CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites
In this work, a systematic study on the adsorption of atomic and molecular hydrogen and carbon oxides on cubic (001) and hexagonal (0001) WC surfaces by periodical density functional theory is reported. Calculations have been performed by employing the Perdew-Burke-Ernzerhof exchange correlation fun...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6063
- Acceso en línea:
- http://hdl.handle.net/11407/6063
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_33867db7d0396a43966a9c957c04c353 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6063 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites |
title |
CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites |
spellingShingle |
CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites |
title_short |
CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites |
title_full |
CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites |
title_fullStr |
CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites |
title_full_unstemmed |
CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites |
title_sort |
CO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites |
description |
In this work, a systematic study on the adsorption of atomic and molecular hydrogen and carbon oxides on cubic (001) and hexagonal (0001) WC surfaces by periodical density functional theory is reported. Calculations have been performed by employing the Perdew-Burke-Ernzerhof exchange correlation functional with van der Waals corrections to account for the dispersive force term. In addition, dipole corrections were applied for W- and C-terminated hexagonal WC(0001) surfaces. Good agreement is found between calculated and reported data for representative bulk properties. Regarding surface properties, our results indicate that atomic hydrogen adsorbs quite strongly while H 2 does, in general, dissociatively on the studied surfaces, with very small energy barriers (<0.35 eV) for the cleavage of the H-H bonds. The C sites of the carbide play an essential role in the binding of H atoms and the cleavage of H-H bonds. Studies examining the interaction of tungsten carbide with CO and CO 2 also evidence the importance of C sites. The reactivity of C- and W-terminated (0001) hexagonal WC surfaces significantly differs. Atomic hydrogen, carbon monoxide, and CO 2 are more stable on a C- than on a W-terminated surface, and only this latter termination is able to cleave spontaneously a C-O bond of the CO 2 molecule. This difference in reactivity may open a number of possibilities for fine-tuning the selectivity of the resulting material or designing compounds catalytically active for specific reactions by carefully adjusting the proportion of C, W, and mixed terminations during the synthesis procedure. © 2019 American Chemical Society. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:03Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:03Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
19327447 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6063 |
dc.identifier.doi.none.fl_str_mv |
10.1021/acs.jpcc.8b11840 |
identifier_str_mv |
19327447 10.1021/acs.jpcc.8b11840 |
url |
http://hdl.handle.net/11407/6063 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064333647&doi=10.1021%2facs.jpcc.8b11840&partnerID=40&md5=69aeae72a60aa821d282c98c9c4f30dc |
dc.relation.citationvolume.none.fl_str_mv |
123 |
dc.relation.citationissue.none.fl_str_mv |
14 |
dc.relation.citationstartpage.none.fl_str_mv |
8871 |
dc.relation.citationendpage.none.fl_str_mv |
8883 |
dc.relation.references.none.fl_str_mv |
