Y.-W., Wang, J., Beller, M., Jiao, H., Dissociative Hydrogen Adsorption on the Hexagonal Mo2C Phase at High Coverage (2014) J. Phys. Chem. C, 118, pp. 8079-8089Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32Kresse, G., Hafner, J., Ab initio Molecular Dynamics for Liquid Metals (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 47, pp. 558-561Kresse, G., Furthmüller, J., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186Monkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192Methfessel, M., Paxton, A.T., High-Precision Sampling for Brillouin-Zone Integration in Metals (1989) Phys. Rev. B: Condens. Matter Mater. Phys., 40, pp. 3616-3621Blöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868Shi, X.-R., Wang, S.-G., Wang, H., Deng, C.-M., Qin, Z., Wang, J., Structure and Stability of β-Mo 2 C Bulk and Surfaces: A Density Functional Theory Study (2009) Surf. Sci., 603, pp. 852-859Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Catalytic Activity and Product Selectivity Trends for Carbon Dioxide Electroreduction on Transition Metal-Coated Tungsten Carbides (2017) J. Phys. Chem. C, 121, pp. 20306-20314Grimme, S., Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections (2004) J. Comput. Chem., 25, pp. 1463-1473Bader, R.F.W., (1990) Atoms in Molecules - A Quantum Theory, , Oxford University Press: New York, USAHenkelman, G., Arnaldsson, A., Jónsson, H., A Fast and Robust Algorithm for Bader Decomposition of Charge Density (2006) Comput. Mater. Sci., 36, pp. 254-360Momma, K., Izumi, F., VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276Mitchell, S.J., Koper, M.T.M., An off-lattice model for Br electrodeposition on Au(100): From DFT to experiment (2004) Surf. Sci., 563, p. 169Koverga, A.A., Frank, S., Koper, M.T.M., Density Functional Theory Study of Electric Field Effects on CO and OH Adsorption and Co-adsorption on Gold Surfaces (2013) Electrochim. Acta, 101, pp. 244-253Henkelman, G., Uberuaga, B.P., Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths (2000) J. Chem. Phys., 113, pp. 9901-9904Henkelman, G., Jónsson, H., Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points (2000) J. Chem. Phys., 113, pp. 9978-9985Toth, L.E., (1971) Transition Metal Carbides and Nitrides, , Academic: New York, USALiu, A.Y., Cohen, M.L., Theoretical Study of the Stability of Cubic WC (1988) Solid State Commun., 67, pp. 907-910Samsonov, G.V., Vinizkii, I.M., (1976) Handbook of Refractory Compounds, , (In Russian)Metallurgiya: Moskva, USSRLiu, A.Y., Wentzcovitch, R.M., Cohen, M.L., Structural and Electronic Properties of WC (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 38, pp. 9483-9489Politi, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-Index Surfaces (2013) Phys. Chem. Chem. Phys., 15, pp. 12617-12625Marlo, M., Milman, V., Density-Functional Study of Bulk and Surface Properties of Titanium Nitride Using Different Exchange-Correlation Functionals (2000) Phys. Rev. B: Condens. Matter Mater. Phys., 62, pp. 2899-2907Li, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Yi, D., Theoretical Study on the Electronic Properties and Stabilities of Low-Index Surfaces of WC Polymorphs (2011) Comput. Mater. Sci., 50, pp. 939-948Li, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Xu, L., Theoretical study on the stability, elasticity, hardness and electronic structures of W-C binary compounds (2010) J. Alloys Compd., 502, pp. 28-37Kitchin, J.R., Nørskov, J.K., Barteau, M.A., Chen, J.G., Trends in the Chemical Properties of Early Transition Metal Carbide Surfaces: A Density Functional Study (2005) Catal. Today, 105, pp. 66-73Bligaard, T., Nørskov, J.K., Dahl, S., Matthiesen, J., Christensen, C.H., Sehested, J., The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis (2004) J. Catal., 224, pp. 206-217Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the Exchange Current for Hydrogen Evolution (2005) J. Electrochem. Soc., 152, pp. J23-J26Senanayake, S.D., Ramírez, P.J., Waluyo, I., Kundu, S., Mudiyanselage, K., Liu, Z., Liu, Z., Evans, J., Hydrogenation