A methodological proposal for the technical conception of microgrids

This paper introduces a methodology for the technical conception of microgrids. It takes into account aspects such as the topological survey of the medium power electrical system, the preselection of renewable sources technologies, the prioritisation of the electrical demand, the localization, dimen...

Full description

Autores:
Mina Casaran, Juan David
Echeverry, Diego Fernando
Lozano Moncada, Carlos Arturo
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/5524
Acceso en línea:
http://hdl.handle.net/11407/5524
https://doi.org/10.22395/rium.v18n34a12
Palabra clave:
Power quality; Power delivered; Distributed generation; IREG index; SI index; Microgrid; Voltage profile
Qualidadede energia; Despacho de potência; Geração distribuída; Índice IREG; Índice SI; Microrrede; Perfil de tensão.
Calidad de energía; Despacho de potencia; Generación distribuida; Índice IREG; Índice SI; Micro-red; Perfil de tensión
Rights
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id REPOUDEM2_337b10e45a69af3e63bad5acbb814c6e
oai_identifier_str oai:repository.udem.edu.co:11407/5524
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.eng.fl_str_mv A methodological proposal for the technical conception of microgrids
dc.title.por.fl_str_mv Uma proposta metodológica para a concepção técnica de microrredes
dc.title.spa.fl_str_mv Una propuesta metodológica para la concepción técnica de micro-redes
title A methodological proposal for the technical conception of microgrids
spellingShingle A methodological proposal for the technical conception of microgrids
Power quality; Power delivered; Distributed generation; IREG index; SI index; Microgrid; Voltage profile
Qualidadede energia; Despacho de potência; Geração distribuída; Índice IREG; Índice SI; Microrrede; Perfil de tensão.
Calidad de energía; Despacho de potencia; Generación distribuida; Índice IREG; Índice SI; Micro-red; Perfil de tensión
title_short A methodological proposal for the technical conception of microgrids
title_full A methodological proposal for the technical conception of microgrids
title_fullStr A methodological proposal for the technical conception of microgrids
title_full_unstemmed A methodological proposal for the technical conception of microgrids
title_sort A methodological proposal for the technical conception of microgrids
dc.creator.fl_str_mv Mina Casaran, Juan David
Echeverry, Diego Fernando
Lozano Moncada, Carlos Arturo
dc.contributor.author.none.fl_str_mv Mina Casaran, Juan David
Echeverry, Diego Fernando
Lozano Moncada, Carlos Arturo
dc.subject.eng.fl_str_mv Power quality; Power delivered; Distributed generation; IREG index; SI index; Microgrid; Voltage profile
topic Power quality; Power delivered; Distributed generation; IREG index; SI index; Microgrid; Voltage profile
Qualidadede energia; Despacho de potência; Geração distribuída; Índice IREG; Índice SI; Microrrede; Perfil de tensão.
Calidad de energía; Despacho de potencia; Generación distribuida; Índice IREG; Índice SI; Micro-red; Perfil de tensión
dc.subject.por.fl_str_mv Qualidadede energia; Despacho de potência; Geração distribuída; Índice IREG; Índice SI; Microrrede; Perfil de tensão.
dc.subject.spa.fl_str_mv Calidad de energía; Despacho de potencia; Generación distribuida; Índice IREG; Índice SI; Micro-red; Perfil de tensión
description This paper introduces a methodology for the technical conception of microgrids. It takes into account aspects such as the topological survey of the medium power electrical system, the preselection of renewable sources technologies, the prioritisation of the electrical demand, the localization, dimensioning and operative strategies of the distributed generators, the components model and the microgrid evaluation. This methodology proposes the use of a multi-criteria analysis technique for the prioritisation of the demand and the stability index of (SI) voltage for the location of distributed generators in the microgrid. In this work the computational tool for the power system analysis Neplan® was used for the components modeling and evaluation of the microgrid performance through the IREG voltage regulation index and the optimal power management of the microgrid’s generation units.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-07T15:34:27Z
dc.date.available.none.fl_str_mv 2019-11-07T15:34:27Z
dc.date.created.none.fl_str_mv 2019-06-28
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.local.spa.fl_str_mv Artículo científico
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1692-3324
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5524
dc.identifier.doi.none.fl_str_mv https://doi.org/10.22395/rium.v18n34a12
dc.identifier.eissn.none.fl_str_mv 2248-4094
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.udem.edu.co/
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 1692-3324
2248-4094
reponame:Repositorio Institucional Universidad de Medellín
repourl:https://repository.udem.edu.co/
instname:Universidad de Medellín
url http://hdl.handle.net/11407/5524
https://doi.org/10.22395/rium.v18n34a12
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.uri.none.fl_str_mv https://revistas.udem.edu.co/index.php/ingenierias/article/view/1865
dc.relation.citationvolume.none.fl_str_mv 18
dc.relation.citationissue.none.fl_str_mv 34
dc.relation.citationstartpage.none.fl_str_mv 199
dc.relation.citationendpage.none.fl_str_mv 218
dc.relation.references.spa.fl_str_mv [1] S. Tselepis and J. Nikoletatos, “Renewable Energy Integration in Power Grids,” IEA-Etsap Irena Technology Brief, 2015. [Online]. Available: www.irena.org.