Levy, R.B., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549 Lee, J., Locatelli, S., Oyama, S.T., Boudart, M., Molybdenum Carbide Catalysts 3. Turnover Rates for the Hydrogenolysis of n-butane (1990) J. Catal., 125, pp. 157-170 Lee, J.S., Yeom, M.H., Lee, D.-S., Catalysis by Molybdenum Carbide in Activation of C-C, C-O and C-H bonds (1990) J. Mol. Catal., 62, pp. L45-L51 Lee, J., Yeom, M.H., Park, K.Y., Nam, I.-S., Chung, J.S., Kim, Y.G., Moon, S.H., Preparation and Benzene Hydrogenation Activity of Supported Molybdenum Carbide Catalysts (1991) J. Catal., 128, pp. 126-136 Ledoux, M.J., Huu, C.P., Guille, J., Dunlop, H., Compared Activities of Platinum and High Specific Surface Area Mo 2 C and WC Catalysts for Reforming Reactions: I. Catalyst Activation and Stabilization: Reaction of n-hexane (1992) J. Catal., 134, pp. 383-398 Lee, J.S., Lee, K.H., Lee, J.Y., Selective Chemisorption of Carbon Monoxide and Hydrogen over Supported Molybdenum Carbide Catalysts (1992) J. Phys. Chem., 96, pp. 362-366 Johansson, L., Electronic and Structural Properties of Transition-Metal Carbide and Nitride Surfaces (1995) Surf. Sci. Rep., 21, pp. 177-250 Chen, J.G., Carbide and Nitride Overlayers on Early Transition Metal Surfaces: Preparation, Characterization, and Reactivities (1996) Chem. Rev., 96, pp. 1477-1498 Claridge, J.B., York, A.P.E., Brungs, A.J., Marquez-Alvarez, C., Sloan, J., Tsang, S.C., Green, M.L.H., New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten carbide (1998) J. Catal., 180, pp. 85-100 Oshikawa, K., Nagai, M., Omi, S., Characterization of Molybdenum Carbides for Methane Reforming by TPR, XRD, and XPS (2001) J. Phys. Chem. B, 105, pp. 9124-9131 Hwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212 Liu, P., Rodriguez, J.A., Water-Gas-Shift Reaction on Molybdenum Carbide Surfaces: Essential Role of the Oxycarbide (2006) J. Phys. Chem. B, 110, pp. 19418-19425 Viñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalyst size matters: Tuning the molecular mechanism of the water-gas shift reaction on titanium carbide based compounds (2008) J. Catal., 260, pp. 103-112 Schweitzer, N.M., Schaidle, J.A., Ezekoye, O.K., Pan, X., Linic, S., Thompson, L.T., High Activity Carbide Supported Catalysts for Water Gas Shift (2011) J. Am. Chem. Soc., 133, pp. 2378-2381 Porosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO 2 to CO (2014) Angew. Chem., Int. Ed., 53, pp. 6705-6709 Williams, W.S., Cubic Carbides (1966) Science, 152, pp. 34-42 Nelson, J.A., Wagner, M.J., High Surface Area Nanoparticulate Transition Metal Carbides Prepared by Alkalide Reduction (2002) Chem. Mater., 14, pp. 4460-4463 Hunt, S.T., Nimmanwudipong, T., Román-Leshkov, Y., Engineering Non-Sintered, Metal-Terminated Tungsten Carbide Nanoparticles for Catalysis (2014) Angew. Chem., Int. Ed., 53, pp. 5131-5136 Ferri, T., Gozzi, D., Latini, A., Hydrogen Evolution Reaction (HER) at Thin Film and Bulk TiC Electrodes (2007) Int. J. Hydrogen Energy, 32, pp. 4692-4701 Jalan, V., Frost, D.G., (1989), U.S. Patent 4,795,684 Michalsky, R., Zhang, Y.-J., Peterson, A.A., Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts (2014) ACS Catal., 4, pp. 1274-1278 Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO 2 Activation and Hydrogenation on δ-MoC(001) and β-Mo 2 C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921 Barthos, R., Széchenyi, A., Koós, Á., Solymosi, F., The Decomposition of Ethanol over Mo2C/Carbon Catalysts (2007) Appl. Catal., A, 327, pp. 95-105 Porosoff, M.D., Kattel, S., Li, W., Liu, P., Chen, J.G., Identifying Trends and Descriptors for Selective CO 2 Conversion to CO over Transition Metal Carbides (2015) Chem. Commun., 51, pp. 6988-6991 Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) J. Am. Chem. Soc., 138, pp. 8269-8278 Nikolov, I., Vitanov, T., Nikolova, V., The Effect of the Method of Preparation on the Catalytic Activity of Tungsten Carbide for Hydrogen Evolution (1980) J. Power Sources, 5, pp. 197-206 Nikolov, I., Petrov, K., Vitanov, T., Guschev, A., Tungsten Carbide Cathodes for Electrolysis of Sulphuric Acid Solutions (1983) Int. J. Hydrogen Energy, 8, pp. 437-440 Nikiforov, A.V., Petrushina, I.M., Christensen, E., Alexeev, N.V., Samokhin, A.V., Bjerrum, N.J., WC as a Non-Platinum Hydrogen Evolution Electrocatalyst for High Temperature PEM Water Electrolysers (2012) Int. J. Hydrogen Energy, 37, pp. 18591-18597 Tong, Y.