This article defines the so called Generalized Matrix Variate Jensen-Logistic distribution. The relevant applications of this class of distributions in Configuration Shape Theory consist of a more efficient computation, supported by the corresponding inference. This demands the solution of two impor...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/1552
Acceso en línea:
http://hdl.handle.net/11407/1552
Palabra clave:
Generalized Kummer relations
Jensen-Logistic distribution
Pascal triangle
Statistical shape theory
Zonal polynomials
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_3376a5f951da804a7e483a161f6af132
oai_identifier_str oai:repository.udem.edu.co:11407/1552
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
spelling 2015-12-17T19:27:46Z2015-12-17T19:27:46Z20153610926http://hdl.handle.net/11407/155210.1080/03610926.2013.791374This article defines the so called Generalized Matrix Variate Jensen-Logistic distribution. The relevant applications of this class of distributions in Configuration Shape Theory consist of a more efficient computation, supported by the corresponding inference. This demands the solution of two important problems: (1) the development of analytical and efficient formulae for their k-th derivatives and (2) the use of the derivatives to transform the configuration density into a polynomial density under some special matrix Kummer relation, indexed in this case by the Jensen-Logistic kernel. In this article, we solve these problems by deriving a simple formula for the k-th derivative of the density function, avoiding the usual partition theory framework and using a generalization of Pascal triangles. Then we apply the results by obtaining the associated Jensen-Logistic Kummer relations and the configuration polynomial density in the setting of Statistical Shape Theory. © 2015 Taylor and Francis Group, LLC.engTaylor and Francis Inc.http://www.scopus.com/inward/record.url?eid=2-s2.0-84938842344&partnerID=40&md5=9f33e8e284efa82bc100822e46ade478Communications in Statistics - Theory and Methods, 2015, volume 44, issue 13, pp 2738-2752ScopusArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecDepartamento de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaCentro de Investigación en Matemáticas, Monterrey, MexicoDepartment of Mathematics and Statistics, McMaster University, Hamilton, CanadaCaro-Lopera F.J.Gonzalez-Farias G.Balakrishnan N.Generalized Kummer relationsJensen-Logistic distributionPascal triangleStatistical shape theoryZonal polynomialsThe Generalized Pascal Triangle and the Matrix Variate Jensen-Logistic Distribution11407/1552oai:repository.udem.edu.co:11407/15522020-05-27 18:58:24.647Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co
dc.title.english.eng.fl_str_mv The Generalized Pascal Triangle and the Matrix Variate Jensen-Logistic Distribution
dc.contributor.affiliation.spa.fl_str_mv Departamento de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
Centro de Investigación en Matemáticas, Monterrey, Mexico
Department of Mathematics and Statistics, McMaster University, Hamilton, Canada
dc.subject.keyword.eng.fl_str_mv Generalized Kummer relations
Jensen-Logistic distribution
Pascal triangle
Statistical shape theory
Zonal polynomials
topic Generalized Kummer relations
Jensen-Logistic distribution
Pascal triangle
Statistical shape theory
Zonal polynomials
spellingShingle Generalized Kummer relations
Jensen-Logistic distribution
Pascal triangle
Statistical shape theory
Zonal polynomials
description This article defines the so called Generalized Matrix Variate Jensen-Logistic distribution. The relevant applications of this class of distributions in Configuration Shape Theory consist of a more efficient computation, supported by the corresponding inference. This demands the solution of two important problems: (1) the development of analytical and efficient formulae for their k-th derivatives and (2) the use of the derivatives to transform the configuration density into a polynomial density under some special matrix Kummer relation, indexed in this case by the Jensen-Logistic kernel. In this article, we solve these problems by deriving a simple formula for the k-th derivative of the density function, avoiding the usual partition theory framework and using a generalization of Pascal triangles. Then we apply the results by obtaining the associated Jensen-Logistic Kummer relations and the configuration polynomial density in the setting of Statistical Shape Theory. © 2015 Taylor and Francis Group, LLC.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2015-12-17T19:27:46Z
dc.date.available.none.fl_str_mv 2015-12-17T19:27:46Z
dc.date.created.none.fl_str_mv 2015
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 3610926
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/1552
dc.identifier.doi.none.fl_str_mv 10.1080/03610926.2013.791374
identifier_str_mv 3610926
10.1080/03610926.2013.791374
url http://hdl.handle.net/11407/1552
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv http://www.scopus.com/inward/record.url?eid=2-s2.0-84938842344&partnerID=40&md5=9f33e8e284efa82bc100822e46ade478
dc.relation.ispartofen.eng.fl_str_mv Communications in Statistics - Theory and Methods, 2015, volume 44, issue 13, pp 2738-2752
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Taylor and Francis Inc.
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159235361013760