[2] X. Xia and J. Xia, “Evaluation of Potential for Developing Renewable Sources of Energy to Facilitate Development in Developing Countries,” in Asia-Pacific Power and Energy Engineering Conference, 2010, pp. 1–3.
[3] R. Palma-Behnke et al., “A Microgrid Energy Management System Based on the Rolling Horizon Strategy,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 996–1006, 2013.
[4] M. A. Izumida, “Design and Implementation of a Feasible Microgrid Model in Brazil,” 2015, pp. 1–9.
[5] J. Hernández, A. M. Blanco, and L. E. Luna, “Design and installation of a smart grid with distributed generation. A pilot case in the Colombian networks,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 565–569, 2012.
[6] G. Messinis et al., “Multi-microgrid laboratory infrastructure for smart grid applications,” MedPower 2014, no. February 2016, pp. 1–6, 2014.
[7] I. Szeidert, I. Filip, O. Prostean, and C. Vasar, “Laboratory setup for microgrid study,” INES 2016 - 20th Jubil. IEEE Int. Conf. Intell. Eng. Syst. Proc., pp. 289–292, 2016.
[8] J. L. Espinoza, L. G. Gonzalez, and R. Sempertegui, “Micro grid Laboratory as a Tool for Research on Non-Conventional Energy Sources in Ecuador,” 2017 IEEE Int. Autumn Meet. Power, Electron. Comput. Ropec 2017, vol. 2018-Janua, no. Ropec, pp. 1–7, 2018.
[9] C. Patrascu, N. Muntean, O. Cornea, and A. Hedes, “Microgrid Laboratory for Educational and Research Purposes,” 2016 IEEE 16th Int. Conf. Environ. Electr. Eng., pp. 1–6, 2016.
[10] T. Foley et al., Renewables 2015 global status report. 2015.
[11] Z. Xue-song, “Research on Smartgrid Technology,” in International Conference on Computer Application and System Modeling (Iccasm), 2010, no. Iccasm, pp. 599–603.
[12] J. D. Mina, E. F. Caicedo, and C. A. Lozano, “A proposal of integration of decentralized generation architectures in microgrid environments,” Entre Cienc. e Ing., vol. 1, no. 22, pp. 9–17, 2017.
[13] N. Beerea, D. McPhailb, and R. Sharmaa, “A General Methodology for Utility Microgrid Planning,” in IEEE PES Asia-Pacific Power and Energy Engineering Conference, 2015, vol. 3, pp. 1–5.
[14] C. Tjah, R. Yan, T. K. Saha, and S. E. Goodwin, “Design Microgrid for a Distribution Network : A Case Study of the University of Queensland,” in Power & Energy Society General Meeting, 2013, pp. 1–5.
[15] Electric Power Research Institute EPRI, “The Integrated Grid a Benefit-Cost Framework,” Palo Alto, USA, 2015.
[16] P. A. Manrique Castillo, “Metodología Para el Diseño de Sistemas Híbridos Para Generación de Energía Eléctrica y Análisis de su Viabilidad Mediante el Empleo de un Sistema de Información Geográfica,” Universidad del Valle, 2012.
[17] Y. Muñoz and A. Ospino, “Selecting the Optimal Energy Mix and Sizing of a Isolated Microgrid,” Energía y Medio Ambient., vol. 4, no. 7, pp. 59–67, 2013.
[18] Instituto Colombiano de Normas Técnicas y Certificación Icontec, Norma Técnica Colombiana NTC 1340 - Electrotecnia. Tensiones y Frecuencia Nominales en Sistemas de Energía Eléctrica en Redes de Servicio Público. Bogotá, Colombia, 2013.
[19] Unidad de Planeación Minero Energética UPME, Atlas de Radiación Solar de Colombia.Bogotá, Colombia, 2006.
[20] Unidad de Planeación Minero Energética UPME, Atlas de Viento y Energia Eólica en Colombia. Bogotá, Colombia, 2006.