-J., Wu, S.-Y., Chen, H.-T., Adsorption and Reaction of CO and H 2 O on WC(0001) Surface: A First-Principle Investigation (2018) Appl. Surf. Sci., 428, pp. 579-585 Zheng, W., Chen, L., Density Functional Study of H 2 O Adsorption and Dissociation on WC(0001) (2014) Comput. Theor. Chem., 1039, pp. 75-80 Xi, Y., Huang, L., Forrey, R.C., Cheng, H., Interactions between Hydrogen and Tungsten Carbide: A First Principles Study (2014) RSC Adv., 4, pp. 39912-39919 Marinelli, F., Jelea, A., Allouche, A., Interactions of H with Tungsten Carbide Surfaces: An Ab Initio Study (2007) Surf. Sci., 601, pp. 578-587 Gaston, N., Hendy, S., Hydrogen adsorption on model tungsten carbide surfaces (2009) Catal. Today, 146, pp. 223-229 Wang, T., Li, Y.-W., Wang, J., Beller, M., Jiao, H., Dissociative Hydrogen Adsorption on the Hexagonal Mo2C Phase at High Coverage (2014) J. Phys. Chem. C, 118, pp. 8079-8089 Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32 Kresse, G., Hafner, J., Ab initio Molecular Dynamics for Liquid Metals (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 47, pp. 558-561 Kresse, G., Furthmüller, J., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186 Monkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192 Methfessel, M., Paxton, A.T., High-Precision Sampling for Brillouin-Zone Integration in Metals (1989) Phys. Rev. B: Condens. Matter Mater. Phys., 40, pp. 3616-3621 Blöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979 Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868 Shi, X.-R., Wang, S.-G., Wang, H., Deng, C.-M., Qin, Z., Wang, J., Structure and Stability of β-Mo 2 C Bulk and Surfaces: A Density Functional Theory Study (2009) Surf. Sci., 603, pp. 852-859 Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Catalytic Activity and Product Selectivity Trends for Carbon Dioxide Electroreduction on Transition Metal-Coated Tungsten Carbides (2017) J. Phys. Chem. C, 121, pp. 20306-20314 Grimme, S., Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections (2004) J. Comput. Chem., 25, pp. 1463-1473 Bader, R.F.W., (1990) Atoms in Molecules - A Quantum Theory, , Oxford University Press: New York, USA Henkelman, G., Arnaldsson, A., Jónsson, H., A Fast and Robust Algorithm for Bader Decomposition of Charge Density (2006) Comput. Mater. Sci., 36, pp. 254-360 Momma, K., Izumi, F., VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276 Mitchell, S.J., Koper, M.T.M., An off-lattice model for Br electrodeposition on Au(100): From DFT to experiment (2004) Surf. Sci., 563, p. 169 Koverga, A.A., Frank, S., Koper, M.T.M., Density Functional Theory Study of Electric Field Effects on CO and OH Adsorption and Co-adsorption on Gold Surfaces (2013) Electrochim. Acta, 101, pp. 244-253 Henkelman, G., Uberuaga, B.P., Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths (2000) J. Chem. Phys., 113, pp. 9901-9904 Henkelman, G., Jónsson, H., Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points (2000) J. Chem. Phys., 113, pp. 9978-9985 Toth, L.E., (1971) Transition Metal Carbides and Nitrides, , Academic: New York, USA Liu, A.Y., Cohen, M.L., Theoretical Study of the Stability of Cubic WC (1988) Solid State Commun., 67, pp. 907-910 Samsonov, G.V., Vinizkii, I.M., (1976) Handbook of Refractory Compounds, , (In Russian) Metallurgiya: Moskva, USSR Liu, A.Y., Wentzcovitch, R.M., Cohen, M.L., Structural and Electronic Properties of WC (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 38, pp. 9483-9489 Politi, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-Index Surfaces (2013) Phys. Chem. Chem. Phys., 15, pp. 12617-12625 Marlo, M., Milman, V., Density-Functional Study of Bulk and Surface