of CO2 to Methanol on CeOx/Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal-Oxide Interface and Importance of Ce3+ sites (2016) J. Phys. Chem. C, 120, pp. 1778-1784Rodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., CO2 Hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC Catalysts: Production of CO, Methanol, and Methane (2013) J. Catal., 307, pp. 162-169Ribeiro, F., Dalla-Betta, R.A., Boudart, M., Baumgartner, J., Iglesia, E., Reactions of Neopentane, Methylcyclohexane, and 3,3-Dimethylpentane on Tungsten Carbides: The Effect of Surface Oxygen on Reaction Pathways (1991) J. Catal., 130, pp. 86-105Hollak, S.A.W., Gosselink, R.W., Van Es, D.S., Bitter, J.H., Comparison of Tungsten and Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Oleic Acid (2013) ACS Catal., 3, pp. 2837-2844Gómez-Marín, A.M., Ticianelli, E.A., Analysis of the electrocatalytic activity of α-molybdenum carbide thin porous electrodes toward the hydrogen evolution reaction (2016) Electrochim. Acta, 220, pp. 363-372Gómez-Marín, A.M., Ticianelly, E.A., Effect of Transition Metals in the Hydrogen Evolution Electrocatalytic Activity of Molybdenum Carbide (2017) Appl. Catal., B, 209, pp. 600-610Weidman, M.C., Esposito, D.V., Hsu, Y.-C., Chen, J.G., Comparison of Electrochemical Stability of Transition Metal Carbides (WC, W 2 C, Mo 2 C) over a Wide pH Range (2012) J. Power Sources, 202, pp. 11-17Wan, C., Regmi, Y.N., Leonard, B.M., Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction (2014) Angew. Chem., Int. Ed., 53, pp. 6407-6410Gajdo, M., Eichler, A., Hafner, J., CO adsorption on close-packed transition and noble metal surfaces: Trends fromab initiocalculations (2004) J. Phys.: Condens. Matter, 16, pp. 1141-1164Yudanov, I.V., Genest, A., Schauermann, S., Freund, H.-J., Rösch, N., Size Dependence of the Adsorption Energy of CO on Metal Nanoparticles: A DFT Search for the Minimum Value (2012) Nano Lett., 12, pp. 2134-2139Ren, J., Huo, C.-F., Wang, J., Li, Y.-W., Jiao, H., Surface Structure and Energetics of Oxygen and CO Adsorption on α-Mo 2 C(0001) (2005) Surf. Sci., 596, pp. 212-221Liu, P., Rodriguez, J.A., Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide: A Theoretical Study (2003) Catal. Lett., 91, pp. 247-252Tominaga, H., Nagai, M., Density Functional Theory of Water-Gas Shift Reaction on Molybdenum Carbide (2005) J. Phys. Chem. B, 109, pp. 20415-20423Borodziński, A., Bond, G.C., Selective Hydrogenation of Ethyne in Ethene-Rich Streams on Palladium Catalysts, Part 2: Steady-State Kinetics and Effects of Palladium Particle Size, Carbon Monoxide, and Promoters (2008) Catal. Rev.: Sci. Eng., 50, pp. 379-469Wu, S.-Y., Ho, J.-J., Adsorption, Dissociation, and Hydrogenation of CO 2 on WC(0001) and WC-Co Alloy Surfaces Investigated with Theoretical Calculations (2012) J. Phys. Chem. C, 116, pp. 13202-13209Ren, J., Huo, C.-F., Wang, J., Li, Y.-W., Jiao, H., Surface Structure and Energetics of Oxygen and CO Adsorption on α-Mo 2 C(0001) (2005) Surf. Sci., 596, pp. 212-221Journal of Physical Chemistry CCO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal SitesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Koverga, A.A., Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Universidad Nacional de Colombia Sede Medellín, Medellín, 050041, Colombia, Facultad de Ciencias Básicas, Grupo de Investigación Matandmpac, Universidad de Medellín, Medellín, 050026, ColombiaFlórez, E., Facultad de Ciencias Básicas, Grupo de Investigación Matandmpac, Universidad de Medellín, Medellín, 050026, ColombiaDorkis, L., Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Universidad Nacional de Colombia Sede Medellín, Medellín, 050041, ColombiaRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973-5000, United Stateshttp://purl.org/coar/access_right/c_16ecKoverga A.A.Flórez E.Dorkis L.Rodriguez J.A.11407/6063oai:repository.udem.edu.co:11407/60632021-02-05 09:59:03.846Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co