[21] Unidad de Planeación Minero Energética UPME, Atlas del Potencial Energético de la Biomasa Residual en Colombia. Bogotá, Colombia, 2009.
[22] F. E. Sierra, A. F. Sierra, and C. A. Guerrero, “Pequeñas y microcentrales hidroeléctricas : alternativa real de generación eléctrica,” pp. 8–11, 2011.
[23] T. L. Saaty, “How to Make a Decision: The Analytic Hierarchy Process,” Eur. J. Oper. Res., vol. 48, pp. 9–26, 1990.
[24] K. V Kumar and M. P. Selvan, “Planning and Operation of Distributed Generations in Distribution Systems for Improved Voltage Profile,” 2009 IEEEPES Power Syst. Conf. Expo., vol. 620015, pp. 1–7, 2009.
[25] A. R. Utomo, “Analysis of Lead Acid Battery Operation Based on Peukert Formula,” no. November, pp. 416–419, 2014.
[26] IEEE Standards Coordinating Committee 21, IEEE Application Guide for IEEE Std 1547, Standard for Interconnecting Distributed Resources With Electric Power Systems. New York, USA, 2008.
[27] IEEE Standards Coordinating Committee 21, IEEE Standard 1547 for Interconnecting Distributed Resources with Electric Power Systems. New York, USA, 2003.
[28] M. Z. C. Wanik, A. A. Ibrahim, A. K. M. Hussin, M. R. Rusli, and J. H. Tang, “Simplified Dynamic Model of Photovoltaic Generation System for Grid Integration Studies,” in Intelligent and Advanced Systems (Icias), 2014, pp. 1–6.
[29] P. Sorensen, B. Andresen, J. Fortmann, and P. Pourbeik, “Modular Structure of Wind Turbine Models in IEC 61400-27-1,” 2013 IEEE Power Energy Soc. Gen. Meet., pp. 1–5, 2013.
[30] O. Tremblay, L. Dessaint, and A. Dekkiche, “A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles,” in Vehicle Power and Propulsion Conference IEEE, 2007, no. 5, pp. 284–289.
[31] G. Caicedo, C. A. Lozano, A. M. Bahamón, and L. A. Ochoa, “Modelos Para Estimar la Demanda en Sistemas de Distribución,” Energía y Computacion, vol. XI. pp. 35–44, 2002.
[32] D. G. Herrera, G. L. Russi, and E. R. Trujillo, “Evaluación del Impacto de la Generación Distribuida Mediante Índices Normalizados Con Base en la Normatividad Colombiana y Estándares IEEE,” Sci. Electron. Libr. Online, vol. 20, no. 2, pp. 299–315, 2015.
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ingenierías Universidad de Medellín
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.creativecommons.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv p. 199-218
dc.format.medium.spa.fl_str_mv Electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Lat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.publisher.spa.fl_str_mv Universidad de Medellín
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.publisher.place.spa.fl_str_mv Medellín
dc.source.spa.fl_str_mv Revista Ingenierías Universidad de Medellín; Vol. 18 Núm. 34 (2019): Enero-Junio; 199-218
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159105860829184
spelling Mina Casaran, Juan DavidEcheverry, Diego FernandoLozano Moncada, Carlos ArturoMina Casaran, Juan David; Universidad del ValleEcheverry, Diego Fernando; Universidad del ValleLozano Moncada, Carlos Arturo; Universidad del Valle2019-11-07T15:34:27Z2019-11-07T15:34:27Z2019-06-281692-3324http://hdl.handle.net/11407/5524https://doi.org/10.22395/rium.v18n34a122248-4094reponame:Repositorio Institucional Universidad de Medellínrepourl:https://repository.udem.edu.co/instname:Universidad de MedellínThis paper introduces a methodology for the technical conception of microgrids. It takes into account aspects such as the topological survey of the medium power electrical system, the preselection of renewable sources technologies, the prioritisation of the electrical demand, the localization, dimensioning and operative strategies of the distributed generators, the components model and the microgrid evaluation. This methodology proposes the use of a multi-criteria analysis technique for the prioritisation of the demand and the stability index of (SI) voltage for the location of distributed generators in the microgrid. In this work the computational tool for the power system analysis Neplan® was used for the components modeling and evaluation of the microgrid performance through the IREG voltage regulation index and the optimal power management of the microgrid’s generation units.Neste trabalho, é apresentada uma