Properties of Titanium Nitride Using Different Exchange-Correlation Functionals (2000) Phys. Rev. B: Condens. Matter Mater. Phys., 62, pp. 2899-2907 Li, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Yi, D., Theoretical Study on the Electronic Properties and Stabilities of Low-Index Surfaces of WC Polymorphs (2011) Comput. Mater. Sci., 50, pp. 939-948 Li, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Xu, L., Theoretical study on the stability, elasticity, hardness and electronic structures of W-C binary compounds (2010) J. Alloys Compd., 502, pp. 28-37 Kitchin, J.R., Nørskov, J.K., Barteau, M.A., Chen, J.G., Trends in the Chemical Properties of Early Transition Metal Carbide Surfaces: A Density Functional Study (2005) Catal. Today, 105, pp. 66-73 Bligaard, T., Nørskov, J.K., Dahl, S., Matthiesen, J., Christensen, C.H., Sehested, J., The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis (2004) J. Catal., 224, pp. 206-217 Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the Exchange Current for Hydrogen Evolution (2005) J. Electrochem. Soc., 152, pp. J23-J26 Senanayake, S.D., Ramírez, P.J., Waluyo, I., Kundu, S., Mudiyanselage, K., Liu, Z., Liu, Z., Evans, J., Hydrogenation of CO2 to Methanol on CeOx/Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal-Oxide Interface and Importance of Ce3+ sites (2016) J. Phys. Chem. C, 120, pp. 1778-1784 Rodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., CO2 Hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC Catalysts: Production of CO, Methanol, and Methane (2013) J. Catal., 307, pp. 162-169 Ribeiro, F., Dalla-Betta, R.A., Boudart, M., Baumgartner, J., Iglesia, E., Reactions of Neopentane, Methylcyclohexane, and 3,3-Dimethylpentane on Tungsten Carbides: The Effect of Surface Oxygen on Reaction Pathways (1991) J. Catal., 130, pp. 86-105 Hollak, S.A.W., Gosselink, R.W., Van Es, D.S., Bitter, J.H., Comparison of Tungsten and Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Oleic Acid (2013) ACS Catal., 3, pp. 2837-2844 Gómez-Marín, A.M., Ticianelli, E.A., Analysis of the electrocatalytic activity of α-molybdenum carbide thin porous electrodes toward the hydrogen evolution reaction (2016) Electrochim. Acta, 220, pp. 363-372 Gómez-Marín, A.M., Ticianelly, E.A., Effect of Transition Metals in the Hydrogen Evolution Electrocatalytic Activity of Molybdenum Carbide (2017) Appl. Catal., B, 209, pp. 600-610 Weidman, M.C., Esposito, D.V., Hsu, Y.-C., Chen, J.G., Comparison of Electrochemical Stability of Transition Metal Carbides (WC, W 2 C, Mo 2 C) over a Wide pH Range (2012) J. Power Sources, 202, pp. 11-17 Wan, C., Regmi, Y.N., Leonard, B.M., Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction (2014) Angew. Chem., Int. Ed., 53, pp. 6407-6410 Gajdo, M., Eichler, A., Hafner, J., CO adsorption on close-packed transition and noble metal surfaces: Trends fromab initiocalculations (2004) J. Phys.: Condens. Matter, 16, pp. 1141-1164 Yudanov, I.V., Genest, A., Schauermann, S., Freund, H.-J., Rösch, N., Size Dependence of the Adsorption Energy of CO on Metal Nanoparticles: A DFT Search for the Minimum Value (2012) Nano Lett., 12, pp. 2134-2139 Ren, J., Huo, C.-F., Wang, J., Li, Y.-W., Jiao, H., Surface Structure and Energetics of Oxygen and CO Adsorption on α-Mo 2 C(0001) (2005) Surf. Sci., 596, pp. 212-221 Liu, P., Rodriguez, J.A., Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide: A Theoretical Study (2003) Catal. Lett., 91, pp. 247-252 Tominaga, H., Nagai, M., Density Functional Theory of Water-Gas Shift Reaction on Molybdenum Carbide (2005) J. Phys. Chem. B, 109, pp. 20415-20423 Borodziński, A., Bond, G.C., Selective Hydrogenation of Ethyne in Ethene-Rich Streams on Palladium Catalysts, Part 2: Steady-State Kinetics and Effects of Palladium Particle Size, Carbon Monoxide, and Promoters (2008) Catal. Rev.: Sci. Eng., 50, pp. 379-469 Wu, S.-Y., Ho, J.-J., Adsorption, Dissociation, and Hydrogenation of CO 2 on WC(0001) and WC-Co Alloy Surfaces Investigated with Theoretical Calculations (2012) J. Phys. Chem. C, 116, pp. 13202-13209 Ren, J., Huo, C.-F., Wang, J., Li, Y.-W., Jiao, H., Surface Structure and Energetics of Oxygen and CO Adsorption on α-Mo 2 C(0001) (2005) Surf. Sci., 596, pp. 212-221 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
