This article defines the so called Generalized Matrix Variate Jensen-Logistic distribution. The relevant applications of this class of distributions in Configuration Shape Theory consist of a more efficient computation, supported by the corresponding inference. This demands the solution of two impor...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/1552
- Acceso en línea:
- http://hdl.handle.net/11407/1552
- Palabra clave:
- Generalized Kummer relations
Jensen-Logistic distribution
Pascal triangle
Statistical shape theory
Zonal polynomials
- Rights
- restrictedAccess
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_3376a5f951da804a7e483a161f6af132 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/1552 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
spelling |
2015-12-17T19:27:46Z2015-12-17T19:27:46Z20153610926http://hdl.handle.net/11407/155210.1080/03610926.2013.791374This article defines the so called Generalized Matrix Variate Jensen-Logistic distribution. The relevant applications of this class of distributions in Configuration Shape Theory consist of a more efficient computation, supported by the corresponding inference. This demands the solution of two important problems: (1) the development of analytical and efficient formulae for their k-th derivatives and (2) the use of the derivatives to transform the configuration density into a polynomial density under some special matrix Kummer relation, indexed in this case by the Jensen-Logistic kernel. In this article, we solve these problems by deriving a simple formula for the k-th derivative of the density function, avoiding the usual partition theory framework and using a generalization of Pascal triangles. Then we apply the results by obtaining the associated Jensen-Logistic Kummer relations and the configuration polynomial density in the setting of Statistical Shape Theory. © 2015 Taylor and Francis Group, LLC.engTaylor and Francis Inc.http://www.scopus.com/inward/record.url?eid=2-s2.0-84938842344&partnerID=40&md5=9f33e8e284efa82bc100822e46ade478Communications in Statistics - Theory and Methods, 2015, volume 44, issue 13, pp 2738-2752ScopusArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecDepartamento de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaCentro de Investigación en Matemáticas, Monterrey, MexicoDepartment of Mathematics and Statistics, McMaster University, Hamilton, CanadaCaro-Lopera F.J.Gonzalez-Farias G.Balakrishnan N.Generalized Kummer relationsJensen-Logistic distributionPascal triangleStatistical shape theoryZonal polynomialsThe Generalized Pascal Triangle and the Matrix Variate Jensen-Logistic Distribution11407/1552oai:repository.udem.edu.co:11407/15522020-05-27 18:58:24.647Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |
dc.title.english.eng.fl_str_mv |
The Generalized Pascal Triangle and the Matrix Variate Jensen-Logistic Distribution |
dc.contributor.affiliation.spa.fl_str_mv |
Departamento de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia Centro de Investigación en Matemáticas, Monterrey, Mexico Department of Mathematics and Statistics, McMaster University, Hamilton, Canada |
dc.subject.keyword.eng.fl_str_mv |
Generalized Kummer relations Jensen-Logistic distribution Pascal triangle Statistical shape theory Zonal polynomials |
topic |
Generalized Kummer relations Jensen-Logistic distribution Pascal triangle Statistical shape theory Zonal polynomials |
spellingShingle |
Generalized Kummer relations Jensen-Logistic distribution Pascal triangle Statistical shape theory Zonal polynomials |
description |
This article defines the so called Generalized Matrix Variate Jensen-Logistic distribution. The relevant applications of this class of distributions in Configuration Shape Theory consist of a more efficient computation, supported by the corresponding inference. This demands the solution of two important problems: (1) the development of analytical and efficient formulae for their k-th derivatives and (2) the use of the derivatives to transform the configuration density into a polynomial density under some special matrix Kummer relation, indexed in this case by the Jensen-Logistic kernel. In this article, we solve these problems by deriving a simple formula for the k-th derivative of the density function, avoiding the usual partition theory framework and using a generalization of Pascal triangles. Then we apply the results by obtaining the associated Jensen-Logistic Kummer relations and the configuration polynomial density in the setting of Statistical Shape Theory. © 2015 Taylor and Francis Group, LLC. |
publishDate |
2015 |
dc.date.accessioned.none.fl_str_mv |
2015-12-17T19:27:46Z |
dc.date.available.none.fl_str_mv |
2015-12-17T19:27:46Z |
dc.date.created.none.fl_str_mv |
2015 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
3610926 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/1552 |
dc.identifier.doi.none.fl_str_mv |
10.1080/03610926.2013.791374 |
identifier_str_mv |
3610926 10.1080/03610926.2013.791374 |
url |
http://hdl.handle.net/11407/1552 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
http://www.scopus.com/inward/record.url?eid=2-s2.0-84938842344&partnerID=40&md5=9f33e8e284efa82bc100822e46ade478 |
dc.relation.ispartofen.eng.fl_str_mv |
Communications in Statistics - Theory and Methods, 2015, volume 44, issue 13, pp 2738-2752 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Taylor and Francis Inc. |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159235361013760 |