metodologia para a concepção técnica de microrredes. São considerados aspectos como o levantamento da topologia do sistema elétrico de média tensão, a pré-seleção de tecnologias de fontes renováveis, a priorização da demanda elétrica, a localização, o dimensionamento e as estratégias de operação dos geradores distribuídos, o modelo de componentes e a avaliação da microrrede. A metodologia propõe o uso de uma técnica de análise multicritério para priorizar a demanda e o índice de estabilidade de voltagem (SI) para localizar geradores distribuídos na microrrede. Neste trabalho, foi utilizada a ferramenta computacional de análise de sistemas de potência Neplan® para o modelado de componentes e avaliação do desempenho da microrrede por meio do índice de regulação de voltagem IREG e da gestão otimizada de potência das unidades de geração da microrrede.En este trabajo se presenta una metodología para la concepción técnica de micro-redes. Se consideran aspectos como el levantamiento de la topología del sistema eléctrico de media tensión, la preselección de tecnologías de fuentes renovables, la priorización de la demanda eléctrica, la localización, el dimensionamiento y las estrategias de operación de los generadores distribuidos, el modelo de componentes y la evaluación de la micro-red. La metodología propone el uso de una técnica de análisis multicriterio para la priorización de la demanda y el índice de estabilidad de voltaje (SI) para la ubicación de generadores distribuidos en la micro-red. En este trabajo se utilizó la herramienta computacional de análisis de sistemas de potencia Neplan® para el modelado de componentes y evaluación del desempeño de la micro-red por medio del índice de regulación de voltaje IREG y la gestión óptima de potencia de las unidades de generación de la micro-red.p. 199-218Electrónicoapplication/pdfspaUniversidad de MedellínFacultad de IngenieríasMedellínhttps://revistas.udem.edu.co/index.php/ingenierias/article/view/18651834199218[1] S. Tselepis and J. Nikoletatos, “Renewable Energy Integration in Power Grids,” IEA-Etsap Irena Technology Brief, 2015. [Online]. Available: www.irena.org.[2] X. Xia and J. Xia, “Evaluation of Potential for Developing Renewable Sources of Energy to Facilitate Development in Developing Countries,” in Asia-Pacific Power and Energy Engineering Conference, 2010, pp. 1–3.[3] R. Palma-Behnke et al., “A Microgrid Energy Management System Based on the Rolling Horizon Strategy,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 996–1006, 2013.[4] M. A. Izumida, “Design and Implementation of a Feasible Microgrid Model in Brazil,” 2015, pp. 1–9.[5] J. Hernández, A. M. Blanco, and L. E. Luna, “Design and installation of a smart grid with distributed generation. A pilot case in the Colombian networks,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 565–569, 2012.[6] G. Messinis et al., “Multi-microgrid laboratory infrastructure for smart grid applications,” MedPower 2014, no. February 2016, pp. 1–6, 2014.[7] I. Szeidert, I. Filip, O. Prostean, and C. Vasar, “Laboratory setup for microgrid study,” INES 2016 - 20th Jubil. IEEE Int. Conf. Intell. Eng. Syst. Proc., pp. 289–292, 2016.[8] J. L. Espinoza, L. G. Gonzalez, and R. Sempertegui, “Micro grid Laboratory as a Tool for Research on Non-Conventional Energy Sources in Ecuador,” 2017 IEEE Int. Autumn Meet. Power, Electron. Comput. Ropec 2017, vol. 2018-Janua, no. Ropec, pp. 1–7, 2018.[9] C. Patrascu, N. Muntean, O. Cornea, and A. Hedes, “Microgrid Laboratory for Educational and Research Purposes,” 2016 IEEE 16th Int. Conf. Environ. Electr. Eng., pp. 1–6, 2016.[10] T. Foley et al., Renewables 2015 global status report. 2015.[11] Z. Xue-song, “Research on Smartgrid Technology,” in International Conference on Computer Application and System Modeling (Iccasm), 2010, no. Iccasm, pp. 599–603.[12] J. D. Mina, E. F. Caicedo, and C. A. Lozano, “A proposal of integration of decentralized generation architectures in microgrid environments,” Entre Cienc. e Ing., vol. 1, no. 22, pp. 9–17, 2017.[13] N. Beerea, D. McPhailb, and R. Sharmaa, “A General Methodology for Utility Microgrid Planning,” in IEEE PES Asia-Pacific Power and Energy Engineering Conference, 2015, vol. 3, pp. 1–5.