American Chemical Society |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
Journal of Physical Chemistry C |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159159497588736 |
spelling |
20192021-02-05T14:59:03Z2021-02-05T14:59:03Z19327447http://hdl.handle.net/11407/606310.1021/acs.jpcc.8b11840In this work, a systematic study on the adsorption of atomic and molecular hydrogen and carbon oxides on cubic (001) and hexagonal (0001) WC surfaces by periodical density functional theory is reported. Calculations have been performed by employing the Perdew-Burke-Ernzerhof exchange correlation functional with van der Waals corrections to account for the dispersive force term. In addition, dipole corrections were applied for W- and C-terminated hexagonal WC(0001) surfaces. Good agreement is found between calculated and reported data for representative bulk properties. Regarding surface properties, our results indicate that atomic hydrogen adsorbs quite strongly while H 2 does, in general, dissociatively on the studied surfaces, with very small energy barriers (<0.35 eV) for the cleavage of the H-H bonds. The C sites of the carbide play an essential role in the binding of H atoms and the cleavage of H-H bonds. Studies examining the interaction of tungsten carbide with CO and CO 2 also evidence the importance of C sites. The reactivity of C- and W-terminated (0001) hexagonal WC surfaces significantly differs. Atomic hydrogen, carbon monoxide, and CO 2 are more stable on a C- than on a W-terminated surface, and only this latter termination is able to cleave spontaneously a C-O bond of the CO 2 molecule. This difference in reactivity may open a number of possibilities for fine-tuning the selectivity of the resulting material or designing compounds catalytically active for specific reactions by carefully adjusting the proportion of C, W, and mixed terminations during the synthesis procedure. © 2019 American Chemical Society.engAmerican Chemical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85064333647&doi=10.1021%2facs.jpcc.8b11840&partnerID=40&md5=69aeae72a60aa821d282c98c9c4f30dc1231488718883Levy, R.B., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549Lee, J., Locatelli, S., Oyama, S.T., Boudart, M., Molybdenum Carbide Catalysts 3. Turnover Rates for the Hydrogenolysis of n-butane (1990) J. Catal., 125, pp. 157-170Lee, J.S., Yeom, M.H., Lee, D.-S., Catalysis by Molybdenum Carbide in Activation of C-C, C-O and C-H bonds (1990) J. Mol. Catal., 62, pp. L45-L51Lee, J., Yeom, M.H., Park, K.Y., Nam, I.-S., Chung, J.S., Kim, Y.G., Moon, S.H., Preparation and Benzene Hydrogenation Activity of Supported Molybdenum Carbide Catalysts (1991) J. Catal., 128, pp. 126-136Ledoux, M.J., Huu, C.P., Guille, J., Dunlop, H., Compared Activities of Platinum and High Specific Surface Area Mo 2 C and WC Catalysts for Reforming Reactions: I. Catalyst Activation and Stabilization: Reaction of n-hexane (1992) J. Catal., 134, pp. 383-398Lee, J.S., Lee, K.H., Lee, J.Y., Selective Chemisorption of Carbon Monoxide and Hydrogen over Supported Molybdenum Carbide Catalysts (1992) J. Phys. Chem., 96, pp. 362-366Johansson, L., Electronic and Structural Properties of Transition-Metal Carbide and Nitride Surfaces (1995) Surf. Sci. Rep., 21, pp. 177-250Chen, J.G., Carbide and Nitride Overlayers on Early Transition Metal Surfaces: Preparation, Characterization, and Reactivities (1996) Chem. Rev., 96, pp. 1477-1498Claridge, J.B., York, A.P.E., Brungs, A.J., Marquez-Alvarez, C., Sloan, J., Tsang, S.C., Green, M.L.H., New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten carbide (1998) J. Catal., 180, pp. 85-100Oshikawa, K., Nagai, M., Omi, S., Characterization of Molybdenum Carbides for Methane Reforming by TPR, XRD, and XPS (2001) J. Phys. Chem. B, 105, pp. 9124-9131Hwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212Liu, P., Rodriguez, J.A., Water-Gas-Shift Reaction on Molybdenum Carbide Surfaces: Essential Role of the Oxycarbide (2006) J. Phys. Chem. B, 110, pp. 19418-19425Viñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalyst size matters: Tuning the molecular mechanism of the water-gas shift reaction on titanium carbide based compounds (2008) J. Catal., 260, pp. 103-112Schweitzer, N.M., Schaidle, J.A., Ezekoye, O.K., Pan, X., Linic, S., Thompson, L.T., High Activity Carbide Supported Catalysts for Water Gas Shift (2011) J. Am. Chem. Soc., 133, pp. 2378-2381Porosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO 2 to CO (2014) Angew. Chem., Int. Ed., 53, pp. 6705-6709Williams, W.S., Cubic Carbides (1966) Science, 152, pp. 34-42Nelson, J.A., Wagner, M.J., High Surface Area Nanoparticulate Transition Metal Carbides Prepared by Alkalide Reduction (2002) Chem. Mater., 14, pp. 4460-4463Hunt, S.T., Nimmanwudipong, T., Román-Leshkov, Y., Engineering Non-Sintered, Metal-Terminated Tungsten Carbide Nanoparticles for Catalysis (2014) Angew. Chem., Int. Ed., 53, pp. 5131-5136Ferri, T., Gozzi, D., Latini, A., Hydrogen Evolution Reaction (HER) at Thin Film and Bulk TiC Electrodes (2007) Int. J. Hydrogen Energy, 32, pp. 4692-4701Jalan, V., Frost, D.G., (1989), U.S. Patent 4,795,684Michalsky, R., Zhang, Y.-J., Peterson, A.A., Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts (2014) ACS Catal., 4, pp. 1274-1278Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO 2 Activation and Hydrogenation on δ-MoC(001) and β-Mo 2 C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921Barthos, R., Széchenyi, A., Koós, Á., Solymosi, F., The Decomposition of Ethanol over Mo2C/Carbon Catalysts (2007) Appl. Catal., A, 327, pp. 95-105Porosoff, M.D., Kattel, S., Li, W., Liu, P., Chen, J.G., Identifying Trends and Descriptors for Selective CO 2 Conversion to CO over Transition Metal Carbides (2015) Chem. Commun., 51, pp. 6988-6991Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) J. Am. Chem. Soc., 138, pp. 8269-8278Nikolov, I., Vitanov, T., Nikolova, V., The Effect of the Method of Preparation on the Catalytic Activity of Tungsten Carbide for Hydrogen Evolution (1980) J. Power Sources, 5, pp. 197-206Nikolov, I., Petrov, K., Vitanov, T., Guschev, A., Tungsten Carbide Cathodes for Electrolysis of Sulphuric Acid Solutions (1983) Int. J. Hydrogen Energy, 8, pp. 437-440Nikiforov, A.V., Petrushina, I.M., Christensen, E., Alexeev, N.V., Samokhin, A.V., Bjerrum, N.J., WC as a Non-Platinum Hydrogen Evolution Electrocatalyst for High Temperature PEM Water Electrolysers (2012) Int. J. Hydrogen Energy, 37, pp. 18591-18597Tong, Y.-J., Wu, S.-Y., Chen, H.-T., Adsorption and Reaction of CO and H 2 O on WC(0001) Surface: A First-Principle Investigation (2018) Appl. Surf. Sci., 428, pp. 579-585Zheng, W., Chen, L., Density Functional Study of H 2 O Adsorption and Dissociation on WC(0001) (2014) Comput. Theor. Chem., 1039, pp. 75-80Xi, Y., Huang, L., Forrey, R.C., Cheng, H., Interactions between Hydrogen and Tungsten Carbide: A First Principles Study (2014) RSC Adv., 4, pp. 39912-39919Marinelli, F., Jelea, A., Allouche, A., Interactions of H with Tungsten Carbide Surfaces: An Ab Initio Study (2007) Surf. Sci., 601, pp. 578-587Gaston, N., Hendy, S., Hydrogen adsorption on model tungsten carbide surfaces (2009) Catal. Today, 146, pp. 223-229Wang, T., Li, Y.