[14] C. Tjah, R. Yan, T. K. Saha, and S. E. Goodwin, “Design Microgrid for a Distribution Network : A Case Study of the University of Queensland,” in Power & Energy Society General Meeting, 2013, pp. 1–5.[15] Electric Power Research Institute EPRI, “The Integrated Grid a Benefit-Cost Framework,” Palo Alto, USA, 2015.[16] P. A. Manrique Castillo, “Metodología Para el Diseño de Sistemas Híbridos Para Generación de Energía Eléctrica y Análisis de su Viabilidad Mediante el Empleo de un Sistema de Información Geográfica,” Universidad del Valle, 2012.[17] Y. Muñoz and A. Ospino, “Selecting the Optimal Energy Mix and Sizing of a Isolated Microgrid,” Energía y Medio Ambient., vol. 4, no. 7, pp. 59–67, 2013.[18] Instituto Colombiano de Normas Técnicas y Certificación Icontec, Norma Técnica Colombiana NTC 1340 - Electrotecnia. Tensiones y Frecuencia Nominales en Sistemas de Energía Eléctrica en Redes de Servicio Público. Bogotá, Colombia, 2013.[19] Unidad de Planeación Minero Energética UPME, Atlas de Radiación Solar de Colombia.Bogotá, Colombia, 2006.[20] Unidad de Planeación Minero Energética UPME, Atlas de Viento y Energia Eólica en Colombia. Bogotá, Colombia, 2006.[21] Unidad de Planeación Minero Energética UPME, Atlas del Potencial Energético de la Biomasa Residual en Colombia. Bogotá, Colombia, 2009.[22] F. E. Sierra, A. F. Sierra, and C. A. Guerrero, “Pequeñas y microcentrales hidroeléctricas : alternativa real de generación eléctrica,” pp. 8–11, 2011.[23] T. L. Saaty, “How to Make a Decision: The Analytic Hierarchy Process,” Eur. J. Oper. Res., vol. 48, pp. 9–26, 1990.[24] K. V Kumar and M. P. Selvan, “Planning and Operation of Distributed Generations in Distribution Systems for Improved Voltage Profile,” 2009 IEEEPES Power Syst. Conf. Expo., vol. 620015, pp. 1–7, 2009.[25] A. R. Utomo, “Analysis of Lead Acid Battery Operation Based on Peukert Formula,” no. November, pp. 416–419, 2014.[26] IEEE Standards Coordinating Committee 21, IEEE Application Guide for IEEE Std 1547, Standard for Interconnecting Distributed Resources With Electric Power Systems. New York, USA, 2008.[27] IEEE Standards Coordinating Committee 21, IEEE Standard 1547 for Interconnecting Distributed Resources with Electric Power Systems. New York, USA, 2003.[28] M. Z. C. Wanik, A. A. Ibrahim, A. K. M. Hussin, M. R. Rusli, and J. H. Tang, “Simplified Dynamic Model of Photovoltaic Generation System for Grid Integration Studies,” in Intelligent and Advanced Systems (Icias), 2014, pp. 1–6.[29] P. Sorensen, B. Andresen, J. Fortmann, and P. Pourbeik, “Modular Structure of Wind Turbine Models in IEC 61400-27-1,” 2013 IEEE Power Energy Soc. Gen. Meet., pp. 1–5, 2013.[30] O. Tremblay, L. Dessaint, and A. Dekkiche, “A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles,” in Vehicle Power and Propulsion Conference IEEE, 2007, no. 5, pp. 284–289.[31] G. Caicedo, C. A. Lozano, A. M. Bahamón, and L. A. Ochoa, “Modelos Para Estimar la Demanda en Sistemas de Distribución,” Energía y Computacion, vol. XI. pp. 35–44, 2002.[32] D. G. Herrera, G. L. Russi, and E. R. Trujillo, “Evaluación del Impacto de la Generación Distribuida Mediante Índices Normalizados Con Base en la Normatividad Colombiana y Estándares IEEE,” Sci. Electron. Libr. Online, vol. 20, no. 2, pp. 299–315, 2015.Revista Ingenierías Universidad de Medellínhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Ingenierías Universidad de Medellín; Vol. 18 Núm. 34 (2019): Enero-Junio; 199-218Power quality; Power delivered; Distributed generation; IREG index; SI index; Microgrid; Voltage profileQualidadede energia; Despacho de potência; Geração distribuída; Índice IREG; Índice SI; Microrrede; Perfil de tensão.Calidad de energía; Despacho de potencia; Generación distribuida; Índice IREG; Índice SI; Micro-red; Perfil de tensiónA methodological proposal for the technical conception of microgridsUma proposta metodológica para a concepção técnica de microrredesUna propuesta metodológica para la concepción técnica de micro-redesArticlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad de MedellínLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees11407/5524oai:repository.udem.edu.co:11407/55242021-05-14 14:29:50.16Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co