-W., Wang, J., Beller, M., Jiao, H., Dissociative Hydrogen Adsorption on the Hexagonal Mo2C Phase at High Coverage (2014) J. Phys. Chem. C, 118, pp. 8079-8089Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32Kresse, G., Hafner, J., Ab initio Molecular Dynamics for Liquid Metals (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 47, pp. 558-561Kresse, G., Furthmüller, J., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186Monkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192Methfessel, M., Paxton, A.T., High-Precision Sampling for Brillouin-Zone Integration in Metals (1989) Phys. Rev. B: Condens. Matter Mater. Phys., 40, pp. 3616-3621Blöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868Shi, X.-R., Wang, S.-G., Wang, H., Deng, C.-M., Qin, Z., Wang, J., Structure and Stability of β-Mo 2 C Bulk and Surfaces: A Density Functional Theory Study (2009) Surf. Sci., 603, pp. 852-859Wannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Catalytic Activity and Product Selectivity Trends for Carbon Dioxide Electroreduction on Transition Metal-Coated Tungsten Carbides (2017) J. Phys. Chem. C, 121, pp. 20306-20314Grimme, S., Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections (2004) J. Comput. Chem., 25, pp. 1463-1473Bader, R.F.W., (1990) Atoms in Molecules - A Quantum Theory, , Oxford University Press: New York, USAHenkelman, G., Arnaldsson, A., Jónsson, H., A Fast and Robust Algorithm for Bader Decomposition of Charge Density (2006) Comput. Mater. Sci., 36, pp. 254-360Momma, K., Izumi, F., VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276Mitchell, S.J., Koper, M.T.M., An off-lattice model for Br electrodeposition on Au(100): From DFT to experiment (2004) Surf. Sci., 563, p. 169Koverga, A.A., Frank, S., Koper, M.T.M., Density Functional Theory Study of Electric Field Effects on CO and OH Adsorption and Co-adsorption on Gold Surfaces (2013) Electrochim. Acta, 101, pp. 244-253Henkelman, G., Uberuaga, B.P., Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths (2000) J. Chem. Phys., 113, pp. 9901-9904Henkelman, G., Jónsson, H., Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points (2000) J. Chem. Phys., 113, pp. 9978-9985Toth, L.E., (1971) Transition Metal Carbides and Nitrides, , Academic: New York, USALiu, A.Y., Cohen, M.L., Theoretical Study of the Stability of Cubic WC (1988) Solid State Commun., 67, pp. 907-910Samsonov, G.V., Vinizkii, I.M., (1976) Handbook of Refractory Compounds, , (In Russian)Metallurgiya: Moskva, USSRLiu, A.Y., Wentzcovitch, R.M., Cohen, M.L., Structural and Electronic Properties of WC (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 38, pp. 9483-9489Politi, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-Index Surfaces (2013) Phys. Chem. Chem. Phys., 15, pp. 12617-12625Marlo, M., Milman, V., Density-Functional Study of Bulk and Surface Properties of Titanium Nitride Using Different Exchange-Correlation Functionals (2000) Phys. Rev. B: Condens. Matter Mater. Phys., 62, pp. 2899-2907Li, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Yi, D., Theoretical Study on the Electronic Properties and Stabilities of Low-Index Surfaces of WC Polymorphs (2011) Comput. Mater. Sci., 50, pp. 939-948Li, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Xu, L., Theoretical study on the stability, elasticity, hardness and electronic structures of W-C binary compounds (2010) J. Alloys Compd., 502, pp. 28-37Kitchin, J.R., Nørskov, J.K., Barteau, M.A., Chen, J.G., Trends in the Chemical Properties of Early Transition Metal Carbide Surfaces: A Density Functional Study (2005) Catal. Today, 105, pp. 66-73Bligaard, T., Nørskov, J.K., Dahl, S., Matthiesen, J., Christensen, C.H., Sehested, J., The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis (2004) J. Catal., 224, pp. 206-217Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the Exchange Current for Hydrogen Evolution (2005) J. Electrochem. Soc., 152, pp. J23-J26Senanayake, S.D., Ramírez, P.J., Waluyo, I., Kundu, S., Mudiyanselage, K., Liu, Z., Liu, Z., Evans, J., Hydrogenation of CO2 to Methanol on CeOx/Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal-Oxide Interface and Importance of Ce3+ sites (2016) J. Phys. Chem. C, 120, pp. 1778-1784Rodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., CO2 Hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC Catalysts: Production of CO, Methanol, and Methane (2013) J. Catal., 307, pp. 162-169Ribeiro, F., Dalla-Betta, R.A., Boudart, M., Baumgartner, J., Iglesia, E., Reactions of Neopentane, Methylcyclohexane, and 3,3-Dimethylpentane on Tungsten Carbides: The Effect of Surface Oxygen on Reaction Pathways (1991) J. Catal., 130, pp. 86-105Hollak, S.A.W., Gosselink, R.W., Van Es, D.S., Bitter, J.H., Comparison of Tungsten and Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Oleic Acid (2013) ACS Catal., 3, pp. 2837-2844Gómez-Marín, A.M., Ticianelli, E.A., Analysis of the electrocatalytic activity of α-molybdenum carbide thin porous electrodes toward the hydrogen evolution reaction (2016) Electrochim. Acta, 220, pp. 363-372Gómez-Marín, A.M., Ticianelly, E.A., Effect of Transition Metals in the Hydrogen Evolution Electrocatalytic Activity of Molybdenum Carbide (2017) Appl. Catal., B, 209, pp. 600-610Weidman, M.C., Esposito, D.V., Hsu, Y.-C., Chen, J.G., Comparison of Electrochemical Stability of Transition Metal Carbides (WC, W 2 C, Mo 2 C) over a Wide pH Range (2012) J. Power Sources, 202, pp. 11-17Wan, C., Regmi, Y.N., Leonard, B.M., Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction (2014) Angew. Chem., Int. Ed., 53, pp. 6407-6410Gajdo, M., Eichler, A., Hafner, J., CO adsorption on close-packed transition and noble metal surfaces: Trends fromab initiocalculations (2004) J. Phys.: Condens. Matter, 16, pp. 1141-1164Yudanov, I.V., Genest, A., Schauermann, S., Freund, H.-J., Rösch, N., Size Dependence of the Adsorption Energy of CO on Metal Nanoparticles: A DFT Search for the Minimum Value (2012) Nano Lett., 12, pp. 2134-2139Ren, J., Huo, C.-F., Wang, J., Li, Y.-W., Jiao, H., Surface Structure and Energetics of Oxygen and CO Adsorption on α-Mo 2 C(0001) (2005) Surf. Sci., 596, pp. 212-221Liu, P., Rodriguez, J.A., Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide: A Theoretical Study (2003) Catal. Lett., 91, pp. 247-252Tominaga, H., Nagai, M., Density Functional Theory of Water-Gas Shift Reaction on Molybdenum Carbide (2005) J. Phys. Chem. B, 109, pp. 20415-20423Borodziński, A., Bond, G.C., Selective Hydrogenation of Ethyne in Ethene-Rich Streams on Palladium Catalysts, Part 2: Steady-State Kinetics and Effects of Palladium Particle Size, Carbon Monoxide, and Promoters (2008) Catal. Rev.: Sci. Eng., 50, pp. 379-469Wu, S.-Y., Ho, J.-J., Adsorption, Dissociation, and Hydrogenation of CO 2 on WC(0001) and WC-Co Alloy Surfaces Investigated with Theoretical Calculations (2012) J. Phys. Chem. C, 116, pp. 13202-13209Ren, J., Huo, C.-F., Wang, J., Li, Y.-W., Jiao, H., Surface Structure and Energetics of Oxygen and CO Adsorption on α-Mo 2 C(0001) (2005) Surf. Sci., 596, pp. 212-221Journal of Physical Chemistry CCO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal SitesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Koverga, A.A., Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Universidad Nacional de Colombia Sede Medellín, Medellín, 050041, Colombia, Facultad de Ciencias Básicas, Grupo de Investigación Matandmpac, Universidad de Medellín, Medellín, 050026, ColombiaFlórez, E., Facultad de Ciencias Básicas, Grupo de Investigación Matandmpac, Universidad de Medellín, Medellín, 050026, ColombiaDorkis, L., Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Universidad Nacional de Colombia Sede Medellín, Medellín, 050041, ColombiaRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973-5000, United Stateshttp://purl.org/coar/access_right/c_16ecKoverga A.A.Flórez E.Dorkis L.Rodriguez J.A.11407/6063oai:repository.udem.edu.co:11407/60632021-02-05 09:59:03.846Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |